A bracket was missing; with it proved the 'definitely false' lemma.
--- a/Quot/Examples/FSet3.thy Sat Dec 12 01:44:56 2009 +0100
+++ b/Quot/Examples/FSet3.thy Sat Dec 12 04:25:47 2009 +0100
@@ -65,13 +65,9 @@
"delete_raw [] x = []"
| "delete_raw (a # A) x = (if (a = x) then delete_raw A x else a # (delete_raw A x))"
-(* definitely FALSE
lemma mem_delete_raw:
- "x mem (delete_raw A a) = x mem A \<and> \<not>(x = a)"
-apply(induct A arbitrary: x a)
-apply(auto)
-sorry
-*)
+ "x mem (delete_raw A a) = (x mem A \<and> \<not>(x = a))"
+ by (induct A arbitrary: x a) (auto)
lemma mem_delete_raw_ident:
"\<not>(a \<in> set (delete_raw A a))"
@@ -92,16 +88,12 @@
sorry
lemma mem_cons_delete_raw:
- "a mem A \<Longrightarrow> a # (delete_raw A a) \<approx> A"
-sorry
-
-lemma finite_set_raw_delete_raw_cases1:
- "X = [] \<or> (\<exists>a. X \<approx> a # delete_raw X a)"
+ "a \<in> set A \<Longrightarrow> a # (delete_raw A a) \<approx> A"
sorry
lemma finite_set_raw_delete_raw_cases:
"X = [] \<or> (\<exists>a. a mem X \<and> X \<approx> a # delete_raw X a)"
-sorry
+ by (induct X) (auto)
fun
card_raw :: "'a list \<Rightarrow> nat"