--- a/Nominal/Manual/Term4.thy Tue Apr 20 15:59:57 2010 +0200
+++ b/Nominal/Manual/Term4.thy Tue Apr 20 17:25:31 2010 +0200
@@ -1,5 +1,5 @@
theory Term4
-imports "../Abs" "../Perm" "../Fv" "../Rsp" "../Lift" "Quotient_List"
+imports "../Abs" "../Perm" "../Fv" "../Rsp" "../Lift" "Quotient_List" "../../Attic/Prove"
begin
atom_decl name
@@ -28,7 +28,7 @@
done
thm permute_rtrm4_permute_rtrm4_list.simps
-lemmas rawperm=permute_rtrm4_permute_rtrm4_list.simps[simplified repaired]
+lemmas perm_fixed = permute_rtrm4_permute_rtrm4_list.simps[simplified repaired]
local_setup {* snd o define_fv_alpha_export (Datatype.the_info @{theory} "Term4.rtrm4")
@@ -48,42 +48,45 @@
apply simp_all
done
-(* We need sth like:
-lemma fix3: "fv_rtrm4_list = set o map fv_rtrm4" *)
+ML {* @{term "\<Union>a"} *}
+
+lemma fix3: "fv_rtrm4_list = Union o (set o (map fv_rtrm4))"
+apply (rule ext)
+apply (induct_tac x)
+apply simp_all
+done
notation
alpha_rtrm4 ("_ \<approx>4 _" [100, 100] 100) and
alpha_rtrm4_list ("_ \<approx>4l _" [100, 100] 100)
thm alpha_rtrm4_alpha_rtrm4_list.intros[simplified fix2]
-local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_inj}, []), (build_rel_inj @{thms alpha_rtrm4_alpha_rtrm4_list.intros[simplified fix2]} @{thms rtrm4.distinct rtrm4.inject list.distinct list.inject} @{thms alpha_rtrm4.cases[simplified fix2] alpha_rtrm4_list.cases[simplified fix2]} ctxt)) ctxt)) *}
+local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_inj}, []), (build_rel_inj @{thms alpha_rtrm4_alpha_rtrm4_list.intros} @{thms rtrm4.distinct rtrm4.inject list.distinct list.inject} @{thms alpha_rtrm4.cases alpha_rtrm4_list.cases} ctxt)) ctxt)) *}
thm alpha4_inj
-local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_inj_no}, []), (build_rel_inj @{thms alpha_rtrm4_alpha_rtrm4_list.intros} @{thms rtrm4.distinct rtrm4.inject list.distinct list.inject} @{thms alpha_rtrm4.cases alpha_rtrm4_list.cases} ctxt)) ctxt)) *}
-thm alpha4_inj_no
+lemmas alpha4_inj_fixed = alpha4_inj[simplified fix2 fix3]
local_setup {* snd o (prove_eqvt [@{typ rtrm4},@{typ "rtrm4 list"}] @{thm rtrm4.induct} @{thms permute_rtrm4_permute_rtrm4_list.simps[simplified repaired] fv_rtrm4_fv_rtrm4_list.simps} [@{term fv_rtrm4}, @{term fv_rtrm4_list}]) *}
thm eqvts(1-2)
local_setup {*
-(fn ctxt => snd (Local_Theory.note ((@{binding alpha4_eqvt_no}, []),
- build_alpha_eqvts [@{term alpha_rtrm4}, @{term alpha_rtrm4_list}] (fn _ => alpha_eqvt_tac @{thm alpha_rtrm4_alpha_rtrm4_list.induct} @{thms permute_rtrm4_permute_rtrm4_list.simps[simplified repaired] alpha4_inj_no} ctxt 1) ctxt) ctxt))
+(fn ctxt => snd (Local_Theory.note ((@{binding alpha4_eqvt}, []),
+ build_alpha_eqvts [@{term alpha_rtrm4}, @{term alpha_rtrm4_list}] (fn _ => alpha_eqvt_tac @{thm alpha_rtrm4_alpha_rtrm4_list.induct} @{thms permute_rtrm4_permute_rtrm4_list.simps[simplified repaired] alpha4_inj} ctxt 1) ctxt) ctxt))
*}
-lemmas alpha4_eqvt = alpha4_eqvt_no[simplified fix2]
+thm alpha4_eqvt
+lemmas alpha4_eqvt_fixed = alpha4_eqvt[simplified fix2 fix3]
local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_reflp}, []),
- build_alpha_refl [((0, @{term alpha_rtrm4}), 0), ((0, @{term alpha_rtrm4_list}), 0)] [@{term alpha_rtrm4}, @{term alpha_rtrm4_list}] @{thm rtrm4.induct} @{thms alpha4_inj_no} ctxt) ctxt)) *}
+ build_alpha_refl [((0, @{term alpha_rtrm4}), 0), ((0, @{term alpha_rtrm4_list}), 0)] [@{term alpha_rtrm4}, @{term alpha_rtrm4_list}] @{thm rtrm4.induct} @{thms alpha4_inj} ctxt) ctxt)) *}
thm alpha4_reflp
-ML build_equivps
+lemmas alpha4_reflp_fixed = alpha4_reflp[simplified fix2 fix3]
-local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_equivp_no}, []),
- (build_equivps [@{term alpha_rtrm4}, @{term alpha_rtrm4_list}] @{thms alpha4_reflp} @{thm alpha_rtrm4_alpha_rtrm4_list.induct} @{thms rtrm4.inject list.inject} @{thms alpha4_inj_no} @{thms rtrm4.distinct list.distinct} @{thms alpha_rtrm4_list.cases alpha_rtrm4.cases} @{thms alpha4_eqvt_no} ctxt)) ctxt)) *}
-lemmas alpha4_equivp = alpha4_equivp_no[simplified fix2]
+local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha4_equivp}, []),
+ (build_equivps [@{term alpha_rtrm4}, @{term alpha_rtrm4_list}] @{thms alpha4_reflp} @{thm alpha_rtrm4_alpha_rtrm4_list.induct} @{thms rtrm4.inject list.inject} @{thms alpha4_inj} @{thms rtrm4.distinct list.distinct} @{thms alpha_rtrm4_list.cases alpha_rtrm4.cases} @{thms alpha4_eqvt} ctxt)) ctxt)) *}
+lemmas alpha4_equivp_fixed = alpha4_equivp[simplified fix2 fix3]
quotient_type
trm4 = rtrm4 / alpha_rtrm4
-(*and
- trm4list = "rtrm4 list" / alpha_rtrm4_list*)
by (simp_all add: alpha4_equivp)
local_setup {*
@@ -96,7 +99,6 @@
print_theorems
-
lemma fv_rtrm4_rsp:
"xa \<approx>4 ya \<Longrightarrow> fv_rtrm4 xa = fv_rtrm4 ya"
"x \<approx>4l y \<Longrightarrow> fv_rtrm4_list x = fv_rtrm4_list y"
@@ -115,31 +117,61 @@
lemma [quot_respect]:
"(alpha_rtrm4 ===> list_rel alpha_rtrm4 ===> alpha_rtrm4) rAp4 rAp4"
- by (simp add: alpha4_inj)
+ by (simp add: alpha4_inj_fixed)
-(* Maybe also need: @{term "permute :: perm \<Rightarrow> rtrm4 list \<Rightarrow> rtrm4 list"} *)
local_setup {* snd o prove_const_rsp [] @{binding permute_rtrm4_rsp}
[@{term "permute :: perm \<Rightarrow> rtrm4 \<Rightarrow> rtrm4"}]
(fn _ => asm_simp_tac (HOL_ss addsimps @{thms alpha4_eqvt}) 1) *}
-print_theorems
-setup {* define_lifted_perms [@{typ trm4}] ["Term4.trm4"] [("permute_trm4", @{term "permute :: perm \<Rightarrow> rtrm4 \<Rightarrow> rtrm4"})] @{thms permute_rtrm4_permute_rtrm4_list_zero permute_rtrm4_permute_rtrm4_list_append} *}
+setup {* define_lifted_perms [@{typ trm4}] ["Term4.trm4"] [("permute_trm4", @{term "permute :: perm \<Rightarrow> rtrm4 \<Rightarrow> rtrm4"})] @{thms permute_rtrm4_permute_rtrm4_list_zero permute_rtrm4_permute_rtrm4_list_plus} *}
print_theorems
-
+(* Instead of permute for trm4_list we may need the following 2 lemmas: *)
+lemma [quot_preserve]: "(id ---> map rep_trm4 ---> map abs_trm4) permute = permute"
+ apply (simp add: expand_fun_eq)
+ apply clarify
+ apply (rename_tac "pi" x)
+ apply (induct_tac x)
+ apply simp
+ apply simp
+ apply (simp add: meta_eq_to_obj_eq[OF permute_trm4_def,simplified expand_fun_eq,simplified])
+ done
-lemma bla: "(Ap4 trm4 list = Ap4 trm4a lista) =
- (trm4 = trm4a \<and> list_rel (op =) list lista)"
- by (lifting alpha4_inj(2))
+lemma [quot_respect]: "(op = ===> list_rel alpha_rtrm4 ===> list_rel alpha_rtrm4) permute permute"
+ apply simp
+ apply (rule allI)+
+ apply (induct_tac xa y rule: list_induct2')
+ apply simp_all
+ apply clarify
+ apply (erule alpha4_eqvt)
+ done
-thm bla[simplified list_rel_eq]
+ML {*
+ map (lift_thm [@{typ trm4}] @{context}) @{thms perm_fixed}
+*}
-ML {* lift_thm [@{typ trm4}] @{context} @{thm alpha4_inj(1)} *}
-ML {* lift_thm [@{typ trm4}] @{context} @{thm alpha4_inj(2)} *}
-ML {* lift_thm [@{typ trm4}] @{context} @{thm alpha4_inj(3)[unfolded alpha_gen]} *}
ML {* lift_thm [@{typ trm4}] @{context} @{thm rtrm4.induct} *}
-.
+
+ML {*
+ map (lift_thm [@{typ trm4}] @{context}) @{thms fv_rtrm4_fv_rtrm4_list.simps[simplified fix3]}
+*}
-(*lemmas trm1_bp_induct = rtrm4.induct[quot_lifted]*)
+ML {*
+val liftd =
+ map (Local_Defs.unfold @{context} @{thms id_simps}) (
+ map (Local_Defs.fold @{context} @{thms alphas}) (
+ map (lift_thm [@{typ trm4}] @{context}) @{thms alpha4_inj_fixed[unfolded alphas]}
+ )
+ )
+*}
+
+ML {*
+ map (lift_thm [@{typ trm4}] @{context})
+ (flat (map (distinct_rel @{context} @{thms alpha_rtrm4.cases alpha_rtrm4_list.cases}) [(@{thms rtrm4.distinct},@{term "alpha_rtrm4"})]))
+*}
+
+ML {*
+ map (lift_thm [@{typ trm4}] @{context}) @{thms eqvts(1-2)[simplified fix3]}
+*}
end