--- a/Nominal/Parser.thy Wed Apr 14 11:07:42 2010 +0200
+++ b/Nominal/Parser.thy Mon Apr 19 09:59:32 2010 +0200
@@ -293,31 +293,49 @@
ML {* val cheat_const_rsp = Unsynchronized.ref false *}
(* nominal_datatype2 does the following things in order:
+
+Parser.thy/raw_nominal_decls
1) define the raw datatype
2) define the raw binding functions
+Perm.thy/define_raw_perms
3) define permutations of the raw datatype and show that raw type is in the pt typeclass
- 4) define fv and fb_bn
+Lift.thy/define_fv_alpha_export, Fv.thy/define_fv & define_alpha
+ 4) define fv and fv_bn
5) define alpha and alpha_bn
+Perm.thy/distinct_rel
6) prove alpha_distincts (C1 x \<notsimeq> C2 y ...) (Proof by cases; simp)
+Tacs.thy/build_rel_inj
6) prove alpha_eq_iff (C1 x = C2 y \<leftrightarrow> P x y ...)
(left-to-right by intro rule, right-to-left by cases; simp)
+Equivp.thy/prove_eqvt
7) prove bn_eqvt (common induction on the raw datatype)
8) prove fv_eqvt (common induction on the raw datatype with help of above)
+Rsp.thy/build_alpha_eqvts
9) prove alpha_eqvt and alpha_bn_eqvt
(common alpha-induction, unfolding alpha_gen, permute of #* and =)
+Equivp.thy/build_alpha_refl & Equivp.thy/build_equivps
10) prove that alpha and alpha_bn are equivalence relations
(common induction and application of 'compose' lemmas)
+Lift.thy/define_quotient_types
11) define quotient types
+Rsp.thy/build_fvbv_rsps
12) prove bn respects (common induction and simp with alpha_gen)
+Rsp.thy/prove_const_rsp
13) prove fv respects (common induction and simp with alpha_gen)
14) prove permute respects (unfolds to alpha_eqvt)
+Rsp.thy/prove_alpha_bn_rsp
15) prove alpha_bn respects
(alpha_induct then cases then sym and trans of the relations)
+Rsp.thy/prove_alpha_alphabn
16) show that alpha implies alpha_bn (by unduction, needed in following step)
+Rsp.thy/prove_const_rsp
17) prove respects for all datatype constructors
(unfold eq_iff and alpha_gen; introduce zero permutations; simp)
+Lift.thy/quotient_lift_consts_export
18) define lifted constructors, fv, bn, alpha_bn, permutations
+Perm.thy/define_lifted_perms
19) lift permutation zero and add properties to show that quotient type is in the pt typeclass
+Lift.thy/lift_thm
20) lift permutation simplifications
21) lift induction
22) lift fv
@@ -325,8 +343,11 @@
24) lift eq_iff
25) lift alpha_distincts
26) lift fv and bn eqvts
+Equivp.thy/prove_supports
27) prove that union of arguments supports constructors
+Equivp.thy/prove_fs
28) show that the lifted type is in fs typeclass (* by q_induct, supports *)
+Equivp.thy/supp_eq
29) prove supp = fv
*)
ML {*