--- a/Nominal/ExLet.thy Thu Mar 25 10:25:33 2010 +0100
+++ b/Nominal/ExLet.thy Thu Mar 25 10:44:14 2010 +0100
@@ -42,6 +42,10 @@
"permute_bn (p + q) a = permute_bn p (permute_bn q a)"
oops
+lemma Lt_subst:
+ "supp (Abs (bn lts) trm) \<sharp>* q \<Longrightarrow> (Lt lts trm) = Lt (permute_bn q lts) (q \<bullet> trm)"
+ sorry
+
lemma
fixes t::trm
and l::lts
@@ -49,7 +53,7 @@
assumes a1: "\<And>name c. P1 c (Vr name)"
and a2: "\<And>trm1 trm2 c. \<lbrakk>\<And>d. P1 d trm1; \<And>d. P1 d trm2\<rbrakk> \<Longrightarrow> P1 c (Ap trm1 trm2)"
and a3: "\<And>name trm c. \<lbrakk>atom name \<sharp> c; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lm name trm)"
- and a4: "\<And>lts trm c. \<lbrakk>bn lts \<sharp>* (c, Lt lts trm); \<And>d. P2 d lts; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lt lts trm)"
+ and a4: "\<And>lts trm c. \<lbrakk>bn lts \<sharp>* c; \<And>d. P2 d lts; \<And>d. P1 d trm\<rbrakk> \<Longrightarrow> P1 c (Lt lts trm)"
and a5: "\<And>c. P2 c Lnil"
and a6: "\<And>name trm lts c. \<lbrakk>\<And>d. P1 d trm; \<And>d. P2 d lts\<rbrakk> \<Longrightarrow> P2 c (Lcons name trm lts)"
shows "P1 c t" and "P2 c l"
@@ -81,43 +85,30 @@
apply(simp add: fresh_def)
apply(simp add: trm_lts.fv[simplified trm_lts.supp])
apply(simp)
- apply(subgoal_tac "\<exists>q. (q \<bullet> bn (p \<bullet> lts)) \<sharp>* c \<and> supp (Abs (bn (p \<bullet> lts)) (p \<bullet> trm)) \<sharp>* q")
+ apply(subgoal_tac "\<exists>q. (bn (permute_bn q (p \<bullet> lts))) \<sharp>* c \<and> supp (Abs (bn (p \<bullet> lts)) (p \<bullet> trm)) \<sharp>* q")
apply(erule exE)
- (* HERE *)
- apply(rule_tac t="Lt (p \<bullet> lts) (p \<bullet> trm)"
- and s="Lt (permute_bn q (p \<bullet> lts)) (q \<bullet> p \<bullet> trm)" in subst)
- defer
+ apply(erule conjE)
+ apply(subst Lt_subst)
+ apply assumption
apply(rule a4)
- defer
- apply(simp add: eqvts)
+ apply assumption
+ apply (simp add: fresh_star_def fresh_def)
apply(rotate_tac 1)
apply(drule_tac x="q + p" in meta_spec)
apply(simp)
+ (*apply(rule at_set_avoiding2)
+ apply(simp add: finite_supp)
+ apply(simp add: supp_Abs)
+ apply(rule finite_Diff)
+ apply(simp add: finite_supp)
+ apply(simp add: fresh_star_def fresh_def supp_Abs)*)
defer
- apply(simp add: test)
+ apply(simp add: eqvts test)
apply(rule a5)
apply(simp add: test)
apply(rule a6)
apply simp
apply simp
-
- apply(rule at_set_avoiding2)
- apply(simp add: finite_supp)
- defer
- apply(simp add: finite_supp)
- apply(simp add: finite_supp)
- apply(simp add: fresh_star_def)
- apply(simp add: fresh_def)
- thm trm_lts.fv[simplified trm_lts.supp]
- apply(simp add: trm_lts.fv[simplified trm_lts.supp])
- apply(simp add: alpha_bn_eq_iff)
- defer
- apply(simp)
- apply(rule a5)
- apply(simp)
- apply(rule a6)
- apply(simp)
- apply(simp)
oops