--- a/Quot/QuotSum.thy Tue Jan 26 00:47:40 2010 +0100
+++ b/Quot/QuotSum.thy Tue Jan 26 01:00:35 2010 +0100
@@ -1,3 +1,6 @@
+(* Title: QuotSum.thy
+ Author: Cezary Kaliszyk and Christian Urban
+*)
theory QuotSum
imports QuotMain
begin
@@ -19,81 +22,77 @@
declare [[map "+" = (sum_map, sum_rel)]]
+text {* should probably be in Sum_Type.thy *}
+lemma split_sum_all:
+ shows "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P (Inl x)) \<and> (\<forall>x. P (Inr x))"
+apply(auto)
+apply(case_tac x)
+apply(simp_all)
+done
+
lemma sum_equivp[quot_equiv]:
assumes a: "equivp R1"
assumes b: "equivp R2"
shows "equivp (sum_rel R1 R2)"
apply(rule equivpI)
unfolding reflp_def symp_def transp_def
- apply(auto)
- apply(case_tac [!] x)
- apply(simp_all add: equivp_reflp[OF a] equivp_reflp[OF b])
- apply(case_tac [!] y)
- apply(simp_all add: equivp_symp[OF a] equivp_symp[OF b])
- apply(case_tac [!] z)
- apply(simp_all)
- apply(rule equivp_transp[OF a])
- apply(assumption)+
- apply(rule equivp_transp[OF b])
- apply(assumption)+
+ apply(simp_all add: split_sum_all)
+ apply(blast intro: equivp_reflp[OF a] equivp_reflp[OF b])
+ apply(blast intro: equivp_symp[OF a] equivp_symp[OF b])
+ apply(blast intro: equivp_transp[OF a] equivp_transp[OF b])
done
-(*
-lemma sum_fun_fun:
- assumes q1: "Quotient R1 Abs1 Rep1"
- assumes q2: "Quotient R2 Abs2 Rep2"
- shows "sum_rel R1 R2 r s =
- (sum_rel R1 R2 r r \<and> sum_rel R1 R2 s s \<and> sum_map Abs1 Abs2 r = sum_map Abs1 Abs2 s)"
- using q1 q2
- apply(case_tac r)
- apply(case_tac s)
- apply(simp_all)
- prefer 2
- apply(case_tac s)
- apply(auto)
- unfolding Quotient_def
- apply metis+
- done
-*)
-
lemma sum_quotient[quot_thm]:
assumes q1: "Quotient R1 Abs1 Rep1"
assumes q2: "Quotient R2 Abs2 Rep2"
shows "Quotient (sum_rel R1 R2) (sum_map Abs1 Abs2) (sum_map Rep1 Rep2)"
unfolding Quotient_def
- apply(auto)
- apply(case_tac a)
- apply(simp_all add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1]
- Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2])
- apply(case_tac a)
- apply(simp_all add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1]
- Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2])
- apply(case_tac [!] r)
- apply(case_tac [!] s)
- apply(simp_all)
+ apply(simp add: split_sum_all)
+ apply(simp_all add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1])
+ apply(simp_all add: Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2])
using q1 q2
unfolding Quotient_def
apply(blast)+
done
+lemma sum_Inl_rsp[quot_respect]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "(R1 ===> sum_rel R1 R2) Inl Inl"
+ by simp
+
+lemma sum_Inr_rsp[quot_respect]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "(R2 ===> sum_rel R1 R2) Inr Inr"
+ by simp
+
+lemma sum_Inl_prs[quot_respect]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "(Rep1 ---> sum_map Abs1 Abs2) Inl = Inl"
+ apply(simp add: expand_fun_eq)
+ apply(simp add: Quotient_abs_rep[OF q1])
+ done
+
+lemma sum_Inr_prs[quot_respect]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "(Rep2 ---> sum_map Abs1 Abs2) Inr = Inr"
+ apply(simp add: expand_fun_eq)
+ apply(simp add: Quotient_abs_rep[OF q2])
+ done
+
lemma sum_map_id[id_simps]:
shows "sum_map id id \<equiv> id"
apply (rule eq_reflection)
- apply (rule ext)
- apply (case_tac x)
- apply (auto)
+ apply (simp add: expand_fun_eq split_sum_all)
done
lemma sum_rel_eq[id_simps]:
- "sum_rel op = op = \<equiv> op ="
+ shows "sum_rel (op =) (op =) \<equiv> (op =)"
apply (rule eq_reflection)
- apply (rule ext)+
- apply (case_tac x)
- apply auto
- apply (case_tac xa)
- apply auto
- apply (case_tac xa)
- apply auto
+ apply(simp add: expand_fun_eq split_sum_all)
done
end