# HG changeset patch # User Christian Urban # Date 1309816579 -7200 # Node ID dc003667cd174f65de058c6514cf7eaefc7227c4 # Parent faf9ad68190020cb751e25f1905f3cd1a5ba8914# Parent a6acbb20fbcac18665db2658af64426d9b4981e5 merged diff -r faf9ad681900 -r dc003667cd17 Nominal/Ex/LetInv.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Nominal/Ex/LetInv.thy Mon Jul 04 23:56:19 2011 +0200 @@ -0,0 +1,279 @@ +theory Let +imports "../Nominal2" +begin + +atom_decl name + +nominal_datatype trm = + Var "name" +| App "trm" "trm" +| Lam x::"name" t::"trm" bind x in t +| Let as::"assn" t::"trm" bind "bn as" in t +and assn = + ANil +| ACons "name" "trm" "assn" +binder + bn +where + "bn ANil = []" +| "bn (ACons x t as) = (atom x) # (bn as)" + +print_theorems + +thm alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.intros +thm bn_raw.simps +thm permute_bn_raw.simps +thm trm_assn.perm_bn_alpha +thm trm_assn.permute_bn + +thm trm_assn.fv_defs +thm trm_assn.eq_iff +thm trm_assn.bn_defs +thm trm_assn.bn_inducts +thm trm_assn.perm_simps +thm trm_assn.induct +thm trm_assn.inducts +thm trm_assn.distinct +thm trm_assn.supp +thm trm_assn.fresh +thm trm_assn.exhaust +thm trm_assn.strong_exhaust +thm trm_assn.perm_bn_simps + +lemma alpha_bn_inducts_raw[consumes 1]: + "\alpha_bn_raw a b; P3 ANil_raw ANil_raw; + \trm_raw trm_rawa assn_raw assn_rawa name namea. + \alpha_trm_raw trm_raw trm_rawa; alpha_bn_raw assn_raw assn_rawa; + P3 assn_raw assn_rawa\ + \ P3 (ACons_raw name trm_raw assn_raw) + (ACons_raw namea trm_rawa assn_rawa)\ \ P3 a b" + by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\x y. True" _ "\x y. True", simplified]) auto + +lemmas alpha_bn_inducts[consumes 1] = alpha_bn_inducts_raw[quot_lifted] + + + +lemma alpha_bn_refl: "alpha_bn x x" + by (induct x rule: trm_assn.inducts(2)) + (rule TrueI, auto simp add: trm_assn.eq_iff) +lemma alpha_bn_sym: "alpha_bn x y \ alpha_bn y x" + sorry +lemma alpha_bn_trans: "alpha_bn x y \ alpha_bn y z \ alpha_bn x z" + sorry + +lemma bn_inj[rule_format]: + assumes a: "alpha_bn x y" + shows "bn x = bn y \ x = y" + by (rule alpha_bn_inducts[OF a]) (simp_all add: trm_assn.bn_defs) + +lemma bn_inj2: + assumes a: "alpha_bn x y" + shows "\q r. (q \ bn x) = (r \ bn y) \ permute_bn q x = permute_bn r y" +using a +apply(induct rule: alpha_bn_inducts) +apply(simp add: trm_assn.perm_bn_simps) +apply(simp add: trm_assn.perm_bn_simps) +apply(simp add: trm_assn.bn_defs) +apply(simp add: atom_eqvt) +done + +lemma Abs_lst_fcb2: + fixes as bs :: "atom list" + and x y :: "'b :: fs" + and c::"'c::fs" + assumes eq: "[as]lst. x = [bs]lst. y" + and fcb1: "(set as) \* c \ (set as) \* f as x c" + and fresh1: "set as \* c" + and fresh2: "set bs \* c" + and perm1: "\p. supp p \* c \ p \ (f as x c) = f (p \ as) (p \ x) c" + and perm2: "\p. supp p \* c \ p \ (f bs y c) = f (p \ bs) (p \ y) c" + shows "f as x c = f bs y c" +proof - + have "supp (as, x, c) supports (f as x c)" + unfolding supports_def fresh_def[symmetric] + by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) + then have fin1: "finite (supp (f as x c))" + by (auto intro: supports_finite simp add: finite_supp) + have "supp (bs, y, c) supports (f bs y c)" + unfolding supports_def fresh_def[symmetric] + by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) + then have fin2: "finite (supp (f bs y c))" + by (auto intro: supports_finite simp add: finite_supp) + obtain q::"perm" where + fr1: "(q \ (set as)) \* (x, c, f as x c, f bs y c)" and + fr2: "supp q \* Abs_lst as x" and + inc: "supp q \ (set as) \ q \ (set as)" + using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"] + fin1 fin2 + by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) + have "Abs_lst (q \ as) (q \ x) = q \ Abs_lst as x" by simp + also have "\ = Abs_lst as x" + by (simp only: fr2 perm_supp_eq) + finally have "Abs_lst (q \ as) (q \ x) = Abs_lst bs y" using eq by simp + then obtain r::perm where + qq1: "q \ x = r \ y" and + qq2: "q \ as = r \ bs" and + qq3: "supp r \ (q \ (set as)) \ set bs" + apply(drule_tac sym) + apply(simp only: Abs_eq_iff2 alphas) + apply(erule exE) + apply(erule conjE)+ + apply(drule_tac x="p" in meta_spec) + apply(simp add: set_eqvt) + apply(blast) + done + have "(set as) \* f as x c" + apply(rule fcb1) + apply(rule fresh1) + done + then have "q \ ((set as) \* f as x c)" + by (simp add: permute_bool_def) + then have "set (q \ as) \* f (q \ as) (q \ x) c" + apply(simp add: fresh_star_eqvt set_eqvt) + apply(subst (asm) perm1) + using inc fresh1 fr1 + apply(auto simp add: fresh_star_def fresh_Pair) + done + then have "set (r \ bs) \* f (r \ bs) (r \ y) c" using qq1 qq2 by simp + then have "r \ ((set bs) \* f bs y c)" + apply(simp add: fresh_star_eqvt set_eqvt) + apply(subst (asm) perm2[symmetric]) + using qq3 fresh2 fr1 + apply(auto simp add: set_eqvt fresh_star_def fresh_Pair) + done + then have fcb2: "(set bs) \* f bs y c" by (simp add: permute_bool_def) + have "f as x c = q \ (f as x c)" + apply(rule perm_supp_eq[symmetric]) + using inc fcb1[OF fresh1] fr1 by (auto simp add: fresh_star_def) + also have "\ = f (q \ as) (q \ x) c" + apply(rule perm1) + using inc fresh1 fr1 by (auto simp add: fresh_star_def) + also have "\ = f (r \ bs) (r \ y) c" using qq1 qq2 by simp + also have "\ = r \ (f bs y c)" + apply(rule perm2[symmetric]) + using qq3 fresh2 fr1 by (auto simp add: fresh_star_def) + also have "... = f bs y c" + apply(rule perm_supp_eq) + using qq3 fr1 fcb2 by (auto simp add: fresh_star_def) + finally show ?thesis by simp +qed + +lemma Abs_lst1_fcb2: + fixes a b :: "atom" + and x y :: "'b :: fs" + and c::"'c :: fs" + assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)" + and fcb1: "a \ c \ a \ f a x c" + and fresh: "{a, b} \* c" + and perm1: "\p. supp p \* c \ p \ (f a x c) = f (p \ a) (p \ x) c" + and perm2: "\p. supp p \* c \ p \ (f b y c) = f (p \ b) (p \ y) c" + shows "f a x c = f b y c" +using e +apply(drule_tac Abs_lst_fcb2[where c="c" and f="\(as::atom list) . f (hd as)"]) +apply(simp_all) +using fcb1 fresh perm1 perm2 +apply(simp_all add: fresh_star_def) +done + + +function + apply_assn2 :: "(trm \ trm) \ assn \ assn" +where + "apply_assn2 f ANil = ANil" +| "apply_assn2 f (ACons x t as) = ACons x (f t) (apply_assn2 f as)" + apply(case_tac x) + apply(case_tac b rule: trm_assn.exhaust(2)) + apply(simp_all) + apply(blast) + done + +termination by lexicographic_order + +lemma apply_assn_eqvt[eqvt]: + "p \ (apply_assn2 f a) = apply_assn2 (p \ f) (p \ a)" + apply(induct f a rule: apply_assn2.induct) + apply simp_all + apply(perm_simp) + apply rule + done + +lemma + fixes x y :: "'a :: fs" + shows "[a # as]lst. x = [b # bs]lst. y \ [[a]]lst. [as]lst. x = [[b]]lst. [bs]lst. y" + apply (simp add: Abs_eq_iff) + apply (elim exE) + apply (rule_tac x="p" in exI) + apply (simp add: alphas) + apply clarify + apply rule + apply (simp add: supp_Abs) + apply blast + apply (simp add: supp_Abs fresh_star_def) + apply blast + done + +lemma + assumes neq: "a \ b" "sort_of a = sort_of b" + shows "[[a]]lst. [[a]]lst. a = [[a]]lst. [[b]]lst. b \ [[a, a]]lst. a \ [[a, b]]lst. b" + apply (simp add: Abs1_eq_iff) + apply rule + apply (simp add: Abs_eq_iff alphas supp_atom fresh_star_def) + apply (rule_tac x="(a \ b)" in exI) + apply (simp add: neq) + apply (simp add: Abs_eq_iff alphas supp_atom fresh_star_def neq) + done + +nominal_primrec + subst :: "name \ trm \ trm \ trm" +where + "subst s t (Var x) = (if (s = x) then t else (Var x))" +| "subst s t (App l r) = App (subst s t l) (subst s t r)" +| "atom v \ (s, t) \ subst s t (Lam v b) = Lam v (subst s t b)" +| "set (bn as) \* (s, t) \ subst s t (Let as b) = Let (apply_assn2 (subst s t) as) (subst s t b)" + apply (simp only: eqvt_def subst_graph_def) + apply (rule, perm_simp, rule) + apply (rule TrueI) + apply (case_tac x) + apply (rule_tac y="c" and c="(a,b)" in trm_assn.strong_exhaust(1)) + apply (auto simp add: fresh_star_def)[3] + apply (drule_tac x="assn" in meta_spec) + apply (simp add: Abs1_eq_iff alpha_bn_refl) + apply auto + apply (erule_tac c="(sa, ta)" in Abs_lst1_fcb2) + apply (simp add: Abs_fresh_iff) + apply (simp add: fresh_star_def) + apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def)[2] + apply (subgoal_tac "apply_assn2 (\x2\trm. subst_sumC (sa, ta, x2)) asa + = apply_assn2 (\x2\trm. subst_sumC (sa, ta, x2)) as") + prefer 2 + apply (erule alpha_bn_inducts) + apply simp + apply (simp only: apply_assn2.simps) + apply simp +--"We know nothing about names; not true; but we can apply fcb2" + defer + apply (simp only: ) + apply (erule_tac c="(sa, ta)" in Abs_lst_fcb2) +--"We again need induction for fcb assumption; this time true" + apply (induct_tac as rule: trm_assn.inducts(2)) + apply (rule TrueI)+ + apply (simp_all add: trm_assn.bn_defs fresh_star_def)[2] + apply (auto simp add: Abs_fresh_iff)[1] + apply assumption+ +--"But eqvt is not going to be true as well" + apply (simp add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def trm_assn.fv_bn_eqvt) + apply (simp add: apply_assn_eqvt) + apply (drule sym) + apply (subgoal_tac "p \ (\x2\trm. subst_sumC (sa, ta, x2)) = (\x2\trm. subst_sumC (sa, ta, x2))") + apply (simp) + apply (erule alpha_bn_inducts) + apply simp + apply simp + apply (simp add: trm_assn.bn_defs) +--"Again we cannot relate 'namea' with 'p \ name'" + prefer 4 + apply (erule alpha_bn_inducts) + apply simp_all[2] + oops + +end