# HG changeset patch # User Cezary Kaliszyk # Date 1259911118 -3600 # Node ID fac6069d8e80215ebc2d4eab0c63a1eb9d605af4 # Parent 91c374abde06ff9c9afdef7946a630190fec8172 Made your version work again with LIST_REL_EQ. diff -r 91c374abde06 -r fac6069d8e80 FSet.thy --- a/FSet.thy Thu Dec 03 15:03:31 2009 +0100 +++ b/FSet.thy Fri Dec 04 08:18:38 2009 +0100 @@ -135,9 +135,6 @@ if (a memb A) then (fold1 f g z A) else (f (g a) (fold1 f g z A)) ) else z)" -(* fold1_def is not usable, but: *) -thm fold1.simps - lemma fs1_strong_cases: fixes X :: "'a list" shows "(X = []) \ (\a. \ Y. (~(a memb Y) \ (X \ a # Y)))" @@ -434,8 +431,8 @@ "INSERT2 \ op #" ML {* val quot = @{thms QUOTIENT_fset QUOTIENT_fset2} *} -ML {* fun inj_repabs_tac_fset lthy = inj_repabs_tac lthy quot [rel_refl] [trans2] *} -ML {* fun lift_tac_fset lthy t = lift_tac lthy t [rel_eqv] quot *} +ML {* fun inj_repabs_tac_fset lthy = inj_repabs_tac lthy [rel_refl] [trans2] *} +ML {* fun lift_tac_fset lthy t = lift_tac lthy t [rel_eqv] *} lemma "P (x :: 'a fset2) (EMPTY :: 'c fset) \ (\e t. P x t \ P x (INSERT e t)) \ P x l" apply (tactic {* lift_tac_fset @{context} @{thm list_induct_part} 1 *}) @@ -469,7 +466,7 @@ sorry ML {* val rsp_thms = @{thms list_rec_rsp list_case_rsp} @ rsp_thms *} -ML {* fun lift_tac_fset lthy t = lift_tac lthy t [rel_eqv] quot *} +ML {* fun lift_tac_fset lthy t = lift_tac lthy t [rel_eqv] *} lemma "fset_rec (f1::'t) x (INSERT a xa) = x a xa (fset_rec f1 x xa)" apply (tactic {* lift_tac_fset @{context} @{thm list.recs(2)} 1 *}) diff -r 91c374abde06 -r fac6069d8e80 LamEx.thy --- a/LamEx.thy Thu Dec 03 15:03:31 2009 +0100 +++ b/LamEx.thy Fri Dec 04 08:18:38 2009 +0100 @@ -128,7 +128,7 @@ unfolding fresh_def supp_def sorry -lemma perm_rsp[quot_rsp]: +lemma perm_rsp[quotient_rsp]: "(op = ===> alpha ===> alpha) op \ op \" apply(auto) (* this is propably true if some type conditions are imposed ;o) *) @@ -140,14 +140,14 @@ (* this is probably only true if some type conditions are imposed *) sorry -lemma rVar_rsp[quot_rsp]: +lemma rVar_rsp[quotient_rsp]: "(op = ===> alpha) rVar rVar" by (auto intro:a1) -lemma rApp_rsp[quot_rsp]: "(alpha ===> alpha ===> alpha) rApp rApp" +lemma rApp_rsp[quotient_rsp]: "(alpha ===> alpha ===> alpha) rApp rApp" by (auto intro:a2) -lemma rLam_rsp[quot_rsp]: "(op = ===> alpha ===> alpha) rLam rLam" +lemma rLam_rsp[quotient_rsp]: "(op = ===> alpha ===> alpha) rLam rLam" apply(auto) apply(rule a3) apply(rule_tac t="[(x,x)]\y" and s="y" in subst) @@ -160,7 +160,7 @@ apply(simp add: abs_fresh) done -lemma rfv_rsp[quot_rsp]: "(alpha ===> op =) rfv rfv" +lemma rfv_rsp[quotient_rsp]: "(alpha ===> op =) rfv rfv" sorry lemma rvar_inject: "rVar a \ rVar b = (a = b)" @@ -174,7 +174,7 @@ ML {* val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data @{context} qty *} ML {* val (trans2, reps_same, absrep, quot) = lookup_quot_thms @{context} "lam" *} -ML {* fun lift_tac_lam lthy t = lift_tac lthy t [rel_eqv] [quot] *} +ML {* fun lift_tac_lam lthy t = lift_tac lthy t [rel_eqv] *} lemma pi_var: "(pi\('x \ 'x) list) \ Var a = Var (pi \ a)" apply (tactic {* lift_tac_lam @{context} @{thm pi_var_com} 1 *}) diff -r 91c374abde06 -r fac6069d8e80 QuotMain.thy --- a/QuotMain.thy Thu Dec 03 15:03:31 2009 +0100 +++ b/QuotMain.thy Fri Dec 04 08:18:38 2009 +0100 @@ -957,7 +957,7 @@ (* (op =) ===> (op =) \ (op =), needed in order to apply respectfulness theorems *) (* global simplification *) - NDT ctxt "H" (CHANGED o (asm_full_simp_tac ((Simplifier.context ctxt empty_ss) addsimps @{thms eq_reflection[OF FUN_REL_EQ]})))]) + NDT ctxt "H" (CHANGED o (asm_full_simp_tac ((Simplifier.context ctxt empty_ss) addsimps @{thms eq_reflection[OF FUN_REL_EQ] eq_reflection[OF LIST_REL_EQ]})))]) *} ML {*