# HG changeset patch # User Christian Urban # Date 1259117227 -3600 # Node ID f7dee6e808eb7fb6f098a41a02a85a2f6d389be0 # Parent 980fdf92a83418156e7205d6a8aba43de231d9d4# Parent eef425e473cc32bf8c8b5fe7758c8465e5a62e15 merged diff -r 980fdf92a834 -r f7dee6e808eb FSet.thy --- a/FSet.thy Wed Nov 25 03:45:44 2009 +0100 +++ b/FSet.thy Wed Nov 25 03:47:07 2009 +0100 @@ -355,9 +355,15 @@ (quotient_tac quot); val gc = Drule.strip_imp_concl (cprop_of lpi); val t = Goal.prove_internal [] gc (fn _ => tac 1) - val _ = tracing (Syntax.string_of_term @{context} (prop_of t)) + val ts = MetaSimplifier.rewrite_rule [@{thm eq_reflection} OF @{thms id_apply}] t + val te = @{thm eq_reflection} OF [ts] + val _ = tracing (Syntax.string_of_term @{context} (term_of ctrm)); + val _ = tracing (Syntax.string_of_term @{context} (term_of (Thm.lhs_of te))); + val insts = matching_prs (ProofContext.theory_of ctxt) (term_of ctrm) (term_of (Thm.lhs_of te)); + val ti = Drule.instantiate insts te; + val _ = tracing (Syntax.string_of_term @{context} (term_of (cprop_of ti))); in - Conv.rewr_conv (eq_reflection OF [t]) ctrm + Conv.rewr_conv (eq_reflection OF [ti]) ctrm end | _ $ _ => Conv.comb_conv (lambda_prs_conv ctxt quot) ctrm | Abs _ => Conv.abs_conv (fn (_, ctxt) => lambda_prs_conv ctxt quot) ctxt ctrm @@ -365,10 +371,6 @@ *} ML {* - lambda_prs_conv @{context} quot -*} - -ML {* fun lambda_prs_tac ctxt quot = CSUBGOAL (fn (goal, i) => CONVERSION (Conv.params_conv ~1 (fn ctxt => @@ -376,36 +378,55 @@ Conv.concl_conv ~1 (lambda_prs_conv ctxt quot))) ctxt) i) *} -(* ML {* -lambda_prs_conv @{context} quot -@{cterm "((ABS_fset ---> id) ---> id) (\x\'a list \ bool. id ((f ((REP_fset ---> id) x) ((REP_fset ---> id) x))))"} +val ctrm = @{cterm "((ABS_fset ---> id) ---> id) (\x. id ((REP_fset ---> id) x))"} +val pat = @{cpat "((ABS_fset ---> id) ---> id) (\x. ?f ((REP_fset ---> id) x))"} *} +ML {* matching_prs @{theory} (term_of pat) (term_of ctrm); *} + ML {* -@{cterm "((ABS_fset ---> id) ---> id) - (\P. - All ((REP_fset ---> id) - (\list. + lambda_prs_conv @{context} quot ctrm +*} + + +ML {* +val t = @{thm LAMBDA_PRS[OF FUN_QUOTIENT[OF QUOTIENT_fset IDENTITY_QUOTIENT] IDENTITY_QUOTIENT]} +val te = @{thm eq_reflection} OF [t] +val ts = MetaSimplifier.rewrite_rule [@{thm eq_reflection} OF @{thms id_apply}] te +val tl = Thm.lhs_of ts + *} + +ML {* val inst = matching_prs @{theory} (term_of tl) (term_of ctrm); *} + +ML {* val trm = @{cterm "(((ABS_fset ---> id) ---> id) (\(P\('a list \ bool)). + All ((REP_fset ---> id) (\(list\('a list)). (ABS_fset ---> id) ((REP_fset ---> id) P) (REP_fset (ABS_fset [])) \ - (\a. All ((REP_fset ---> id) - (\list. - (ABS_fset ---> id) ((REP_fset ---> id) P) (REP_fset (ABS_fset list)) \ - (ABS_fset ---> id) ((REP_fset ---> id) P) - (REP_fset (ABS_fset (a # REP_fset (ABS_fset list))))))) \ - (ABS_fset ---> id) ((REP_fset ---> id) P) (REP_fset (ABS_fset list)))))"} + True \ (ABS_fset ---> id) ((REP_fset ---> id) P) (REP_fset (ABS_fset list))))))"} *} + +ML {* + lambda_prs_conv @{context} quot trm +*} -*} -*) + + +(*ML {* val trm = @{cterm "(((ABS_fset ---> id) ---> id) (\(?P\('a list \ bool)). (g (id P)"} *} *) + + lemma "\P EMPTY; \a x. P x \ P (INSERT a x)\ \ P l" apply(tactic {* procedure_tac @{thm list.induct} @{context} 1 *}) apply(tactic {* regularize_tac @{context} rel_eqv rel_refl 1 *}) apply(tactic {* REPEAT_ALL_NEW (r_mk_comb_tac @{context} rty quot rel_refl trans2 rsp_thms) 1 *}) apply(tactic {* REPEAT_ALL_NEW (allex_prs_tac @{context} quot) 1 *}) -oops +apply(tactic {* lambda_prs_tac @{context} quot 1 *}) + -(* +ML_prf {* Subgoal.focus @{context} 1 (#goal (Isar.goal ())) *} + +apply (tactic {* lift_tac_fset @{context} @{thm list.induct} 1 *}) + + thm LAMBDA_PRS apply(tactic {* EqSubst.eqsubst_tac @{context} [0] @{thms LAMBDA_PRS} 1 *}) @@ -416,18 +437,20 @@ apply(tactic {* clean_tac @{context} quot defs reps_same 1 *}) apply (tactic {* lift_tac_fset @{context} @{thm list.induct} 1 *}) ML {* lift_thm_fset @{context} @{thm list.induct} *} -ML {* lift_thm_g_fset @{context} @{thm list.induct} @{term "\P EMPTY; \a x. P x \ P (INSERT a x)\ \ P l"} *}*) +ML {* lift_thm_g_fset @{context} @{thm list.induct} @{term "\P EMPTY; \a x. P x \ P (INSERT a x)\ \ P l"} *} + + -lemma "\f x xa. fmap f (FUNION (x::'b fset) (xa::'b fset)) = FUNION (fmap f x) (fmap f xa)" +thm map_append +lemma "fmap f (FUNION (x::'b fset) (xa::'b fset)) = FUNION (fmap f x) (fmap f xa)" apply(tactic {* procedure_tac @{thm map_append} @{context} 1 *}) -oops +apply(tactic {* prepare_tac 1 *}) +thm map_append +apply (tactic {* lift_tac_fset @{context} @{thm map_append} 1 *}) +done -lemma "fmap f (FUNION (x::'b fset) (y::'b fset)) = FUNION (fmap f x) (fmap f y)" -apply(tactic {* procedure_tac @{thm map_append} @{context} 1 *}) -oops - lemma "FUNION (FUNION x xa) xb = FUNION x (FUNION xa xb)" apply (tactic {* lift_tac_fset @{context} @{thm append_assoc} 1 *}) @@ -438,7 +461,7 @@ (if rsp_fold f then if IN a x then FOLD f g z x else f (g a) (FOLD f g z x) else z)"} *}*) - +*) ML {* lift_thm_g_fset @{context} @{thm map_append} @{term "fmap f (FUNION (x::'b fset) (xa::'b fset)) = FUNION (fmap f x) (fmap f xa)"} *} @@ -448,7 +471,7 @@ ML {* lift_thm_fset @{context} @{thm map_append} *} - +(* apply(tactic {* procedure_tac @{thm m1} @{context} 1 *}) apply(tactic {* regularize_tac @{context} rel_eqv rel_refl 1 *}) apply(tactic {* REPEAT_ALL_NEW (r_mk_comb_tac @{context} rty quot rel_refl trans2 rsp_thms) 1 *}) @@ -458,7 +481,7 @@ ML_prf {* val lower = flat (map (add_lower_defs @{context}) defs) *} apply(tactic {* REPEAT_ALL_NEW (EqSubst.eqsubst_tac @{context} [0] lower) 1*}) apply(tactic {* simp_tac (HOL_ss addsimps [reps_same]) 1 *}) - +*)