# HG changeset patch # User Christian Urban # Date 1269089400 -3600 # Node ID eb60f360a200b9145239ca6291e2f35513479aaa # Parent a5ba76208983c579c0611967712ec1d8c27a6581 moved lemmas supp_perm_eq and exists_perm to Nominal2_Supp diff -r a5ba76208983 -r eb60f360a200 Nominal/Abs.thy --- a/Nominal/Abs.thy Sat Mar 20 04:51:26 2010 +0100 +++ b/Nominal/Abs.thy Sat Mar 20 13:50:00 2010 +0100 @@ -377,128 +377,6 @@ apply(simp add: eqvts) done -lemma perm_zero: - assumes a: "\x::atom. p \ x = x" - shows "p = 0" -using a -by (simp add: expand_perm_eq) - -fun - add_perm -where - "add_perm [] = 0" -| "add_perm ((a, b) # xs) = (a \ b) + add_perm xs" - -fun - elem_perm -where - "elem_perm [] = {}" -| "elem_perm ((a, b) # xs) = {a, b} \ elem_perm xs" - - -lemma add_perm_apend: - shows "add_perm (xs @ ys) = add_perm xs + add_perm ys" -apply(induct xs arbitrary: ys) -apply(auto simp add: add_assoc) -done - -lemma perm_list_exists: - fixes p::perm - shows "\xs. p = add_perm xs \ supp xs \ supp p" -apply(induct p taking: "\p::perm. card (supp p)" rule: measure_induct) -apply(rename_tac p) -apply(case_tac "supp p = {}") -apply(simp) -apply(simp add: supp_perm) -apply(drule perm_zero) -apply(simp) -apply(rule_tac x="[]" in exI) -apply(simp add: supp_Nil) -apply(subgoal_tac "\x. x \ supp p") -defer -apply(auto)[1] -apply(erule exE) -apply(drule_tac x="p + (((- p) \ x) \ x)" in spec) -apply(drule mp) -defer -apply(erule exE) -apply(rule_tac x="xs @ [((- p) \ x, x)]" in exI) -apply(simp add: add_perm_apend) -apply(erule conjE) -apply(drule sym) -apply(simp) -apply(simp add: expand_perm_eq) -apply(simp add: supp_append) -apply(simp add: supp_perm supp_Cons supp_Nil supp_Pair supp_atom) -apply(rule conjI) -prefer 2 -apply(auto)[1] -apply (metis left_minus minus_unique permute_atom_def_raw permute_minus_cancel(2)) -defer -apply(rule psubset_card_mono) -apply(simp add: finite_supp) -apply(rule psubsetI) -defer -apply(subgoal_tac "x \ supp (p + (- p \ x \ x))") -apply(blast) -apply(simp add: supp_perm) -defer -apply(auto simp add: supp_perm)[1] -apply(case_tac "x = xa") -apply(simp) -apply(case_tac "((- p) \ x) = xa") -apply(simp) -apply(case_tac "sort_of xa = sort_of x") -apply(simp) -apply(auto)[1] -apply(simp) -apply(simp) -apply(subgoal_tac "{a. p \ (- p \ x \ x) \ a \ a} \ {a. p \ a \ a}") -apply(blast) -apply(auto simp add: supp_perm)[1] -apply(case_tac "x = xa") -apply(simp) -apply(case_tac "((- p) \ x) = xa") -apply(simp) -apply(case_tac "sort_of xa = sort_of x") -apply(simp) -apply(auto)[1] -apply(simp) -apply(simp) -done - -lemma tt0: - fixes p::perm - shows "(supp x) \* p \ \a \ supp p. a \ x" -apply(auto simp add: fresh_star_def supp_perm fresh_def) -done - -lemma uu0: - shows "(\a \ elem_perm xs. a \ x) \ (add_perm xs \ x) = x" -apply(induct xs rule: add_perm.induct) -apply(simp) -apply(simp add: swap_fresh_fresh) -done - -lemma yy0: - fixes xs::"(atom \ atom) list" - shows "supp xs = elem_perm xs" -apply(induct xs rule: elem_perm.induct) -apply(auto simp add: supp_Nil supp_Cons supp_Pair supp_atom) -done - -lemma tt1: - shows "(supp x) \* p \ p \ x = x" -apply(drule tt0) -apply(subgoal_tac "\xs. p = add_perm xs \ supp xs \ supp p") -prefer 2 -apply(rule perm_list_exists) -apply(erule exE) -apply(simp only: yy0) -apply(rule uu0) -apply(auto) -done - lemma perm_induct_test: fixes P :: "perm => bool" @@ -509,10 +387,6 @@ shows "P p" using fin apply(induct F\"supp p" arbitrary: p rule: finite_induct) -apply(simp add: supp_perm) -apply(drule perm_zero) -apply(simp add: zero) -apply(rotate_tac 3) oops lemma ii: @@ -618,13 +492,13 @@ apply(case_tac "a \ supp x") apply(simp) apply(subgoal_tac "supp x \* p") -apply(drule tt1) +apply(drule supp_perm_eq) apply(simp) apply(simp) apply(simp) apply(case_tac "a \ supp y") apply(simp) -apply(drule tt1) +apply(drule supp_perm_eq) apply(clarify) apply(simp (no_asm_use)) apply(simp) @@ -635,7 +509,7 @@ apply(simp) apply(case_tac "a \ p") apply(subgoal_tac "supp y \* p") -apply(drule tt1) +apply(drule supp_perm_eq) apply(clarify) apply(simp (no_asm_use)) apply(metis) diff -r a5ba76208983 -r eb60f360a200 Nominal/Abs_res.thy --- a/Nominal/Abs_res.thy Sat Mar 20 04:51:26 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,723 +0,0 @@ -theory Abs_res -imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "../Quotient" "../Quotient_Product" -begin - -fun - alpha_gen -where - alpha_gen[simp del]: - "alpha_gen (bs, x) R f pi (cs, y) \ f x - bs = f y - cs \ (f x - bs) \* pi \ R (pi \ x) y" - -notation - alpha_gen ("_ \gen _ _ _ _" [100, 100, 100, 100, 100] 100) - -lemma [mono]: "R1 \ R2 \ alpha_gen x R1 \ alpha_gen x R2" - by (cases x) (auto simp add: le_fun_def le_bool_def alpha_gen.simps) - -lemma alpha_gen_refl: - assumes a: "R x x" - shows "(bs, x) \gen R f 0 (bs, x)" - using a by (simp add: alpha_gen fresh_star_def fresh_zero_perm) - -lemma alpha_gen_sym: - assumes a: "(bs, x) \gen R f p (cs, y)" - and b: "R (p \ x) y \ R (- p \ y) x" - shows "(cs, y) \gen R f (- p) (bs, x)" - using a b by (simp add: alpha_gen fresh_star_def fresh_def supp_minus_perm) - -lemma alpha_gen_trans: - assumes a: "(bs, x) \gen R f p1 (cs, y)" - and b: "(cs, y) \gen R f p2 (ds, z)" - and c: "\R (p1 \ x) y; R (p2 \ y) z\ \ R ((p2 + p1) \ x) z" - shows "(bs, x) \gen R f (p2 + p1) (ds, z)" - using a b c using supp_plus_perm - apply(simp add: alpha_gen fresh_star_def fresh_def) - apply(blast) - done - -lemma alpha_gen_eqvt: - assumes a: "(bs, x) \gen R f q (cs, y)" - and b: "R (q \ x) y \ R (p \ (q \ x)) (p \ y)" - and c: "p \ (f x) = f (p \ x)" - and d: "p \ (f y) = f (p \ y)" - shows "(p \ bs, p \ x) \gen R f (p \ q) (p \ cs, p \ y)" - using a b - apply(simp add: alpha_gen c[symmetric] d[symmetric] Diff_eqvt[symmetric]) - apply(simp add: permute_eqvt[symmetric]) - apply(simp add: fresh_star_permute_iff) - apply(clarsimp) - done - -lemma alpha_gen_compose_sym: - fixes pi - assumes b: "(aa, t) \gen (\x1 x2. R x1 x2 \ R x2 x1) f pi (ab, s)" - and a: "\pi t s. (R t s \ R (pi \ t) (pi \ s))" - shows "(ab, s) \gen R f (- pi) (aa, t)" - using b apply - - apply(simp add: alpha_gen.simps) - apply(erule conjE)+ - apply(rule conjI) - apply(simp add: fresh_star_def fresh_minus_perm) - apply(subgoal_tac "R (- pi \ s) ((- pi) \ (pi \ t))") - apply simp - apply(rule a) - apply assumption - done - -lemma alpha_gen_compose_trans: - fixes pi pia - assumes b: "(aa, t) \gen (\x1 x2. R x1 x2 \ (\x. R x2 x \ R x1 x)) f pi (ab, ta)" - and c: "(ab, ta) \gen R f pia (ac, sa)" - and a: "\pi t s. (R t s \ R (pi \ t) (pi \ s))" - shows "(aa, t) \gen R f (pia + pi) (ac, sa)" - using b c apply - - apply(simp add: alpha_gen.simps) - apply(erule conjE)+ - apply(simp add: fresh_star_plus) - apply(drule_tac x="- pia \ sa" in spec) - apply(drule mp) - apply(rotate_tac 4) - apply(drule_tac pi="- pia" in a) - apply(simp) - apply(rotate_tac 6) - apply(drule_tac pi="pia" in a) - apply(simp) - done - -lemma alpha_gen_compose_eqvt: - fixes pia - assumes b: "(g d, t) \gen (\x1 x2. R x1 x2 \ R (pi \ x1) (pi \ x2)) f pia (g e, s)" - and c: "\y. pi \ (g y) = g (pi \ y)" - and a: "\x. pi \ (f x) = f (pi \ x)" - shows "(g (pi \ d), pi \ t) \gen R f (pi \ pia) (g (pi \ e), pi \ s)" - using b - apply - - apply(simp add: alpha_gen.simps) - apply(erule conjE)+ - apply(rule conjI) - apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1]) - apply(simp add: a[symmetric] atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt c[symmetric]) - apply(rule conjI) - apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1]) - apply(simp add: a[symmetric] atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt c[symmetric]) - apply(subst permute_eqvt[symmetric]) - apply(simp) - done - -fun - alpha_abs -where - "alpha_abs (bs, x) (cs, y) = (\p. (bs, x) \gen (op=) supp p (cs, y))" - -notation - alpha_abs ("_ \abs _") - -lemma alpha_abs_swap: - assumes a1: "a \ (supp x) - bs" - and a2: "b \ (supp x) - bs" - shows "(bs, x) \abs ((a \ b) \ bs, (a \ b) \ x)" - apply(simp) - apply(rule_tac x="(a \ b)" in exI) - apply(simp add: alpha_gen) - apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric]) - apply(simp add: swap_set_not_in[OF a1 a2]) - apply(subgoal_tac "supp (a \ b) \ {a, b}") - using a1 a2 - apply(simp add: fresh_star_def fresh_def) - apply(blast) - apply(simp add: supp_swap) - done - -lemma alpha_gen_swap_fun: - assumes f_eqvt: "\pi. (pi \ (f x)) = f (pi \ x)" - assumes a1: "a \ (f x) - bs" - and a2: "b \ (f x) - bs" - shows "\pi. (bs, x) \gen (op=) f pi ((a \ b) \ bs, (a \ b) \ x)" - apply(rule_tac x="(a \ b)" in exI) - apply(simp add: alpha_gen) - apply(simp add: f_eqvt[symmetric] Diff_eqvt[symmetric]) - apply(simp add: swap_set_not_in[OF a1 a2]) - apply(subgoal_tac "supp (a \ b) \ {a, b}") - using a1 a2 - apply(simp add: fresh_star_def fresh_def) - apply(blast) - apply(simp add: supp_swap) - done - - -fun - supp_abs_fun -where - "supp_abs_fun (bs, x) = (supp x) - bs" - -lemma supp_abs_fun_lemma: - assumes a: "x \abs y" - shows "supp_abs_fun x = supp_abs_fun y" - using a - apply(induct rule: alpha_abs.induct) - apply(simp add: alpha_gen) - done - -quotient_type 'a abs = "(atom set \ 'a::pt)" / "alpha_abs" - apply(rule equivpI) - unfolding reflp_def symp_def transp_def - apply(simp_all) - (* refl *) - apply(clarify) - apply(rule exI) - apply(rule alpha_gen_refl) - apply(simp) - (* symm *) - apply(clarify) - apply(rule exI) - apply(rule alpha_gen_sym) - apply(assumption) - apply(clarsimp) - (* trans *) - apply(clarify) - apply(rule exI) - apply(rule alpha_gen_trans) - apply(assumption) - apply(assumption) - apply(simp) - done - -quotient_definition - "Abs::atom set \ ('a::pt) \ 'a abs" -is - "Pair::atom set \ ('a::pt) \ (atom set \ 'a)" - -lemma [quot_respect]: - shows "((op =) ===> (op =) ===> alpha_abs) Pair Pair" - apply(clarsimp) - apply(rule exI) - apply(rule alpha_gen_refl) - apply(simp) - done - -lemma [quot_respect]: - shows "((op =) ===> alpha_abs ===> alpha_abs) permute permute" - apply(clarsimp) - apply(rule exI) - apply(rule alpha_gen_eqvt) - apply(assumption) - apply(simp_all add: supp_eqvt) - done - -lemma [quot_respect]: - shows "(alpha_abs ===> (op =)) supp_abs_fun supp_abs_fun" - apply(simp add: supp_abs_fun_lemma) - done - -lemma abs_induct: - "\\as (x::'a::pt). P (Abs as x)\ \ P t" - apply(lifting prod.induct[where 'a="atom set" and 'b="'a"]) - done - -(* TEST case *) -lemmas abs_induct2 = prod.induct[where 'a="atom set" and 'b="'a::pt", quot_lifted] -thm abs_induct abs_induct2 - -instantiation abs :: (pt) pt -begin - -quotient_definition - "permute_abs::perm \ ('a::pt abs) \ 'a abs" -is - "permute:: perm \ (atom set \ 'a::pt) \ (atom set \ 'a::pt)" - -lemma permute_ABS [simp]: - fixes x::"'a::pt" (* ??? has to be 'a \ 'b does not work *) - shows "(p \ (Abs as x)) = Abs (p \ as) (p \ x)" - by (lifting permute_prod.simps(1)[where 'a="atom set" and 'b="'a"]) - -instance - apply(default) - apply(induct_tac [!] x rule: abs_induct) - apply(simp_all) - done - -end - -quotient_definition - "supp_Abs_fun :: ('a::pt) abs \ atom \ bool" -is - "supp_abs_fun" - -lemma supp_Abs_fun_simp: - shows "supp_Abs_fun (Abs bs x) = (supp x) - bs" - by (lifting supp_abs_fun.simps(1)) - -lemma supp_Abs_fun_eqvt [eqvt]: - shows "(p \ supp_Abs_fun x) = supp_Abs_fun (p \ x)" - apply(induct_tac x rule: abs_induct) - apply(simp add: supp_Abs_fun_simp supp_eqvt Diff_eqvt) - done - -lemma supp_Abs_fun_fresh: - shows "a \ Abs bs x \ a \ supp_Abs_fun (Abs bs x)" - apply(rule fresh_fun_eqvt_app) - apply(simp add: eqvts_raw) - apply(simp) - done - -lemma Abs_swap: - assumes a1: "a \ (supp x) - bs" - and a2: "b \ (supp x) - bs" - shows "(Abs bs x) = (Abs ((a \ b) \ bs) ((a \ b) \ x))" - using a1 a2 by (lifting alpha_abs_swap) - -lemma Abs_supports: - shows "((supp x) - as) supports (Abs as x)" - unfolding supports_def - apply(clarify) - apply(simp (no_asm)) - apply(subst Abs_swap[symmetric]) - apply(simp_all) - done - -lemma supp_Abs_subset1: - fixes x::"'a::fs" - shows "(supp x) - as \ supp (Abs as x)" - apply(simp add: supp_conv_fresh) - apply(auto) - apply(drule_tac supp_Abs_fun_fresh) - apply(simp only: supp_Abs_fun_simp) - apply(simp add: fresh_def) - apply(simp add: supp_finite_atom_set finite_supp) - done - -lemma supp_Abs_subset2: - fixes x::"'a::fs" - shows "supp (Abs as x) \ (supp x) - as" - apply(rule supp_is_subset) - apply(rule Abs_supports) - apply(simp add: finite_supp) - done - -lemma supp_Abs: - fixes x::"'a::fs" - shows "supp (Abs as x) = (supp x) - as" - apply(rule_tac subset_antisym) - apply(rule supp_Abs_subset2) - apply(rule supp_Abs_subset1) - done - -instance abs :: (fs) fs - apply(default) - apply(induct_tac x rule: abs_induct) - apply(simp add: supp_Abs) - apply(simp add: finite_supp) - done - -lemma Abs_fresh_iff: - fixes x::"'a::fs" - shows "a \ Abs bs x \ a \ bs \ (a \ bs \ a \ x)" - apply(simp add: fresh_def) - apply(simp add: supp_Abs) - apply(auto) - done - -lemma Abs_eq_iff: - shows "Abs bs x = Abs cs y \ (\p. (bs, x) \gen (op =) supp p (cs, y))" - by (lifting alpha_abs.simps(1)) - - - -(* - below is a construction site for showing that in the - single-binder case, the old and new alpha equivalence - coincide -*) - -fun - alpha1 -where - "alpha1 (a, x) (b, y) \ (a = b \ x = y) \ (a \ b \ x = (a \ b) \ y \ a \ y)" - -notation - alpha1 ("_ \abs1 _") - -fun - alpha2 -where - "alpha2 (a, x) (b, y) \ (\c. c \ (a,b,x,y) \ ((c \ a) \ x) = ((c \ b) \ y))" - -notation - alpha2 ("_ \abs2 _") - -lemma qq: - fixes S::"atom set" - assumes a: "supp p \ S = {}" - shows "p \ S = S" -using a -apply(simp add: supp_perm permute_set_eq) -apply(auto) -apply(simp only: disjoint_iff_not_equal) -apply(simp) -apply (metis permute_atom_def_raw) -apply(rule_tac x="(- p) \ x" in exI) -apply(simp) -apply(simp only: disjoint_iff_not_equal) -apply(simp) -apply(metis permute_minus_cancel) -done - -lemma alpha_old_new: - assumes a: "(a, x) \abs1 (b, y)" "sort_of a = sort_of b" - shows "({a}, x) \abs ({b}, y)" -using a -apply(simp) -apply(erule disjE) -apply(simp) -apply(rule exI) -apply(rule alpha_gen_refl) -apply(simp) -apply(rule_tac x="(a \ b)" in exI) -apply(simp add: alpha_gen) -apply(simp add: fresh_def) -apply(rule conjI) -apply(rule_tac ?p1="(a \ b)" in permute_eq_iff[THEN iffD1]) -apply(rule trans) -apply(simp add: Diff_eqvt supp_eqvt) -apply(subst swap_set_not_in) -back -apply(simp) -apply(simp) -apply(simp add: permute_set_eq) -apply(rule_tac ?p1="(a \ b)" in fresh_star_permute_iff[THEN iffD1]) -apply(simp add: permute_self) -apply(simp add: Diff_eqvt supp_eqvt) -apply(simp add: permute_set_eq) -apply(subgoal_tac "supp (a \ b) \ {a, b}") -apply(simp add: fresh_star_def fresh_def) -apply(blast) -apply(simp add: supp_swap) -done - -lemma perm_zero: - assumes a: "\x::atom. p \ x = x" - shows "p = 0" -using a -by (simp add: expand_perm_eq) - -fun - add_perm -where - "add_perm [] = 0" -| "add_perm ((a, b) # xs) = (a \ b) + add_perm xs" - -fun - elem_perm -where - "elem_perm [] = {}" -| "elem_perm ((a, b) # xs) = {a, b} \ elem_perm xs" - - -lemma add_perm_apend: - shows "add_perm (xs @ ys) = add_perm xs + add_perm ys" -apply(induct xs arbitrary: ys) -apply(auto simp add: add_assoc) -done - -lemma perm_list_exists: - fixes p::perm - shows "\xs. p = add_perm xs \ supp xs \ supp p" -apply(induct p taking: "\p::perm. card (supp p)" rule: measure_induct) -apply(rename_tac p) -apply(case_tac "supp p = {}") -apply(simp) -apply(simp add: supp_perm) -apply(drule perm_zero) -apply(simp) -apply(rule_tac x="[]" in exI) -apply(simp add: supp_Nil) -apply(subgoal_tac "\x. x \ supp p") -defer -apply(auto)[1] -apply(erule exE) -apply(drule_tac x="p + (((- p) \ x) \ x)" in spec) -apply(drule mp) -defer -apply(erule exE) -apply(rule_tac x="xs @ [((- p) \ x, x)]" in exI) -apply(simp add: add_perm_apend) -apply(erule conjE) -apply(drule sym) -apply(simp) -apply(simp add: expand_perm_eq) -apply(simp add: supp_append) -apply(simp add: supp_perm supp_Cons supp_Nil supp_Pair supp_atom) -apply(rule conjI) -prefer 2 -apply(auto)[1] -apply (metis left_minus minus_unique permute_atom_def_raw permute_minus_cancel(2)) -defer -apply(rule psubset_card_mono) -apply(simp add: finite_supp) -apply(rule psubsetI) -defer -apply(subgoal_tac "x \ supp (p + (- p \ x \ x))") -apply(blast) -apply(simp add: supp_perm) -defer -apply(auto simp add: supp_perm)[1] -apply(case_tac "x = xa") -apply(simp) -apply(case_tac "((- p) \ x) = xa") -apply(simp) -apply(case_tac "sort_of xa = sort_of x") -apply(simp) -apply(auto)[1] -apply(simp) -apply(simp) -apply(subgoal_tac "{a. p \ (- p \ x \ x) \ a \ a} \ {a. p \ a \ a}") -apply(blast) -apply(auto simp add: supp_perm)[1] -apply(case_tac "x = xa") -apply(simp) -apply(case_tac "((- p) \ x) = xa") -apply(simp) -apply(case_tac "sort_of xa = sort_of x") -apply(simp) -apply(auto)[1] -apply(simp) -apply(simp) -done - -lemma tt0: - fixes p::perm - shows "(supp x) \* p \ \a \ supp p. a \ x" -apply(auto simp add: fresh_star_def supp_perm fresh_def) -done - -lemma uu0: - shows "(\a \ elem_perm xs. a \ x) \ (add_perm xs \ x) = x" -apply(induct xs rule: add_perm.induct) -apply(simp) -apply(simp add: swap_fresh_fresh) -done - -lemma yy0: - fixes xs::"(atom \ atom) list" - shows "supp xs = elem_perm xs" -apply(induct xs rule: elem_perm.induct) -apply(auto simp add: supp_Nil supp_Cons supp_Pair supp_atom) -done - -lemma tt1: - shows "(supp x) \* p \ p \ x = x" -apply(drule tt0) -apply(subgoal_tac "\xs. p = add_perm xs \ supp xs \ supp p") -prefer 2 -apply(rule perm_list_exists) -apply(erule exE) -apply(simp only: yy0) -apply(rule uu0) -apply(auto) -done - - -lemma perm_induct_test: - fixes P :: "perm => bool" - assumes fin: "finite (supp p)" - assumes zero: "P 0" - assumes swap: "\a b. \sort_of a = sort_of b; a \ b\ \ P (a \ b)" - assumes plus: "\p1 p2. \supp p1 \ supp p2 = {}; P p1; P p2\ \ P (p1 + p2)" - shows "P p" -using fin -apply(induct F\"supp p" arbitrary: p rule: finite_induct) -apply(simp add: supp_perm) -apply(drule perm_zero) -apply(simp add: zero) -apply(rotate_tac 3) -oops -lemma tt: - "(supp x) \* p \ p \ x = x" -oops - -lemma yy: - assumes "S1 - {x} = S2 - {x}" "x \ S1" "x \ S2" - shows "S1 = S2" -using assms -apply (metis insert_Diff_single insert_absorb) -done - -lemma permute_boolI: - fixes P::"bool" - shows "p \ P \ P" -apply(simp add: permute_bool_def) -done - -lemma permute_boolE: - fixes P::"bool" - shows "P \ p \ P" -apply(simp add: permute_bool_def) -done - -lemma kk: - assumes a: "p \ x = y" - shows "\a \ supp x. (p \ a) \ supp y" -using a -apply(auto) -apply(rule_tac p="- p" in permute_boolI) -apply(simp add: mem_eqvt supp_eqvt) -done - -lemma ww: - assumes "a \ supp x" "b \ supp x" "a \ b" "sort_of a = sort_of b" - shows "((a \ b) \ x) \ x" -apply(subgoal_tac "(supp x) supports x") -apply(simp add: supports_def) -using assms -apply - -apply(drule_tac x="a" in spec) -defer -apply(rule supp_supports) -apply(auto) -apply(rotate_tac 1) -apply(drule_tac p="(a \ b)" in permute_boolE) -apply(simp add: mem_eqvt supp_eqvt) -done - -lemma alpha_abs_sym: - assumes a: "({a}, x) \abs ({b}, y)" - shows "({b}, y) \abs ({a}, x)" -using a -apply(simp) -apply(erule exE) -apply(rule_tac x="- p" in exI) -apply(simp add: alpha_gen) -apply(simp add: fresh_star_def fresh_minus_perm) -apply (metis permute_minus_cancel(2)) -done - -lemma alpha_abs_trans: - assumes a: "({a1}, x1) \abs ({a2}, x2)" - assumes b: "({a2}, x2) \abs ({a3}, x3)" - shows "({a1}, x1) \abs ({a3}, x3)" -using a b -apply(simp) -apply(erule exE)+ -apply(rule_tac x="pa + p" in exI) -apply(simp add: alpha_gen) -apply(simp add: fresh_star_def fresh_plus_perm) -done - -lemma alpha_equal: - assumes a: "({a}, x) \abs ({a}, y)" - shows "(a, x) \abs1 (a, y)" -using a -apply(simp) -apply(erule exE) -apply(simp add: alpha_gen) -apply(erule conjE)+ -apply(case_tac "a \ supp x") -apply(simp) -apply(subgoal_tac "supp x \* p") -apply(drule tt1) -apply(simp) -apply(simp) -apply(simp) -apply(case_tac "a \ supp y") -apply(simp) -apply(drule tt1) -apply(clarify) -apply(simp (no_asm_use)) -apply(simp) -apply(simp) -apply(drule yy) -apply(simp) -apply(simp) -apply(simp) -apply(case_tac "a \ p") -apply(subgoal_tac "supp y \* p") -apply(drule tt1) -apply(clarify) -apply(simp (no_asm_use)) -apply(metis) -apply(auto simp add: fresh_star_def)[1] -apply(frule_tac kk) -apply(drule_tac x="a" in bspec) -apply(simp) -apply(simp add: fresh_def) -apply(simp add: supp_perm) -apply(subgoal_tac "((p \ a) \ p)") -apply(simp add: fresh_def supp_perm) -apply(simp add: fresh_star_def) -done - -lemma alpha_unequal: - assumes a: "({a}, x) \abs ({b}, y)" "sort_of a = sort_of b" "a \ b" - shows "(a, x) \abs1 (b, y)" -using a -apply - -apply(subgoal_tac "a \ supp x - {a}") -apply(subgoal_tac "b \ supp x - {a}") -defer -apply(simp add: alpha_gen) -apply(simp) -apply(drule_tac alpha_abs_swap) -apply(assumption) -apply(simp only: insert_eqvt empty_eqvt swap_atom_simps) -apply(drule alpha_abs_sym) -apply(rotate_tac 4) -apply(drule_tac alpha_abs_trans) -apply(assumption) -apply(drule alpha_equal) -apply(simp) -apply(rule_tac p="(a \ b)" in permute_boolI) -apply(simp add: fresh_eqvt) -apply(simp add: fresh_def) -done - -lemma alpha_new_old: - assumes a: "({a}, x) \abs ({b}, y)" "sort_of a = sort_of b" - shows "(a, x) \abs1 (b, y)" -using a -apply(case_tac "a=b") -apply(simp only: alpha_equal) -apply(drule alpha_unequal) -apply(simp) -apply(simp) -apply(simp) -done - -fun - distinct_perms -where - "distinct_perms [] = True" -| "distinct_perms (p # ps) = (supp p \ supp ps = {} \ distinct_perms ps)" - -(* support of concrete atom sets *) - -lemma atom_eqvt_raw: - fixes p::"perm" - shows "(p \ atom) = atom" -by (simp add: expand_fun_eq permute_fun_def atom_eqvt) - -lemma atom_image_cong: - shows "(atom ` X = atom ` Y) = (X = Y)" -apply(rule inj_image_eq_iff) -apply(simp add: inj_on_def) -done - -lemma supp_atom_image: - fixes as::"'a::at_base set" - shows "supp (atom ` as) = supp as" -apply(simp add: supp_def) -apply(simp add: image_eqvt) -apply(simp add: atom_eqvt_raw) -apply(simp add: atom_image_cong) -done - -lemma swap_atom_image_fresh: "\a \ atom ` (fn :: ('a :: at_base set)); b \ atom ` fn\ \ (a \ b) \ fn = fn" - apply (simp add: fresh_def) - apply (simp add: supp_atom_image) - apply (fold fresh_def) - apply (simp add: swap_fresh_fresh) - done - - -end - diff -r a5ba76208983 -r eb60f360a200 Nominal/Nominal2_Supp.thy --- a/Nominal/Nominal2_Supp.thy Sat Mar 20 04:51:26 2010 +0100 +++ b/Nominal/Nominal2_Supp.thy Sat Mar 20 13:50:00 2010 +0100 @@ -372,23 +372,100 @@ done -(* -lemma supp_infinite: - fixes S::"atom set" - assumes asm: "finite (UNIV - S)" - shows "(supp S) = (UNIV - S)" -apply(rule finite_supp_unique) -apply(auto simp add: supports_def permute_set_eq swap_atom)[1] -apply(rule asm) -apply(auto simp add: permute_set_eq swap_atom)[1] +section {* transpositions of permutations *} + +fun + add_perm +where + "add_perm [] = 0" +| "add_perm ((a, b) # xs) = (a \ b) + add_perm xs" + +lemma add_perm_append: + shows "add_perm (xs @ ys) = add_perm xs + add_perm ys" +by (induct xs arbitrary: ys) + (auto simp add: add_assoc) + +lemma perm_list_exists: + fixes p::perm + shows "\xs. p = add_perm xs \ supp xs \ supp p" +apply(induct p taking: "\p::perm. card (supp p)" rule: measure_induct) +apply(rename_tac p) +apply(case_tac "supp p = {}") +apply(simp) +apply(simp add: supp_perm) +apply(rule_tac x="[]" in exI) +apply(simp add: supp_Nil) +apply(simp add: expand_perm_eq) +apply(subgoal_tac "\x. x \ supp p") +defer +apply(auto)[1] +apply(erule exE) +apply(drule_tac x="p + (((- p) \ x) \ x)" in spec) +apply(drule mp) +defer +apply(erule exE) +apply(rule_tac x="xs @ [((- p) \ x, x)]" in exI) +apply(simp add: add_perm_append) +apply(erule conjE) +apply(drule sym) +apply(simp) +apply(simp add: expand_perm_eq) +apply(simp add: supp_append) +apply(simp add: supp_perm supp_Cons supp_Nil supp_Pair supp_atom) +apply(rule conjI) +prefer 2 +apply(auto)[1] +apply (metis left_minus minus_unique permute_atom_def_raw permute_minus_cancel(2)) +defer +apply(rule psubset_card_mono) +apply(simp add: finite_supp) +apply(rule psubsetI) +defer +apply(subgoal_tac "x \ supp (p + (- p \ x \ x))") +apply(blast) +apply(simp add: supp_perm) +defer +apply(auto simp add: supp_perm)[1] +apply(case_tac "x = xa") +apply(simp) +apply(case_tac "((- p) \ x) = xa") +apply(simp) +apply(case_tac "sort_of xa = sort_of x") +apply(simp) +apply(auto)[1] +apply(simp) +apply(simp) +apply(subgoal_tac "{a. p \ (- p \ x \ x) \ a \ a} \ {a. p \ a \ a}") +apply(blast) +apply(auto simp add: supp_perm)[1] +apply(case_tac "x = xa") +apply(simp) +apply(case_tac "((- p) \ x) = xa") +apply(simp) +apply(case_tac "sort_of xa = sort_of x") +apply(simp) +apply(auto)[1] +apply(simp) +apply(simp) done -lemma supp_infinite_coinfinite: - fixes S::"atom set" - assumes asm1: "infinite S" - and asm2: "infinite (UNIV-S)" - shows "(supp S) = (UNIV::atom set)" -*) +section {* Lemma about support and permutations *} + +lemma supp_perm_eq: + assumes a: "(supp x) \* p" + shows "p \ x = x" +proof - + obtain xs where eq: "p = add_perm xs" and sub: "supp xs \ supp p" + using perm_list_exists by blast + from a have "\a \ supp p. a \ x" + by (auto simp add: fresh_star_def fresh_def supp_perm) + with eq sub have "\a \ supp xs. a \ x" by auto + then have "add_perm xs \ x = x" + by (induct xs rule: add_perm.induct) + (simp_all add: supp_Cons supp_Pair supp_atom swap_fresh_fresh) + then show "p \ x = x" using eq by simp +qed + end \ No newline at end of file