# HG changeset patch # User Cezary Kaliszyk # Date 1309578059 -32400 # Node ID e8ab8006206175980cd65338835c6e33b1c4b2fc # Parent aaef9dec5e1dded9cff76f903a62c105a21184ca Did the proofs of height and subst for Let with list-like binders. Having apply_assns allows proving things by alpha_bn diff -r aaef9dec5e1d -r e8ab80062061 Nominal/Ex/Let.thy --- a/Nominal/Ex/Let.thy Sat Jul 02 00:27:47 2011 +0100 +++ b/Nominal/Ex/Let.thy Sat Jul 02 12:40:59 2011 +0900 @@ -2,7 +2,6 @@ imports "../Nominal2" begin - atom_decl name nominal_datatype trm = @@ -78,71 +77,43 @@ apply(simp add: atom_eqvt) done -(*lemma alpha_bn_permute: - assumes a: "alpha_bn x y" - and b: "q \ bn x = r \ bn y" - shows "alpha_bn (q \ x) (r \ y)" -proof - - have "alpha_bn x (permute_bn r y)" - by (rule alpha_bn_trans[OF a]) (rule trm_assn.perm_bn_alpha) - then have "alpha_bn (permute_bn r y) x" - by (rule alpha_bn_sym) - then have "alpha_bn (permute_bn r y) (permute_bn q x)" - by (rule alpha_bn_trans) (rule trm_assn.perm_bn_alpha) - then have "alpha_bn (permute_bn q x) (permute_bn r y)" - by (rule alpha_bn_sym) - moreover have "bn (permute_bn q x) = bn (permute_bn r y)" - using b trm_assn.permute_bn by simp - ultimately have "permute_bn q x = permute_bn r y" - using bn_inj by simp -*) - - -lemma max_eqvt[eqvt]: "p \ (max (a :: _ :: pure) b) = max (p \ a) (p \ b)" - by (simp add: permute_pure) - - lemma Abs_lst_fcb2: - fixes as bs :: "'a :: fs" + fixes as bs :: "atom list" and x y :: "'b :: fs" - assumes eq: "[ba as]lst. x = [ba bs]lst. y" - and ctxt: "finite (supp c)" - and fcb1: "set (ba as) \* f as x c" - and fresh1: "set (ba as) \* c" - and fresh2: "set (ba bs) \* c" + and c::"'c::fs" + assumes eq: "[as]lst. x = [bs]lst. y" + and fcb1: "(set as) \* c \ (set as) \* f as x c" + and fresh1: "set as \* c" + and fresh2: "set bs \* c" and perm1: "\p. supp p \* c \ p \ (f as x c) = f (p \ as) (p \ x) c" and perm2: "\p. supp p \* c \ p \ (f bs y c) = f (p \ bs) (p \ y) c" -(* What we would like in this proof, and lets this proof finish *) - and ba_inj: "\q r. q \ ba as = r \ ba bs \ pn q as = pn r bs" shows "f as x c = f bs y c" proof - have "supp (as, x, c) supports (f as x c)" unfolding supports_def fresh_def[symmetric] - apply (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) - sorry + by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) then have fin1: "finite (supp (f as x c))" - by (auto intro: supports_finite simp add: finite_supp supp_Pair ctxt) + by (auto intro: supports_finite simp add: finite_supp) have "supp (bs, y, c) supports (f bs y c)" unfolding supports_def fresh_def[symmetric] - apply (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) - sorry + by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) then have fin2: "finite (supp (f bs y c))" - by (auto intro: supports_finite simp add: finite_supp supp_Pair ctxt) + by (auto intro: supports_finite simp add: finite_supp) obtain q::"perm" where - fr1: "(q \ (set (ba as))) \* (x, c, f as x c, f bs y c)" and - fr2: "supp q \* ([ba as]lst. x)" and - inc: "supp q \ (set (ba as)) \ q \ (set (ba as))" - using at_set_avoiding3[where xs="set (ba as)" and c="(x, c, f as x c, f bs y c)" - and x="[ba as]lst. x"] fin1 fin2 - by (auto simp add: supp_Pair finite_supp ctxt Abs_fresh_star dest: fresh_star_supp_conv) - have "[q \ (ba as)]lst. (q \ x) = q \ ([ba as]lst. x)" by simp - also have "\ = [ba as]lst. x" + fr1: "(q \ (set as)) \* (x, c, f as x c, f bs y c)" and + fr2: "supp q \* Abs_lst as x" and + inc: "supp q \ (set as) \ q \ (set as)" + using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"] + fin1 fin2 + by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) + have "Abs_lst (q \ as) (q \ x) = q \ Abs_lst as x" by simp + also have "\ = Abs_lst as x" by (simp only: fr2 perm_supp_eq) - finally have "[q \ (ba as)]lst. (q \ x) = [ba bs]lst. y" using eq by simp + finally have "Abs_lst (q \ as) (q \ x) = Abs_lst bs y" using eq by simp then obtain r::perm where qq1: "q \ x = r \ y" and - qq2: "q \ (ba as) = r \ (ba bs)" and - qq3: "supp r \ (q \ (set (ba as))) \ set (ba bs)" + qq2: "q \ as = r \ bs" and + qq3: "supp r \ (q \ (set as)) \ set bs" apply(drule_tac sym) apply(simp only: Abs_eq_iff2 alphas) apply(erule exE) @@ -150,35 +121,34 @@ apply(drule_tac x="p" in meta_spec) apply(simp add: set_eqvt) apply(blast) - done - have "(set (ba as)) \* f as x c" by (rule fcb1) - then have "q \ ((set (ba as)) \* f as x c)" + done + have "(set as) \* f as x c" + apply(rule fcb1) + apply(rule fresh1) + done + then have "q \ ((set as) \* f as x c)" by (simp add: permute_bool_def) - then have "set (q \ (ba as)) \* f (q \ as) (q \ x) c" + then have "set (q \ as) \* f (q \ as) (q \ x) c" apply(simp add: fresh_star_eqvt set_eqvt) apply(subst (asm) perm1) using inc fresh1 fr1 apply(auto simp add: fresh_star_def fresh_Pair) done - then have "set (r \ (ba bs)) \* f (r \ bs) (r \ y) c" using qq1 qq2 ba_inj - apply simp - sorry - then have "r \ ((set (ba bs)) \* f bs y c)" + then have "set (r \ bs) \* f (r \ bs) (r \ y) c" using qq1 qq2 by simp + then have "r \ ((set bs) \* f bs y c)" apply(simp add: fresh_star_eqvt set_eqvt) apply(subst (asm) perm2[symmetric]) using qq3 fresh2 fr1 apply(auto simp add: set_eqvt fresh_star_def fresh_Pair) done - then have fcb2: "(set (ba bs)) \* f bs y c" by (simp add: permute_bool_def) + then have fcb2: "(set bs) \* f bs y c" by (simp add: permute_bool_def) have "f as x c = q \ (f as x c)" apply(rule perm_supp_eq[symmetric]) - using inc fcb1 fr1 by (auto simp add: fresh_star_def) - also have "\ = f (q \ as) (q \ x) c" + using inc fcb1[OF fresh1] fr1 by (auto simp add: fresh_star_def) + also have "\ = f (q \ as) (q \ x) c" apply(rule perm1) using inc fresh1 fr1 by (auto simp add: fresh_star_def) - also have "\ = f (r \ bs) (r \ y) c" using qq1 qq2 ba_inj - apply(simp) - sorry + also have "\ = f (r \ bs) (r \ y) c" using qq1 qq2 by simp also have "\ = r \ (f bs y c)" apply(rule perm2[symmetric]) using qq3 fresh2 fr1 by (auto simp add: fresh_star_def) @@ -188,119 +158,146 @@ finally show ?thesis by simp qed +lemma Abs_lst1_fcb2: + fixes a b :: "atom" + and x y :: "'b :: fs" + and c::"'c :: fs" + assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)" + and fcb1: "a \ c \ a \ f a x c" + and fresh: "{a, b} \* c" + and perm1: "\p. supp p \* c \ p \ (f a x c) = f (p \ a) (p \ x) c" + and perm2: "\p. supp p \* c \ p \ (f b y c) = f (p \ b) (p \ y) c" + shows "f a x c = f b y c" +using e +apply(drule_tac Abs_lst_fcb2[where c="c" and f="\(as::atom list) . f (hd as)"]) +apply(simp_all) +using fcb1 fresh perm1 perm2 +apply(simp_all add: fresh_star_def) +done + + +lemma max_eqvt[eqvt]: "p \ (max (a :: _ :: pure) b) = max (p \ a) (p \ b)" + by (simp add: permute_pure) + +function + apply_assn :: "(trm \ nat) \ assn \ nat" +where + "apply_assn f ANil = (0 :: nat)" +| "apply_assn f (ACons x t as) = max (f t) (apply_assn f as)" +apply(case_tac x) +apply(case_tac b rule: trm_assn.exhaust(2)) +apply(simp_all) +apply(blast) +done + +termination by lexicographic_order + +lemma [eqvt]: + "p \ (apply_assn f a) = apply_assn (p \ f) (p \ a)" + apply(induct f a rule: apply_assn.induct) + apply simp_all + apply(perm_simp) + apply rule + apply(perm_simp) + apply simp + done + +lemma alpha_bn_apply_assn: + assumes "alpha_bn as bs" + shows "apply_assn f as = apply_assn f bs" + using assms + apply (induct rule: alpha_bn_inducts) + apply simp_all + done + nominal_primrec height_trm :: "trm \ nat" -and height_assn :: "assn \ nat" where "height_trm (Var x) = 1" | "height_trm (App l r) = max (height_trm l) (height_trm r)" | "height_trm (Lam v b) = 1 + (height_trm b)" -| "height_trm (Let as b) = max (height_assn as) (height_trm b)" -| "height_assn ANil = 0" -| "height_assn (ACons v t as) = max (height_trm t) (height_assn as)" - apply (simp only: eqvt_def height_trm_height_assn_graph_def) +| "height_trm (Let as b) = max (apply_assn height_trm as) (height_trm b)" + apply (simp only: eqvt_def height_trm_graph_def) apply (rule, perm_simp, rule, rule TrueI) - apply (case_tac x) - apply (case_tac a rule: trm_assn.exhaust(1)) + apply (case_tac x rule: trm_assn.exhaust(1)) apply (auto)[4] apply (drule_tac x="assn" in meta_spec) apply (drule_tac x="trm" in meta_spec) apply (simp add: alpha_bn_refl) - apply (case_tac b rule: trm_assn.exhaust(2)) - apply (auto)[2] - apply(simp_all del: trm_assn.eq_iff) - apply(simp) - prefer 3 - apply(simp) - apply(simp) - apply (erule_tac c="()" and pn="permute" in Abs_lst_fcb2) - apply(simp add: finite_supp) - apply (simp_all add: pure_fresh fresh_star_def)[3] - apply (simp add: eqvt_at_def) - apply (simp add: eqvt_at_def) - apply(auto)[1] - --"other case" - apply (simp only: meta_eq_to_obj_eq[OF height_trm_def, symmetric, unfolded fun_eq_iff]) - apply (simp only: meta_eq_to_obj_eq[OF height_assn_def, symmetric, unfolded fun_eq_iff]) - apply (subgoal_tac "eqvt_at height_assn as") - apply (subgoal_tac "eqvt_at height_assn asa") - apply (subgoal_tac "eqvt_at height_trm b") - apply (subgoal_tac "eqvt_at height_trm ba") - apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inr as)") - apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inr asa)") - apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inl b)") - apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inl ba)") - defer - apply (simp add: eqvt_at_def height_trm_def) - apply (simp add: eqvt_at_def height_trm_def) - apply (simp add: eqvt_at_def height_assn_def) - apply (simp add: eqvt_at_def height_assn_def) - apply (subgoal_tac "height_assn as = height_assn asa") - apply (subgoal_tac "height_trm b = height_trm ba") - apply simp - apply(simp) - apply(erule conjE) - apply (erule_tac c="()" and pn="permute_bn" in Abs_lst_fcb2) - apply(simp add: finite_supp) + apply(simp_all) + apply (erule_tac c="()" in Abs_lst1_fcb2) + apply (simp_all add: pure_fresh fresh_star_def eqvt_at_def)[4] + apply (erule conjE) + apply (subst alpha_bn_apply_assn) + apply assumption + apply (rule arg_cong) back + apply (erule_tac c="()" in Abs_lst_fcb2) apply (simp_all add: pure_fresh fresh_star_def)[3] apply (simp_all add: eqvt_at_def)[2] - apply(simp add: bn_inj2) - apply(simp) - apply(erule conjE) - thm trm_assn.fv_defs - (*apply(simp add: Abs_eq_iff alphas)*) - apply (erule_tac c="()" and pn="permute_bn" and ba="bn" in Abs_lst_fcb2) - defer - apply (simp_all add: pure_fresh fresh_star_def)[3] - defer - defer - apply (simp_all add: eqvt_at_def)[2] - apply (rule bn_inj) - prefer 2 - apply (simp add: eqvts) - oops + done + +definition "height_assn = apply_assn height_trm" + +function + apply_assn2 :: "(trm \ trm) \ assn \ assn" +where + "apply_assn2 f ANil = ANil" +| "apply_assn2 f (ACons x t as) = ACons x (f t) (apply_assn2 f as)" + apply(case_tac x) + apply(case_tac b rule: trm_assn.exhaust(2)) + apply(simp_all) + apply(blast) + done + +termination by lexicographic_order + +lemma [eqvt]: + "p \ (apply_assn2 f a) = apply_assn2 (p \ f) (p \ a)" + apply(induct f a rule: apply_assn2.induct) + apply simp_all + apply(perm_simp) + apply rule + done + +lemma bn_apply_assn2: "bn (apply_assn2 f as) = bn as" + apply (induct as rule: trm_assn.inducts(2)) + apply (rule TrueI) + apply (simp_all add: trm_assn.bn_defs) + done nominal_primrec subst :: "name \ trm \ trm \ trm" -and substa :: "name \ trm \ assn \ assn" where "subst s t (Var x) = (if (s = x) then t else (Var x))" | "subst s t (App l r) = App (subst s t l) (subst s t r)" | "atom v \ (s, t) \ subst s t (Lam v b) = Lam v (subst s t b)" -| "set (bn as) \* (s, t) \ subst s t (Let as b) = Let (substa s t as) (subst s t b)" -| "substa s t ANil = ANil" -| "substa s t (ACons v t' as) = ACons v (subst v t t') as" -(*unfolding eqvt_def subst_substa_graph_def - apply (rule, perm_simp)*) - defer +| "set (bn as) \* (s, t) \ subst s t (Let as b) = Let (apply_assn2 (subst s t) as) (subst s t b)" + apply (simp only: eqvt_def subst_graph_def) + apply (rule, perm_simp, rule) apply (rule TrueI) apply (case_tac x) - apply (case_tac a) - apply (rule_tac y="c" and c="(aa,b)" in trm_assn.strong_exhaust(1)) + apply (rule_tac y="c" and c="(a,b)" in trm_assn.strong_exhaust(1)) apply (auto simp add: fresh_star_def)[3] apply (drule_tac x="assn" in meta_spec) apply (simp add: Abs1_eq_iff alpha_bn_refl) - apply (case_tac b) - apply (case_tac c rule: trm_assn.exhaust(2)) - apply (auto)[2] - apply blast - apply blast apply auto - apply (simp_all add: meta_eq_to_obj_eq[OF subst_def, symmetric, unfolded fun_eq_iff]) - apply (simp_all add: meta_eq_to_obj_eq[OF substa_def, symmetric, unfolded fun_eq_iff]) - prefer 2 + apply (erule_tac c="(sa, ta)" in Abs_lst1_fcb2) + apply (simp add: Abs_fresh_iff) + apply (simp add: fresh_star_def) + apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def)[2] + apply (simp add: bn_apply_assn2) apply (erule_tac c="(sa, ta)" in Abs_lst_fcb2) - apply (simp_all add: fresh_star_Pair) - prefer 6 + apply (simp add: fresh_star_def Abs_fresh_iff) + apply assumption+ + apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def trm_assn.fv_bn_eqvt)[2] apply (erule alpha_bn_inducts) - oops - + apply simp_all + done lemma lets_bla: "x \ z \ y \ z \ x \ y \(Let (ACons x (Var y) ANil) (Var x)) \ (Let (ACons x (Var z) ANil) (Var x))" by (simp add: trm_assn.eq_iff) - lemma lets_ok: "(Let (ACons x (Var y) ANil) (Var x)) = (Let (ACons y (Var y) ANil) (Var y))" apply (simp add: trm_assn.eq_iff Abs_eq_iff ) @@ -337,4 +334,4 @@ apply (simp add: alphas trm_assn.supp supp_at_base x y fresh_star_def atom_eqvt) by (metis Rep_name_inverse atom_name_def flip_fresh_fresh fresh_atom fresh_perm x y) -end \ No newline at end of file +end