# HG changeset patch # User Cezary Kaliszyk # Date 1260272188 -3600 # Node ID df7a2f76daaeccc4f0bb500a44e9a165f9a8eb75 # Parent c10a46fa0de96ecc246dbc130fddf77f564bbebc Nitpick found a counterexample for one lemma. diff -r c10a46fa0de9 -r df7a2f76daae Quot/Examples/IntEx.thy --- a/Quot/Examples/IntEx.thy Tue Dec 08 11:59:16 2009 +0100 +++ b/Quot/Examples/IntEx.thy Tue Dec 08 12:36:28 2009 +0100 @@ -1,5 +1,5 @@ theory IntEx -imports "../QuotList" +imports "../QuotList" Nitpick begin fun @@ -237,6 +237,7 @@ lemma lam_tst: "(\x. (x, x)) y = (y, (y :: nat \ nat))" by simp +(* Don't know how to keep the goal non-contracted... *) lemma "(\x. (x, x)) (y::my_int) = (y, y)" apply(tactic {* procedure_tac @{context} @{thm lam_tst} 1 *}) apply(tactic {* regularize_tac @{context} 1 *}) @@ -290,10 +291,8 @@ lemma shows "equivp (op \)" - and "equivp ((op \) ===> (op \))" -apply - -apply(tactic {* equiv_tac @{context} 1 *}) -apply(tactic {* equiv_tac @{context} 1 *})? + and "equivp ((op \) ===> (op \))" +(* Nitpick finds a counterexample! *) oops lemma lam_tst3a: "(\(y :: nat \ nat). y) = (\(x :: nat \ nat). x)" @@ -334,6 +333,6 @@ apply(tactic {* quotient_tac @{context} 1 *}) apply(tactic {* quotient_tac @{context} 1 *}) apply(rule refl) -done + end