# HG changeset patch # User Cezary Kaliszyk # Date 1268394155 -3600 # Node ID d2d8020cd20aeb65e5a49a6be93315cae633d2cb # Parent 7a9217a7f68166d4468aa62c78f7881b462aa467 Still don't know how to prove supp=fv for simplest Let... diff -r 7a9217a7f681 -r d2d8020cd20a Nominal/Parser.thy --- a/Nominal/Parser.thy Thu Mar 11 20:49:31 2010 +0100 +++ b/Nominal/Parser.thy Fri Mar 12 12:42:35 2010 +0100 @@ -510,7 +510,7 @@ fun prep_bn env bn_str = case (Syntax.read_term lthy bn_str) of Free (x, _) => (NONE, env_lookup env x) - | Const (a, T) $ Free (x, _) => (SOME (Const (a, T), false), env_lookup env x) + | Const (a, T) $ Free (x, _) => (SOME (Const (a, T), true), env_lookup env x) | _ => error (bn_str ^ " not allowed as binding specification."); fun prep_typ env (i, opt_name) = diff -r 7a9217a7f681 -r d2d8020cd20a Nominal/Term1.thy --- a/Nominal/Term1.thy Thu Mar 11 20:49:31 2010 +0100 +++ b/Nominal/Term1.thy Fri Mar 12 12:42:35 2010 +0100 @@ -146,7 +146,7 @@ instance trm1 and bp :: fs apply default -apply (rule rtrm1_bp_fs)+ +apply (simp_all add: rtrm1_bp_fs) done lemma fv_eq_bv_pre: "fv_bp bp = bv1 bp" @@ -220,25 +220,22 @@ shows "\fv_trm1 trm11 = supp trm11; fv_trm1 trm12 = supp trm12\ \ supp (Lt1 bp trm11 trm12) = fv_trm1 (Lt1 bp trm11 trm12)" apply(simp only: fv_trm1 fv_eq_bv sa[simplified fv_eq_bv]) +apply simp apply(fold supp_Abs) apply(simp only: fv_trm1 fv_eq_bv sa[simplified fv_eq_bv,symmetric]) -apply(simp (no_asm) only: supp_def permute_set_eq permute_trm1 alpha1_INJ) -apply(simp only: ex_out Collect_neg_conj permute_ABS Abs_eq_iff) -(*apply(simp only: alpha_bp_eq fv_eq_bv)*) +apply(simp (no_asm) only: supp_def) +apply(simp only: permute_set_eq permute_trm1) +apply(simp only: alpha1_INJ) +apply(simp only: ex_out) +apply(simp only: Collect_neg_conj) +apply(simp only: permute_ABS) +apply(simp only: Abs_eq_iff) apply(simp only: alpha_gen fv_eq_bv supp_Pair) +apply(simp only: inf_or[symmetric]) +apply(simp only: Collect_disj_eq) +apply(tactic {* Cong_Tac.cong_tac @{thm cong} 1 *}) apply(rule refl) apply(simp only: supp_eqvt[symmetric] fv_trm1_eqvt[symmetric] bv1_eqvt fv_eq_bv sa[simplified fv_eq_bv,symmetric]) -apply(simp only: Un_left_commute) -apply simp -apply(simp add: fresh_star_def) apply(fold fresh_star_def) apply(simp add: Collect_imp_eq Collect_neg_eq[symmetric]) -apply(tactic {* Cong_Tac.cong_tac @{thm cong} 1 *}) apply(rule refl) -apply(simp only: Un_assoc[symmetric]) -apply(simp only: Un_commute) -apply(simp only: Un_left_commute) -apply(simp only: Un_assoc[symmetric]) -apply(simp only: Un_commute) -apply(tactic {* Cong_Tac.cong_tac @{thm cong} 1 *}) apply(rule refl) -apply(simp only: Collect_disj_eq[symmetric] inf_or) apply(simp only: HOL.imp_disj2[symmetric] HOL.not_ex[symmetric] HOL.disj_not1[symmetric] HOL.de_Morgan_conj[symmetric]) sorry