# HG changeset patch # User Christian Urban # Date 1263488240 -3600 # Node ID cd3f1409780ad8ebbd87359cdd5f10a9f1740fbe # Parent f2a1ebba9bdc9c950d9369103001c1bab54b5b96 right generalisation diff -r f2a1ebba9bdc -r cd3f1409780a Quot/Examples/LamEx.thy --- a/Quot/Examples/LamEx.thy Thu Jan 14 17:53:23 2010 +0100 +++ b/Quot/Examples/LamEx.thy Thu Jan 14 17:57:20 2010 +0100 @@ -263,7 +263,7 @@ and a3: "\name lam b. \\c. P c lam; name \ lam\ \ P b (Lam name lam)" shows "P a lam" proof - - have "\(pi::name prm). P a (pi \ lam)" + have "\(pi::name prm) a. P a (pi \ lam)" proof (induct lam rule: lam_induct) case (1 name pi) show "P a (pi \ Var name)" @@ -272,13 +272,14 @@ done next case (2 lam1 lam2 pi) - have b1: "P a (pi \ lam1)" by fact - have b2: "P a (pi \ lam2)" by fact + have b1: "\(pi::name prm) a. P a (pi \ lam1)" by fact + have b2: "\(pi::name prm) a. P a (pi \ lam2)" by fact show "P a (pi \ App lam1 lam2)" apply (simp only: pi_app) apply (rule a2) - using b1 b2 - sorry + apply (rule b1) + apply (rule b2) + done next case (3 name lam pi) have b: "P a (pi \ lam)" by fact