# HG changeset patch # User Christian Urban # Date 1264466566 -3600 # Node ID c96e007b512ffb7bf0530dd25bbe613a91afa0ba # Parent 0b15b83ded4a392b6a5a3c1fada6cc5ca82e4068 cleaning of QuotProd; a little cleaning of QuotList diff -r 0b15b83ded4a -r c96e007b512f Quot/QuotList.thy --- a/Quot/QuotList.thy Tue Jan 26 01:00:35 2010 +0100 +++ b/Quot/QuotList.thy Tue Jan 26 01:42:46 2010 +0100 @@ -12,23 +12,60 @@ declare [[map list = (map, list_rel)]] + + +text {* should probably be in Sum_Type.thy *} +lemma split_list_all: + shows "(\x. P x) \ P [] \ (\x xs. P (x#xs))" +apply(auto) +apply(case_tac x) +apply(simp_all) +done + +lemma map_id[id_simps]: "map id \ id" + apply(rule eq_reflection) + apply(simp add: expand_fun_eq) + apply(rule allI) + apply(induct_tac x) + apply(simp_all) + done + + +lemma list_rel_reflp: + shows "equivp R \ list_rel R xs xs" + apply(induct xs) + apply(simp_all add: equivp_reflp) + done + +lemma list_rel_symp: + assumes a: "equivp R" + shows "list_rel R xs ys \ list_rel R ys xs" + apply(induct xs ys rule: list_induct2') + apply(simp_all) + apply(rule equivp_symp[OF a]) + apply(simp) + done + +lemma list_rel_transp: + assumes a: "equivp R" + shows "list_rel R xs1 xs2 \ list_rel R xs2 xs3 \ list_rel R xs1 xs3" + apply(induct xs1 xs2 arbitrary: xs3 rule: list_induct2') + apply(simp_all) + apply(case_tac xs3) + apply(simp_all) + apply(rule equivp_transp[OF a]) + apply(auto) + done + lemma list_equivp[quot_equiv]: assumes a: "equivp R" shows "equivp (list_rel R)" - unfolding equivp_def - apply(rule allI)+ - apply(induct_tac x y rule: list_induct2') - apply(simp_all add: expand_fun_eq) - apply(metis list_rel.simps(1) list_rel.simps(2)) - apply(metis list_rel.simps(1) list_rel.simps(2)) - apply(rule iffI) - apply(rule allI) - apply(case_tac x) - apply(simp_all) - using a - apply(unfold equivp_def) - apply(auto)[1] - apply(metis list_rel.simps(4)) + apply(rule equivpI) + unfolding reflp_def symp_def transp_def + apply(subst split_list_all) + apply(simp add: equivp_reflp[OF a] list_rel_reflp[OF a]) + apply(blast intro: list_rel_symp[OF a]) + apply(blast intro: list_rel_transp[OF a]) done lemma list_rel_rel: @@ -44,11 +81,8 @@ assumes q: "Quotient R Abs Rep" shows "Quotient (list_rel R) (map Abs) (map Rep)" unfolding Quotient_def - apply(rule conjI) - apply(rule allI) - apply(induct_tac a) - apply(simp) - apply(simp add: Quotient_abs_rep[OF q]) + apply(subst split_list_all) + apply(simp add: Quotient_abs_rep[OF q] abs_o_rep[OF q] map_id) apply(rule conjI) apply(rule allI) apply(induct_tac a) @@ -59,142 +93,139 @@ apply(rule list_rel_rel[OF q]) done -lemma map_id[id_simps]: "map id \ id" - apply (rule eq_reflection) - apply (rule ext) - apply (rule_tac list="x" in list.induct) - apply (simp_all) - done lemma cons_prs_aux: assumes q: "Quotient R Abs Rep" shows "(map Abs) ((Rep h) # (map Rep t)) = h # t" -by (induct t) (simp_all add: Quotient_abs_rep[OF q]) + by (induct t) (simp_all add: Quotient_abs_rep[OF q]) lemma cons_prs[quot_preserve]: assumes q: "Quotient R Abs Rep" shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)" -by (simp only: expand_fun_eq fun_map_def cons_prs_aux[OF q]) - (simp) + by (simp only: expand_fun_eq fun_map_def cons_prs_aux[OF q]) + (simp) lemma cons_rsp[quot_respect]: assumes q: "Quotient R Abs Rep" - shows "(R ===> list_rel R ===> list_rel R) op # op #" -by (auto) + shows "(R ===> list_rel R ===> list_rel R) (op #) (op #)" + by (auto) lemma nil_prs[quot_preserve]: assumes q: "Quotient R Abs Rep" shows "map Abs [] \ []" -by (simp) + by (simp) lemma nil_rsp[quot_respect]: assumes q: "Quotient R Abs Rep" shows "list_rel R [] []" -by simp + by simp lemma map_prs_aux: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l" -by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) + by (induct l) + (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) lemma map_prs[quot_preserve]: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map" -by (simp only: expand_fun_eq fun_map_def map_prs_aux[OF a b]) - (simp) + by (simp only: expand_fun_eq fun_map_def map_prs_aux[OF a b]) + (simp) lemma map_rsp[quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" and q2: "Quotient R2 Abs2 Rep2" shows "((R1 ===> R2) ===> (list_rel R1) ===> list_rel R2) map map" -apply(simp) -apply(rule allI)+ -apply(rule impI) -apply(rule allI)+ -apply (induct_tac xa ya rule: list_induct2') -apply simp_all -done + apply(simp) + apply(rule allI)+ + apply(rule impI) + apply(rule allI)+ + apply (induct_tac xa ya rule: list_induct2') + apply simp_all + done lemma foldr_prs_aux: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e" -by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) + by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) lemma foldr_prs[quot_preserve]: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr" -by (simp only: expand_fun_eq fun_map_def foldr_prs_aux[OF a b]) - (simp) + by (simp only: expand_fun_eq fun_map_def foldr_prs_aux[OF a b]) + (simp) lemma foldl_prs_aux: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l" -by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) + by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) lemma foldl_prs[quot_preserve]: assumes a: "Quotient R1 abs1 rep1" and b: "Quotient R2 abs2 rep2" shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl" -by (simp only: expand_fun_eq fun_map_def foldl_prs_aux[OF a b]) - (simp) + by (simp only: expand_fun_eq fun_map_def foldl_prs_aux[OF a b]) + (simp) -lemma list_rel_empty: "list_rel R [] b \ length b = 0" -by (induct b) (simp_all) +lemma list_rel_empty: + shows "list_rel R [] b \ length b = 0" + by (induct b) (simp_all) -lemma list_rel_len: "list_rel R a b \ length a = length b" -apply (induct a arbitrary: b) -apply (simp add: list_rel_empty) -apply (case_tac b) -apply simp_all -done +lemma list_rel_len: + shows "list_rel R a b \ length a = length b" + apply (induct a arbitrary: b) + apply (simp add: list_rel_empty) + apply (case_tac b) + apply simp_all + done (* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *) lemma foldl_rsp[quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" and q2: "Quotient R2 Abs2 Rep2" shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_rel R2 ===> R1) foldl foldl" -apply(auto) -apply (subgoal_tac "R1 xa ya \ list_rel R2 xb yb \ R1 (foldl x xa xb) (foldl y ya yb)") -apply simp -apply (rule_tac x="xa" in spec) -apply (rule_tac x="ya" in spec) -apply (rule_tac xs="xb" and ys="yb" in list_induct2) -apply (rule list_rel_len) -apply (simp_all) -done + apply(auto) + apply (subgoal_tac "R1 xa ya \ list_rel R2 xb yb \ R1 (foldl x xa xb) (foldl y ya yb)") + apply simp + apply (rule_tac x="xa" in spec) + apply (rule_tac x="ya" in spec) + apply (rule_tac xs="xb" and ys="yb" in list_induct2) + apply (rule list_rel_len) + apply (simp_all) + done lemma foldr_rsp[quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" and q2: "Quotient R2 Abs2 Rep2" shows "((R1 ===> R2 ===> R2) ===> list_rel R1 ===> R2 ===> R2) foldr foldr" -apply auto -apply(subgoal_tac "R2 xb yb \ list_rel R1 xa ya \ R2 (foldr x xa xb) (foldr y ya yb)") -apply simp -apply (rule_tac xs="xa" and ys="ya" in list_induct2) -apply (rule list_rel_len) -apply (simp_all) -done + apply auto + apply(subgoal_tac "R2 xb yb \ list_rel R1 xa ya \ R2 (foldr x xa xb) (foldr y ya yb)") + apply simp + apply (rule_tac xs="xa" and ys="ya" in list_induct2) + apply (rule list_rel_len) + apply (simp_all) + done lemma list_rel_eq[id_simps]: shows "list_rel (op =) \ (op =)" -apply(rule eq_reflection) -unfolding expand_fun_eq -apply(rule allI)+ -apply(induct_tac x xa rule: list_induct2') -apply(simp_all) -done + apply(rule eq_reflection) + unfolding expand_fun_eq + apply(rule allI)+ + apply(induct_tac x xa rule: list_induct2') + apply(simp_all) + done lemma list_rel_refl: assumes a: "\x y. R x y = (R x = R y)" shows "list_rel R x x" -by (induct x) (auto simp add: a) + by (induct x) (auto simp add: a) end diff -r 0b15b83ded4a -r c96e007b512f Quot/QuotProd.thy --- a/Quot/QuotProd.thy Tue Jan 26 01:00:35 2010 +0100 +++ b/Quot/QuotProd.thy Tue Jan 26 01:42:46 2010 +0100 @@ -1,11 +1,16 @@ +(* Title: QuotProd.thy + Author: Cezary Kaliszyk and Christian Urban +*) theory QuotProd imports QuotMain begin +section {* Quotient infrastructure for product type *} + fun prod_rel where - "prod_rel R1 R2 = (\(a,b) (c,d). R1 a c \ R2 b d)" + "prod_rel R1 R2 = (\(a, b) (c, d). R1 a c \ R2 b d)" declare [[map * = (prod_fun, prod_rel)]] @@ -14,37 +19,40 @@ assumes a: "equivp R1" assumes b: "equivp R2" shows "equivp (prod_rel R1 R2)" -unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def -apply(auto simp add: equivp_reflp[OF a] equivp_reflp[OF b]) -apply(simp only: equivp_symp[OF a]) -apply(simp only: equivp_symp[OF b]) -using equivp_transp[OF a] apply blast -using equivp_transp[OF b] apply blast -done + apply(rule equivpI) + unfolding reflp_def symp_def transp_def + apply(simp_all add: split_paired_all) + apply(blast intro: equivp_reflp[OF a] equivp_reflp[OF b]) + apply(blast intro: equivp_symp[OF a] equivp_symp[OF b]) + apply(blast intro: equivp_transp[OF a] equivp_transp[OF b]) + done lemma prod_quotient[quot_thm]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "Quotient (prod_rel R1 R2) (prod_fun Abs1 Abs2) (prod_fun Rep1 Rep2)" -unfolding Quotient_def -using q1 q2 -apply (simp add: Quotient_abs_rep Quotient_abs_rep Quotient_rel_rep Quotient_rel_rep) -using Quotient_rel[OF q1] Quotient_rel[OF q2] -by blast + unfolding Quotient_def + apply(simp add: split_paired_all) + apply(simp add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1]) + apply(simp add: Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2]) + using q1 q2 + unfolding Quotient_def + apply(blast) + done -lemma pair_rsp[quot_respect]: +lemma Pair_rsp[quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(R1 ===> R2 ===> prod_rel R1 R2) Pair Pair" by simp -lemma pair_prs[quot_preserve]: +lemma Pair_prs[quot_preserve]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(Rep1 ---> Rep2 ---> (prod_fun Abs1 Abs2)) Pair = Pair" -apply(simp add: expand_fun_eq) -apply(simp add: Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) -done + apply(simp add: expand_fun_eq) + apply(simp add: Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) + done lemma fst_rsp[quot_respect]: assumes "Quotient R1 Abs1 Rep1" @@ -56,9 +64,9 @@ assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(prod_fun Rep1 Rep2 ---> Abs1) fst = fst" -apply(simp add: expand_fun_eq) -apply(simp add: Quotient_abs_rep[OF q1]) -done + apply(simp add: expand_fun_eq) + apply(simp add: Quotient_abs_rep[OF q1]) + done lemma snd_rsp[quot_respect]: assumes "Quotient R1 Abs1 Rep1" @@ -70,20 +78,18 @@ assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(prod_fun Rep1 Rep2 ---> Abs2) snd = snd" -apply(simp add: expand_fun_eq) -apply(simp add: Quotient_abs_rep[OF q2]) -done + apply(simp add: expand_fun_eq) + apply(simp add: Quotient_abs_rep[OF q2]) + done lemma prod_fun_id[id_simps]: shows "prod_fun id id \ id" - by (rule eq_reflection) - (simp add: prod_fun_def) + by (rule eq_reflection) (simp add: prod_fun_def) lemma prod_rel_eq[id_simps]: shows "prod_rel (op =) (op =) \ (op =)" apply (rule eq_reflection) - apply (rule ext)+ - apply auto + apply (simp add: expand_fun_eq) done end