# HG changeset patch # User Cezary Kaliszyk # Date 1268998115 -3600 # Node ID c6849a634582a89da00e6217a12852d74bf2bd9b # Parent db33de6cb57012d7ca95dddc8dfb592b487fe2c2 Keep only one copy of infinite_Un. diff -r db33de6cb570 -r c6849a634582 Nominal/Abs.thy --- a/Nominal/Abs.thy Fri Mar 19 12:24:16 2010 +0100 +++ b/Nominal/Abs.thy Fri Mar 19 12:28:35 2010 +0100 @@ -782,5 +782,10 @@ \ pi \ bs = cs)" by (simp add: alpha_gen) +(* maybe should be added to Infinite.thy *) +lemma infinite_Un: + shows "infinite (S \ T) \ infinite S \ infinite T" + by simp + end diff -r db33de6cb570 -r c6849a634582 Nominal/LamEx.thy --- a/Nominal/LamEx.thy Fri Mar 19 12:24:16 2010 +0100 +++ b/Nominal/LamEx.thy Fri Mar 19 12:28:35 2010 +0100 @@ -41,10 +41,6 @@ "\(P \ Q) \ (\P) \ (\Q)" by simp -lemma infinite_Un: - "infinite (S \ T) \ infinite S \ infinite T" - by simp - instance apply default apply(induct_tac x) diff -r db33de6cb570 -r c6849a634582 Nominal/LamEx2.thy --- a/Nominal/LamEx2.thy Fri Mar 19 12:24:16 2010 +0100 +++ b/Nominal/LamEx2.thy Fri Mar 19 12:28:35 2010 +0100 @@ -41,10 +41,6 @@ "\(P \ Q) \ (\P) \ (\Q)" by simp -lemma infinite_Un: - "infinite (S \ T) \ infinite S \ infinite T" - by simp - instance apply default apply(induct_tac x) diff -r db33de6cb570 -r c6849a634582 Nominal/Term1.thy --- a/Nominal/Term1.thy Fri Mar 19 12:24:16 2010 +0100 +++ b/Nominal/Term1.thy Fri Mar 19 12:28:35 2010 +0100 @@ -195,9 +195,6 @@ lemma Collect_neg_conj: "{x. \(P x \ Q x)} = {x. \(P x)} \ {x. \(Q x)}" by (simp add: Collect_imp_eq Collect_neg_eq[symmetric]) -lemma inf_or: "(infinite x \ infinite y) = infinite (x \ y)" -by (simp add: finite_Un) - lemma supp_fv_let: assumes sa : "fv_bp bp = supp bp" shows "\fv_trm1 ta = supp ta; fv_trm1 tb = supp tb; fv_bp bp = supp bp\ @@ -212,7 +209,7 @@ apply(simp only: permute_ABS) apply(simp only: Abs_eq_iff) apply(simp only: alpha_gen supp_Pair split_conv eqvts) -apply(simp only: inf_or[symmetric]) +apply(simp only: infinite_Un) apply(simp only: Collect_disj_eq) apply(tactic {* Cong_Tac.cong_tac @{thm cong} 1 *}) apply(rule refl) apply (simp only: eqvts[symmetric] fv_trm1_eqvt[symmetric])