# HG changeset patch # User Cezary Kaliszyk # Date 1260051968 -3600 # Node ID baff284c6fcc027ff7b933eefa1f03af9169bbf3 # Parent 96c241932603bf085bd398582e149a2eed408082 Proved foldl_rsp and ho_map_rsp diff -r 96c241932603 -r baff284c6fcc IntEx.thy --- a/IntEx.thy Sat Dec 05 22:38:42 2009 +0100 +++ b/IntEx.thy Sat Dec 05 23:26:08 2009 +0100 @@ -159,7 +159,6 @@ apply(tactic {* procedure_tac @{context} @{thm test1} 1 *}) apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *}) apply(tactic {* all_inj_repabs_tac_intex @{context} 1*}) -apply(tactic {* simp_tac (HOL_basic_ss addSolver quotient_solver addsimps @{thms all_prs}) 1 *}) apply(tactic {* clean_tac @{context} 1 *}) done @@ -214,22 +213,6 @@ apply simp done -(* I believe it's true. *) -lemma foldl_rsp[quotient_rsp]: - "((op \ ===> op \ ===> op \) ===> op \ ===> list_rel op \ ===> op \) foldl foldl" -apply (simp only: fun_rel.simps) -apply (rule allI) -apply (rule allI) -apply (rule impI) -apply (rule allI) -apply (rule allI) -apply (rule impI) -apply (rule allI) -apply (rule allI) -apply (rule impI) -apply (induct_tac xb yb rule: list_induct2) (* To finish I need to give it: arbitrary:xa ya *) -sorry - lemma "foldl PLUS x [] = x" apply(tactic {* procedure_tac @{context} @{thm ho_tst} 1 *}) apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *}) diff -r 96c241932603 -r baff284c6fcc QuotList.thy --- a/QuotList.thy Sat Dec 05 22:38:42 2009 +0100 +++ b/QuotList.thy Sat Dec 05 23:26:08 2009 +0100 @@ -84,10 +84,22 @@ shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l" by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) -(* We need an ho version *) lemma map_rsp: assumes q1: "Quotient R1 Abs1 Rep1" and q2: "Quotient R2 Abs2 Rep2" + shows "((R1 ===> R2) ===> (list_rel R1) ===> list_rel R2) map map" +apply(simp) +apply(rule allI)+ +apply(rule impI) +apply(rule allI)+ +apply (induct_tac xa ya rule: list_induct2') +apply simp_all +done + +(* TODO: if the above is correct, we can remove this one *) +lemma map_rsp_lo: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" and a: "(R1 ===> R2) f1 f2" and b: "list_rel R1 l1 l2" shows "list_rel R2 (map f1 l1) (map f2 l2)" @@ -106,8 +118,35 @@ shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l" by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) +lemma list_rel_empty: "list_rel R [] b \ length b = 0" +by (induct b) (simp_all) +lemma list_rel_len: "list_rel R a b \ length a = length b" +apply (induct a arbitrary: b) +apply (simp add: list_rel_empty) +apply (case_tac b) +apply simp_all +done +(* TODO: induct_tac doesn't accept 'arbitrary'. + induct doesn't accept 'rule'. + that's why the proof uses manual generalisation and needs assumptions + both in conclusion for induction and in assumptions. *) +lemma foldl_rsp[quotient_rsp]: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_rel R2 ===> R1) foldl foldl" +apply auto +apply (subgoal_tac "R1 xa ya \ list_rel R2 xb yb \ R1 (foldl x xa xb) (foldl y ya yb)") +apply simp +apply (rule_tac x="xa" in spec) +apply (rule_tac x="ya" in spec) +apply (rule_tac xs="xb" and ys="yb" in list_induct2) +apply (rule list_rel_len) +apply (simp_all) +done + +(* TODO: foldr_rsp should be similar *)