# HG changeset patch # User Christian Urban # Date 1309816445 -7200 # Node ID a56d422e17f605e9331b1563e4623e04ed25ef6c # Parent 2f81b4677a01ce94d9ecba8d6e261e88f73e1f0a added an example that recurses over two arguments; the interesting proof-obligation is not yet done diff -r 2f81b4677a01 -r a56d422e17f6 Nominal/Ex/Lambda.thy --- a/Nominal/Ex/Lambda.thy Sun Jul 03 21:04:46 2011 +0900 +++ b/Nominal/Ex/Lambda.thy Mon Jul 04 23:54:05 2011 +0200 @@ -204,60 +204,6 @@ by (metis fresh_fun_app) -section {* A test with a locale and an interpretation. *} - -text {* conclusion: it is no necessary *} - -locale test = - fixes f1::"name \ ('a::pt)" - and f2::"lam \ lam \ 'a \ 'a \ ('a::pt)" - and f3::"name \ lam \ 'a \ ('a::pt)" - assumes fs: "finite (supp (f1, f2, f3))" - and eq: "eqvt f1" "eqvt f2" "eqvt f3" - and fcb: "\x t r. atom x \ f3 x t r" -begin - -nominal_primrec - f :: "lam \ ('a::pt)" -where - "f (Var x) = f1 x" -| "f (App t1 t2) = f2 t1 t2 (f t1) (f t2)" -| "f (Lam [x].t) = f3 x t (f t)" - apply (simp add: eqvt_def f_graph_def) - apply (perm_simp) - apply(simp add: eq[simplified eqvt_def]) - apply(rule TrueI) - apply(rule_tac y="x" in lam.exhaust) - apply(auto simp add: fresh_star_def) - apply(erule Abs_lst1_fcb) - apply simp_all - apply(simp add: fcb) - apply (rule fresh_fun_eqvt_app3[OF eq(3)]) - apply (simp add: fresh_at_base) - apply assumption - apply (erule fresh_eqvt_at) - apply (simp add: finite_supp) - apply assumption - apply (subgoal_tac "\p y r. p \ (f3 x y r) = f3 (p \ x) (p \ y) (p \ r)") - apply (simp add: eqvt_at_def) - apply (simp add: permute_fun_app_eq eq[unfolded eqvt_def]) - done - -termination - by lexicographic_order - -end - -interpretation hei: test - "%n. (1 :: nat)" - "%t1 t2 r1 r2. (r1 + r2)" - "%n t r. r + 1" - apply default - apply (auto simp add: pure_fresh supp_Pair) - apply (simp_all add: fresh_def supp_def permute_fun_def permute_pure)[3] - apply (simp_all add: eqvt_def permute_fun_def permute_pure) - done - section {* height function *} nominal_primrec @@ -817,6 +763,74 @@ apply(rule refl) oops + +lemma test: + assumes "t = s" + and "supp p \* t" "supp p \* x" + and "(p \ t) = s \ (p \ x) = y" + shows "x = y" +using assms by (simp add: perm_supp_eq) + +lemma test2: + assumes "cs \ as \ bs" + and "as \* x" "bs \* x" + shows "cs \* x" +using assms +by (auto simp add: fresh_star_def) + +lemma test3: + assumes "cs \ as" + and "as \* x" + shows "cs \* x" +using assms +by (auto simp add: fresh_star_def) + + + +nominal_primrec (invariant "\(_, _, xs) y. atom ` fst ` set xs \* y \ atom ` snd ` set xs \* y") + aux :: "lam \ lam \ (name \ name) list \ bool" +where + "aux (Var x) (Var y) xs = ((x, y) \ set xs)" +| "aux (App t1 t2) (App s1 s2) xs = (aux t1 s1 xs \ aux t2 s2 xs)" +| "aux (Var x) (App t1 t2) xs = False" +| "aux (Var x) (Lam [y].t) xs = False" +| "aux (App t1 t2) (Var x) xs = False" +| "aux (App t1 t2) (Lam [x].t) xs = False" +| "aux (Lam [x].t) (Var y) xs = False" +| "aux (Lam [x].t) (App t1 t2) xs = False" +| "\{atom x} \* (s, xs); {atom y} \* (t, xs); x \ y\ \ + aux (Lam [x].t) (Lam [y].s) xs = aux t s ((x, y) # xs)" + apply (simp add: eqvt_def aux_graph_def) + apply (rule, perm_simp, rule) + apply(erule aux_graph.induct) + apply(simp_all add: fresh_star_def pure_fresh)[9] + apply(case_tac x) + apply(simp) + apply(rule_tac y="a" and c="(b, c)" in lam.strong_exhaust) + apply(simp) + apply(rule_tac y="b" and c="c" in lam.strong_exhaust) + apply(metis)+ + apply(simp) + apply(rule_tac y="b" and c="c" in lam.strong_exhaust) + apply(metis)+ + apply(simp) + apply(rule_tac y="b" and c="(lam, c, name)" in lam.strong_exhaust) + apply(metis)+ + apply(simp) + apply(drule_tac x="name" in meta_spec) + apply(drule_tac x="lama" in meta_spec) + apply(drule_tac x="c" in meta_spec) + apply(drule_tac x="namea" in meta_spec) + apply(drule_tac x="lam" in meta_spec) + apply(simp add: fresh_star_Pair) + apply(simp add: fresh_star_def fresh_at_base lam.fresh) + apply(auto)[1] + apply(simp_all)[44] + apply(simp del: Product_Type.prod.inject) + sorry + +termination by lexicographic_order + end