# HG changeset patch # User Cezary Kaliszyk # Date 1308229252 -32400 # Node ID 9f667f6da04f3013975d833a94c2b82a67df3c86 # Parent a30d0bb7686919a99ac6f209343a97a1f73193ff# Parent bb647489f130627f5ca820f1914fd66503d1a581 merge diff -r a30d0bb76869 -r 9f667f6da04f Nominal/CPS/CPS1_Plotkin.thy --- a/Nominal/CPS/CPS1_Plotkin.thy Thu Jun 16 21:23:38 2011 +0900 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,366 +0,0 @@ -header {* CPS conversion *} -theory Plotkin -imports Lt -begin - -nominal_primrec - CPS :: "lt \ lt" ("_*" [250] 250) -where - "atom k \ x \ (x~)* = (Abs k ((k~) $ (x~)))" -| "atom k \ (x, M) \ (Abs x M)* = Abs k (k~ $ Abs x (M*))" -| "atom k \ (M, N) \ atom m \ (N, k) \ atom n \ (k, m) \ - (M $ N)* = Abs k (M* $ Abs m (N* $ Abs n (m~ $ n~ $ k~)))" -unfolding eqvt_def CPS_graph_def -apply (rule, perm_simp, rule, rule) -apply (simp_all add: fresh_Pair_elim) -apply (rule_tac y="x" in lt.exhaust) -apply (auto) -apply (rule_tac x="name" and ?'a="name" in obtain_fresh) -apply (simp_all add: fresh_at_base)[3] -apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) -apply (simp add: fresh_Pair_elim fresh_at_base)[2] -apply (rule_tac x="(lt1, lt2)" and ?'a="name" in obtain_fresh) -apply (rule_tac x="(lt2, a)" and ?'a="name" in obtain_fresh) -apply (rule_tac x="(a, aa)" and ?'a="name" in obtain_fresh) -apply (simp add: fresh_Pair_elim fresh_at_base) -apply (simp add: Abs1_eq_iff lt.fresh fresh_at_base) ---"-" -apply(rule_tac s="[[atom ka]]lst. ka~ $ Abs x (CPS_sumC M)" in trans) -apply (case_tac "k = ka") -apply simp -apply(simp (no_asm) add: Abs1_eq_iff del:eqvts) -apply (simp del: eqvts add: lt.fresh fresh_at_base) -apply (simp only: lt.perm_simps(1) lt.perm_simps(3) flip_def[symmetric] lt.eq_iff(3)) -apply (subst flip_at_base_simps(2)) -apply simp -apply (intro conjI refl) -apply (rule flip_fresh_fresh[symmetric]) -apply (simp_all add: lt.fresh) -apply (metis fresh_eqvt_at lt.fsupp) -apply (case_tac "ka = x") -apply simp_all[2] -apply (metis Abs_fresh_iff(3) atom_eq_iff finite_set fresh_Cons fresh_Nil fresh_atom fresh_eqvt_at fresh_finite_atom_set fresh_set lt.fsupp) -apply (metis Abs_fresh_iff(3) atom_eq_iff finite_set fresh_Cons fresh_Nil fresh_atom fresh_eqvt_at fresh_finite_atom_set fresh_set lt.fsupp) ---"-" -apply (simp add: Abs1_eq(3)) -apply (erule Abs_lst1_fcb) -apply (simp add: fresh_def supp_Abs) -apply (drule_tac a="atom xa" in fresh_eqvt_at) -apply (simp add: finite_supp) -apply assumption -apply (simp add: fresh_def supp_Abs) -apply (simp add: eqvts eqvt_at_def) -apply simp ---"-" -apply (rename_tac k' M N m' n') -apply (subgoal_tac "atom k \ CPS_sumC M \ atom k' \ CPS_sumC M \ atom k \ CPS_sumC N \ atom k' \ CPS_sumC N \ - atom m \ CPS_sumC N \ atom m' \ CPS_sumC N") -prefer 2 -apply (intro conjI) -apply (erule fresh_eqvt_at, simp add: finite_supp, assumption)+ -apply clarify -apply (case_tac "k = k'", case_tac [!] "m' = k",case_tac [!]"m = k'",case_tac[!] "m = m'") -apply (simp_all add: Abs1_eq_iff lt.fresh flip_def[symmetric] fresh_at_base flip_fresh_fresh permute_eq_iff) -by (metis flip_at_base_simps(3) flip_at_simps(2) flip_commute permute_flip_at)+ - -termination - by (relation "measure size") (simp_all add: lt.size) - -lemmas [simp] = fresh_Pair_elim CPS.simps(2,3)[simplified fresh_Pair_elim] - -lemma [simp]: "supp (M*) = supp M" - by (induct rule: CPS.induct, simp_all add: lt.supp supp_at_base fresh_at_base fresh_def supp_Pair) - (simp_all only: atom_eq_iff[symmetric], blast+) - -lemma [simp]: "x \ M* = x \ M" - unfolding fresh_def by simp - -(* Will be provided automatically by nominal_primrec *) -lemma CPS_eqvt[eqvt]: - shows "p \ M* = (p \ M)*" - apply (induct M rule: lt.induct) - apply (rule_tac x="(name, p \ name, p)" and ?'a="name" in obtain_fresh) - apply simp - apply (simp add: Abs1_eq_iff lt.fresh flip_def[symmetric]) - apply (metis atom_eqvt flip_fresh_fresh fresh_perm atom_eq_iff fresh_at_base) - apply (rule_tac x="(name, lt, p \ name, p \ lt, p)" and ?'a="name" in obtain_fresh) - apply simp - apply (metis atom_eqvt fresh_perm atom_eq_iff) - apply (rule_tac x="(lt1, p \ lt1, lt2, p \ lt2, p)" and ?'a="name" in obtain_fresh) - apply (rule_tac x="(a, lt2, p \ lt2, p)" and ?'a="name" in obtain_fresh) - apply (rule_tac x="(a, aa, p)" and ?'a="name" in obtain_fresh) - apply (simp) - apply (simp add: Abs1_eq_iff lt.fresh flip_def[symmetric]) - apply (metis atom_eqvt fresh_perm atom_eq_iff) - done - -nominal_primrec - convert:: "lt => lt" ("_+" [250] 250) -where - "(Var x)+ = Var x" -| "(Abs x M)+ = Abs x (M*)" -| "(M $ N)+ = M $ N" - unfolding convert_graph_def eqvt_def - apply (rule, perm_simp, rule, rule) - apply (erule lt.exhaust) - apply (simp_all) - apply blast - apply (simp add: Abs1_eq_iff CPS_eqvt) - by blast - -termination - by (relation "measure size") (simp_all add: lt.size) - -lemma convert_supp[simp]: - shows "supp (M+) = supp M" - by (induct M rule: lt.induct, simp_all add: lt.supp) - -lemma convert_fresh[simp]: - shows "x \ (M+) = x \ M" - unfolding fresh_def by simp - -lemma convert_eqvt[eqvt]: - shows "p \ (M+) = (p \ M)+" - by (nominal_induct M rule: lt.strong_induct, auto simp add: CPS_eqvt) - -lemma [simp]: - shows "isValue (p \ (M::lt)) = isValue M" - by (nominal_induct M rule: lt.strong_induct) auto - -lemma [eqvt]: - shows "p \ isValue M = isValue (p \ M)" - by (induct M rule: lt.induct) (perm_simp, rule refl)+ - -nominal_primrec - Kapply :: "lt \ lt \ lt" (infixl ";" 100) -where - "Kapply (Abs x M) K = K $ (Abs x M)+" -| "Kapply (Var x) K = K $ Var x" -| "isValue M \ isValue N \ Kapply (M $ N) K = M+ $ N+ $ K" -| "isValue M \ \isValue N \ atom n \ M \ atom n \ K \ - Kapply (M $ N) K = N; (Abs n (M+ $ Var n $ K))" -| "\isValue M \ atom m \ N \ atom m \ K \ atom n \ m \ atom n \ K \ - Kapply (M $ N) K = M; (Abs m (N* $ (Abs n (Var m $ Var n $ K))))" - unfolding Kapply_graph_def eqvt_def - apply (rule, perm_simp, rule, rule) -apply (simp_all) -apply (case_tac x) -apply (rule_tac y="a" in lt.exhaust) -apply (auto) -apply (case_tac "isValue lt1") -apply (case_tac "isValue lt2") -apply (auto)[1] -apply (rule_tac x="(lt1, ba)" and ?'a="name" in obtain_fresh) -apply (simp add: fresh_Pair_elim fresh_at_base) -apply (rule_tac x="(lt2, ba)" and ?'a="name" in obtain_fresh) -apply (rule_tac x="(a, ba)" and ?'a="name" in obtain_fresh) -apply (simp add: fresh_Pair_elim fresh_at_base) -apply (auto simp add: Abs1_eq_iff eqvts)[1] -apply (rename_tac M N u K) -apply (subgoal_tac "Abs n (M+ $ n~ $ K) = Abs u (M+ $ u~ $ K)") -apply (simp only:) -apply (auto simp add: Abs1_eq_iff flip_def[symmetric] lt.fresh fresh_at_base flip_fresh_fresh[symmetric])[1] -apply (subgoal_tac "Abs m (Na* $ Abs n (m~ $ n~ $ Ka)) = Abs ma (Na* $ Abs na (ma~ $ na~ $ Ka))") -apply (simp only:) -apply (simp add: Abs1_eq_iff flip_def[symmetric] lt.fresh fresh_at_base) -apply (subgoal_tac "Ka = (n \ na) \ Ka") -apply (subgoal_tac "Ka = (m \ ma) \ Ka") -apply (subgoal_tac "Ka = (n \ (m \ ma) \ na) \ Ka") -apply (case_tac "m = ma") -apply simp_all -apply rule -apply (auto simp add: flip_fresh_fresh[symmetric]) -apply (metis flip_at_base_simps(3) flip_fresh_fresh permute_flip_at)+ -done - -termination - by (relation "measure (\(t, _). size t)") (simp_all add: lt.size) - -section{* lemma related to Kapply *} - -lemma [simp]: "isValue V \ V; K = K $ (V+)" - by (nominal_induct V rule: lt.strong_induct) auto - -section{* lemma related to CPS conversion *} - -lemma value_CPS: - assumes "isValue V" - and "atom a \ V" - shows "V* = Abs a (a~ $ V+)" - using assms -proof (nominal_induct V avoiding: a rule: lt.strong_induct, simp_all add: lt.fresh) - fix name :: name and lt aa - assume a: "atom name \ aa" "\b. \isValue lt; atom b \ lt\ \ lt* = Abs b (b~ $ lt+)" - "atom aa \ lt \ aa = name" - obtain ab :: name where b: "atom ab \ (name, lt, a)" using obtain_fresh by blast - show "Abs name lt* = Abs aa (aa~ $ Abs name (lt*))" using a b - by (simp add: Abs1_eq_iff fresh_at_base lt.fresh) -qed - -section{* first lemma CPS subst *} - -lemma CPS_subst_fv: - assumes *:"isValue V" - shows "((M[V/x])* = (M*)[V+/x])" -using * proof (nominal_induct M avoiding: V x rule: lt.strong_induct) - case (Var name) - assume *: "isValue V" - obtain a :: name where a: "atom a \ (x, name, V)" using obtain_fresh by blast - show "((name~)[V/x])* = (name~)*[V+/x]" using a - by (simp add: fresh_at_base * value_CPS) -next - case (Abs name lt V x) - assume *: "atom name \ V" "atom name \ x" "\b ba. isValue b \ (lt[b/ba])* = lt*[b+/ba]" - "isValue V" - obtain a :: name where a: "atom a \ (name, lt, lt[V/x], x, V)" using obtain_fresh by blast - show "(Abs name lt[V/x])* = Abs name lt*[V+/x]" using * a - by (simp add: fresh_at_base) -next - case (App lt1 lt2 V x) - assume *: "\b ba. isValue b \ (lt1[b/ba])* = lt1*[b+/ba]" "\b ba. isValue b \ (lt2[b/ba])* = lt2*[b+/ba]" - "isValue V" - obtain a :: name where a: "atom a \ (lt1[V/x], lt1, lt2[V/x], lt2, V, x)" using obtain_fresh by blast - obtain b :: name where b: "atom b \ (lt2[V/x], lt2, a, V, x)" using obtain_fresh by blast - obtain c :: name where c: "atom c \ (a, b, V, x)" using obtain_fresh by blast - show "((lt1 $ lt2)[V/x])* = (lt1 $ lt2)*[V+/x]" using * a b c - by (simp add: fresh_at_base) -qed - -lemma [simp]: "isValue V \ isValue (V+)" - by (nominal_induct V rule: lt.strong_induct, auto) - -lemma CPS_eval_Kapply: - assumes a: "isValue K" - shows "(M* $ K) \\<^isub>\\<^sup>* (M ; K)" - using a -proof (nominal_induct M avoiding: K rule: lt.strong_induct, simp_all) - case (Var name K) - assume *: "isValue K" - obtain a :: name where a: "atom a \ (name, K)" using obtain_fresh by blast - show "(name~)* $ K \\<^isub>\\<^sup>* K $ name~" using * a - by simp (rule evbeta', simp_all add: fresh_at_base) -next - fix name :: name and lt K - assume *: "atom name \ K" "\b. isValue b \ lt* $ b \\<^isub>\\<^sup>* lt ; b" "isValue K" - obtain a :: name where a: "atom a \ (name, K, lt)" using obtain_fresh by blast - then have b: "atom name \ a" using fresh_PairD(1) fresh_at_base atom_eq_iff by metis - show "Abs name lt* $ K \\<^isub>\\<^sup>* K $ Abs name (lt*)" using * a b - by simp (rule evbeta', simp_all) -next - fix lt1 lt2 K - assume *: "\b. isValue b \ lt1* $ b \\<^isub>\\<^sup>* lt1 ; b" "\b. isValue b \ lt2* $ b \\<^isub>\\<^sup>* lt2 ; b" "isValue K" - obtain a :: name where a: "atom a \ (lt1, lt2, K)" using obtain_fresh by blast - obtain b :: name where b: "atom b \ (lt1, lt2, K, a)" using obtain_fresh by blast - obtain c :: name where c: "atom c \ (lt1, lt2, K, a, b)" using obtain_fresh by blast - have d: "atom a \ lt1" "atom a \ lt2" "atom a \ K" "atom b \ lt1" "atom b \ lt2" "atom b \ K" "atom b \ a" - "atom c \ lt1" "atom c \ lt2" "atom c \ K" "atom c \ a" "atom c \ b" using fresh_Pair a b c by simp_all - have "(lt1 $ lt2)* $ K \\<^isub>\\<^sup>* lt1* $ Abs b (lt2* $ Abs c (b~ $ c~ $ K))" using * d - by (simp add: fresh_at_base) (rule evbeta', simp_all add: fresh_at_base) - also have "... \\<^isub>\\<^sup>* lt1 $ lt2 ; K" proof (cases "isValue lt1") - assume e: "isValue lt1" - have "lt1* $ Abs b (lt2* $ Abs c (b~ $ c~ $ K)) \\<^isub>\\<^sup>* Abs b (lt2* $ Abs c (b~ $ c~ $ K)) $ lt1+" - using * d e by simp - also have "... \\<^isub>\\<^sup>* lt2* $ Abs c (lt1+ $ c~ $ K)" - by (rule evbeta', simp_all add: * d e, metis d(12) fresh_at_base) - also have "... \\<^isub>\\<^sup>* lt1 $ lt2 ; K" proof (cases "isValue lt2") - assume f: "isValue lt2" - have "lt2* $ Abs c (lt1+ $ c~ $ K) \\<^isub>\\<^sup>* Abs c (lt1+ $ c~ $ K) $ lt2+" using * d e f by simp - also have "... \\<^isub>\\<^sup>* lt1+ $ lt2+ $ K" - by (rule evbeta', simp_all add: d e f) - finally show ?thesis using * d e f by simp - next - assume f: "\ isValue lt2" - have "lt2* $ Abs c (lt1+ $ c~ $ K) \\<^isub>\\<^sup>* lt2 ; Abs c (lt1+ $ c~ $ K)" using * d e f by simp - also have "... \\<^isub>\\<^sup>* lt2 ; Abs a (lt1+ $ a~ $ K)" using Kapply.simps(4) d e evs1 f by metis - finally show ?thesis using * d e f by simp - qed - finally show ?thesis . - qed (metis Kapply.simps(5) isValue.simps(2) * d) - finally show "(lt1 $ lt2)* $ K \\<^isub>\\<^sup>* lt1 $ lt2 ; K" . -qed - -lemma Kapply_eval: - assumes a: "M \\<^isub>\ N" "isValue K" - shows "(M; K) \\<^isub>\\<^sup>* (N; K)" - using assms -proof (induct arbitrary: K rule: eval.induct) - case (evbeta x V M) - fix K - assume a: "isValue K" "isValue V" "atom x \ V" - have "Abs x (M*) $ V+ $ K \\<^isub>\\<^sup>* ((M*)[V+/x] $ K)" - by (rule evs2,rule ev2,rule Lt.evbeta) (simp_all add: fresh_def a[simplified fresh_def] evs1) - also have "... = ((M[V/x])* $ K)" by (simp add: CPS_subst_fv a) - also have "... \\<^isub>\\<^sup>* (M[V/x] ; K)" by (rule CPS_eval_Kapply, simp_all add: a) - finally show "(Abs x M $ V ; K) \\<^isub>\\<^sup>* (M[V/x] ; K)" using a by simp -next - case (ev1 V M N) - fix V M N K - assume a: "isValue V" "M \\<^isub>\ N" "\K. isValue K \ M ; K \\<^isub>\\<^sup>* N ; K" "isValue K" - obtain a :: name where b: "atom a \ (V, K, M, N)" using obtain_fresh by blast - show "V $ M ; K \\<^isub>\\<^sup>* V $ N ; K" proof (cases "isValue N") - assume "\ isValue N" - then show "V $ M ; K \\<^isub>\\<^sup>* V $ N ; K" using a b by simp - next - assume n: "isValue N" - have c: "M; Abs a (V+ $ a~ $ K) \\<^isub>\\<^sup>* Abs a (V+ $ a~ $ K) $ N+" using a b by (simp add: n) - also have d: "... \\<^isub>\\<^sup>* V+ $ N+ $ K" by (rule evbeta') (simp_all add: a b n) - finally show "V $ M ; K \\<^isub>\\<^sup>* V $ N ; K" using a b by (simp add: n) - qed -next - case (ev2 M M' N) - assume *: "M \\<^isub>\ M'" "\K. isValue K \ M ; K \\<^isub>\\<^sup>* M' ; K" "isValue K" - obtain a :: name where a: "atom a \ (K, M, N, M')" using obtain_fresh by blast - obtain b :: name where b: "atom b \ (a, K, M, N, M', N+)" using obtain_fresh by blast - have d: "atom a \ K" "atom a \ M" "atom a \ N" "atom a \ M'" "atom b \ a" "atom b \ K" - "atom b \ M" "atom b \ N" "atom b \ M'" using a b fresh_Pair by simp_all - have "M $ N ; K \\<^isub>\\<^sup>* M' ; Abs a (N* $ Abs b (a~ $ b~ $ K))" using * d by simp - also have "... \\<^isub>\\<^sup>* M' $ N ; K" proof (cases "isValue M'") - assume "\ isValue M'" - then show ?thesis using * d by (simp_all add: evs1) - next - assume e: "isValue M'" - then have "M' ; Abs a (N* $ Abs b (a~ $ b~ $ K)) = Abs a (N* $ Abs b (a~ $ b~ $ K)) $ M'+" by simp - also have "... \\<^isub>\\<^sup>* (N* $ Abs b (a~ $ b~ $ K))[M'+/a]" - by (rule evbeta') (simp_all add: fresh_at_base e d) - also have "... = N* $ Abs b (M'+ $ b~ $ K)" using * d by (simp add: fresh_at_base) - also have "... \\<^isub>\\<^sup>* M' $ N ; K" proof (cases "isValue N") - assume f: "isValue N" - have "N* $ Abs b (M'+ $ b~ $ K) \\<^isub>\\<^sup>* Abs b (M'+ $ b~ $ K) $ N+" - by (rule eval_trans, rule CPS_eval_Kapply) (simp_all add: d e f * evs1) - also have "... \\<^isub>\\<^sup>* M' $ N ; K" by (rule evbeta') (simp_all add: d e f evs1) - finally show ?thesis . - next - assume "\ isValue N" - then show ?thesis using d e - by (metis CPS_eval_Kapply Kapply.simps(4) isValue.simps(2)) - qed - finally show ?thesis . - qed - finally show ?case . -qed - -lemma Kapply_eval_rtrancl: - assumes H: "M \\<^isub>\\<^sup>* N" and "isValue K" - shows "(M;K) \\<^isub>\\<^sup>* (N;K)" - using H - by (induct) (metis Kapply_eval assms(2) eval_trans evs1)+ - -lemma - assumes "isValue V" "M \\<^isub>\\<^sup>* V" - shows "M* $ (Abs x (x~)) \\<^isub>\\<^sup>* V+" -proof- - obtain y::name where *: "atom y \ V" using obtain_fresh by blast - have e: "Abs x (x~) = Abs y (y~)" - by (simp add: Abs1_eq_iff lt.fresh fresh_at_base) - have "M* $ Abs x (x~) \\<^isub>\\<^sup>* M ; Abs x (x~)" - by(rule CPS_eval_Kapply,simp_all add: assms) - also have "... \\<^isub>\\<^sup>* (V ; Abs x (x~))" by (rule Kapply_eval_rtrancl, simp_all add: assms) - also have "... = V ; Abs y (y~)" using e by (simp only:) - also have "... \\<^isub>\\<^sup>* (V+)" by (simp add: assms, rule evbeta') (simp_all add: assms *) - finally show "M* $ (Abs x (x~)) \\<^isub>\\<^sup>* (V+)" . -qed - -end - - - diff -r a30d0bb76869 -r 9f667f6da04f Nominal/CPS/CPS2_DanvyNielsen.thy --- a/Nominal/CPS/CPS2_DanvyNielsen.thy Thu Jun 16 21:23:38 2011 +0900 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,83 +0,0 @@ -header {* CPS transformation of Danvy and Nielsen *} -theory DanvyNielsen -imports Lt -begin - -nominal_datatype cpsctxt = - Hole -| CFun cpsctxt lt -| CArg lt cpsctxt -| CAbs x::name c::cpsctxt bind x in c - -nominal_primrec - fill :: "cpsctxt \ lt \ lt" ("_<_>" [200, 200] 100) -where - fill_hole : "Hole = M" -| fill_fun : "(CFun C N) = (C) $ N" -| fill_arg : "(CArg N C) = N $ (C)" -| fill_abs : "atom x \ M \ (CAbs x C) = Abs x (C)" - unfolding eqvt_def fill_graph_def - apply perm_simp - apply auto - apply (rule_tac y="a" and c="b" in cpsctxt.strong_exhaust) - apply (auto simp add: fresh_star_def) - apply (erule Abs_lst1_fcb) - apply (simp_all add: Abs_fresh_iff) - apply (erule fresh_eqvt_at) - apply (simp add: finite_supp) - apply (simp add: fresh_Pair) - apply (simp add: eqvt_at_def swap_fresh_fresh) - done - -termination - by (relation "measure (\(x, _). size x)") (auto simp add: cpsctxt.size) - -lemma [eqvt]: "p \ fill c t = fill (p \ c) (p \ t)" - by (nominal_induct c avoiding: t rule: cpsctxt.strong_induct) simp_all - -nominal_primrec - ccomp :: "cpsctxt => cpsctxt => cpsctxt" -where - "ccomp Hole C = C" -| "atom x \ C' \ ccomp (CAbs x C) C' = CAbs x (ccomp C C')" -| "ccomp (CArg N C) C' = CArg N (ccomp C C')" -| "ccomp (CFun C N) C' = CFun (ccomp C C') N" - unfolding eqvt_def ccomp_graph_def - apply perm_simp - apply auto - apply (rule_tac y="a" and c="b" in cpsctxt.strong_exhaust) - apply (auto simp add: fresh_star_def) - apply blast+ - apply (erule Abs_lst1_fcb) - apply (simp_all add: Abs_fresh_iff) - apply (erule fresh_eqvt_at) - apply (simp add: finite_supp) - apply (simp add: fresh_Pair) - apply (simp add: eqvt_at_def swap_fresh_fresh) - done - -termination - by (relation "measure (\(x, _). size x)") (auto simp add: cpsctxt.size) - -lemma [eqvt]: "p \ ccomp c c' = ccomp (p \ c) (p \ c')" - by (nominal_induct c avoiding: c' rule: cpsctxt.strong_induct) simp_all - -nominal_primrec - CPSv :: "lt => lt" -and CPS :: "lt => cpsctxt" where - "CPSv (Var x) = x~" -| "CPS (Var x) = CFun Hole (x~)" -| "atom b \ M \ CPSv (Abs y M) = Abs y (Abs b ((CPS M)))" -| "atom b \ M \ CPS (Abs y M) = CFun Hole (Abs y (Abs b ((CPS M))))" -| "CPSv (M $ N) = Abs x (Var x)" -| "isValue M \ isValue N \ CPS (M $ N) = CArg (CPSv M $ CPSv N) Hole" -| "isValue M \ ~isValue N \ atom a \ N \ CPS (M $ N) = - ccomp (CPS N) (CAbs a (CArg (CPSv M $ Var a) Hole))" -| "~isValue M \ isValue N \ atom a \ N \ CPS (M $ N) = - ccomp (CPS M) (CAbs a (CArg (Var a $ (CPSv N)) Hole))" -| "~isValue M \ ~isValue N \ atom a \ (N, b) \ CPS (M $ N) = - ccomp (CPS M) (CAbs a (ccomp (CPS N) (CAbs b (CArg (Var a $ Var b) Hole))))" - apply auto - oops --"The goals seem reasonable" - -end diff -r a30d0bb76869 -r 9f667f6da04f Nominal/CPS/CPS3_DanvyFilinski.thy --- a/Nominal/CPS/CPS3_DanvyFilinski.thy Thu Jun 16 21:23:38 2011 +0900 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,240 +0,0 @@ -header {* CPS transformation of Danvy and Filinski *} -theory DanvyFilinski imports Lt begin - -nominal_primrec - CPS1 :: "lt \ (lt \ lt) \ lt" ("_*_" [100,100] 100) -and - CPS2 :: "lt \ lt \ lt" ("_^_" [100,100] 100) -where - "eqvt k \ (x~)*k = k (x~)" -| "eqvt k \ (M$N)*k = M*(%m. (N*(%n.((m $ n) $ (Abs c (k (c~)))))))" -| "eqvt k \ atom c \ (x, M) \ (Abs x M)*k = k (Abs x (Abs c (M^(c~))))" -| "\eqvt k \ (CPS1 t k) = t" -| "(x~)^l = l $ (x~)" -| "(M$N)^l = M*(%m. (N*(%n.((m $ n) $ l))))" -| "atom c \ (x, M) \ (Abs x M)^l = l $ (Abs x (Abs c (M^(c~))))" - apply (simp only: eqvt_def CPS1_CPS2_graph_def) - apply (rule, perm_simp, rule) - apply auto - apply (case_tac x) - apply (case_tac a) - apply (case_tac "eqvt b") - apply (rule_tac y="aa" in lt.strong_exhaust) - apply auto[4] - apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) - apply (simp add: fresh_at_base Abs1_eq_iff) - apply (case_tac b) - apply (rule_tac y="a" in lt.strong_exhaust) - apply auto[3] - apply blast - apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) - apply (simp add: fresh_at_base Abs1_eq_iff) - apply blast ---"-" - apply (subgoal_tac "Abs c (ka (c~)) = Abs ca (ka (ca~))") - apply (simp only:) - apply (simp add: Abs1_eq_iff) - apply (case_tac "c=ca") - apply simp_all[2] - apply rule - apply (perm_simp) - apply (simp add: eqvt_def) - apply (simp add: fresh_def) - apply (rule contra_subsetD[OF supp_fun_app]) - back - apply (simp add: supp_fun_eqvt lt.supp supp_at_base) ---"-" - apply (rule arg_cong) - back - apply simp - apply (thin_tac "eqvt ka") - apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh) - apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))") - prefer 2 - apply (simp add: Abs1_eq_iff') - apply (case_tac "c = a") - apply simp_all[2] - apply rule - apply (simp add: eqvt_at_def) - apply (simp add: swap_fresh_fresh fresh_Pair_elim) - apply (erule fresh_eqvt_at) - apply (simp add: supp_Inr finite_supp) - apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) - apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))") - prefer 2 - apply (simp add: Abs1_eq_iff') - apply (case_tac "ca = a") - apply simp_all[2] - apply rule - apply (simp add: eqvt_at_def) - apply (simp add: swap_fresh_fresh fresh_Pair_elim) - apply (erule fresh_eqvt_at) - apply (simp add: supp_Inr finite_supp) - apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) - apply (simp only: ) - apply (erule Abs_lst1_fcb) - apply (simp add: Abs_fresh_iff) - apply (drule sym) - apply (simp only:) - apply (simp add: Abs_fresh_iff lt.fresh) - apply clarify - apply (erule fresh_eqvt_at) - apply (simp add: supp_Inr finite_supp) - apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) - apply (drule sym) - apply (drule sym) - apply (drule sym) - apply (simp only:) - apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))") - apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))") - apply (thin_tac "atom a \ (c, ca, x, xa, M, Ma)") - apply (simp add: fresh_Pair_elim) - apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]]) - back - back - back - apply assumption - apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh) - apply (case_tac "(atom x \ atom xa) \ c = ca") - apply simp_all[3] - apply rule - apply (case_tac "c = xa") - apply simp_all[2] - apply (simp add: eqvt_at_def) - apply clarify - apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh) - apply (simp add: eqvt_at_def) - apply clarify - apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh) - apply (case_tac "c = xa") - apply simp - apply (subgoal_tac "((ca \ x) \ (atom x)) \ (ca \ x) \ CPS1_CPS2_sumC (Inr (Ma, ca~))") - apply (simp add: atom_eqvt eqvt_at_def) - apply (simp add: flip_fresh_fresh) - apply (subst fresh_permute_iff) - apply (erule fresh_eqvt_at) - apply (simp add: supp_Inr finite_supp) - apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair) - apply simp - apply clarify - apply (subgoal_tac "atom ca \ (atom x \ atom xa) \ CPS1_CPS2_sumC (Inr (M, c~))") - apply (simp add: eqvt_at_def) - apply (subgoal_tac "(atom x \ atom xa) \ atom ca \ CPS1_CPS2_sumC (Inr (M, c~))") - apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) - apply (erule fresh_eqvt_at) - apply (simp add: finite_supp supp_Inr) - apply (simp add: fresh_Inr fresh_Pair lt.fresh) - apply rule - apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) - apply (simp add: fresh_def supp_at_base) - apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3)) ---"-" - apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh) - apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))") - prefer 2 - apply (simp add: Abs1_eq_iff') - apply (case_tac "c = a") - apply simp_all[2] - apply rule - apply (simp add: eqvt_at_def) - apply (simp add: swap_fresh_fresh fresh_Pair_elim) - apply (erule fresh_eqvt_at) - apply (simp add: supp_Inr finite_supp) - apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) - apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))") - prefer 2 - apply (simp add: Abs1_eq_iff') - apply (case_tac "ca = a") - apply simp_all[2] - apply rule - apply (simp add: eqvt_at_def) - apply (simp add: swap_fresh_fresh fresh_Pair_elim) - apply (erule fresh_eqvt_at) - apply (simp add: supp_Inr finite_supp) - apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) - apply (simp only: ) - apply (erule Abs_lst1_fcb) - apply (simp add: Abs_fresh_iff) - apply (drule sym) - apply (simp only:) - apply (simp add: Abs_fresh_iff lt.fresh) - apply clarify - apply (erule fresh_eqvt_at) - apply (simp add: supp_Inr finite_supp) - apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) - apply (drule sym) - apply (drule sym) - apply (drule sym) - apply (simp only:) - apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))") - apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))") - apply (thin_tac "atom a \ (c, ca, x, xa, M, Ma)") - apply (simp add: fresh_Pair_elim) - apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]]) - back - back - back - apply assumption - apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh) - apply (case_tac "(atom x \ atom xa) \ c = ca") - apply simp_all[3] - apply rule - apply (case_tac "c = xa") - apply simp_all[2] - apply (simp add: eqvt_at_def) - apply clarify - apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh) - apply (simp add: eqvt_at_def) - apply clarify - apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh) - apply (case_tac "c = xa") - apply simp - apply (subgoal_tac "((ca \ x) \ (atom x)) \ (ca \ x) \ CPS1_CPS2_sumC (Inr (Ma, ca~))") - apply (simp add: atom_eqvt eqvt_at_def) - apply (simp add: flip_fresh_fresh) - apply (subst fresh_permute_iff) - apply (erule fresh_eqvt_at) - apply (simp add: supp_Inr finite_supp) - apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair) - apply simp - apply clarify - apply (subgoal_tac "atom ca \ (atom x \ atom xa) \ CPS1_CPS2_sumC (Inr (M, c~))") - apply (simp add: eqvt_at_def) - apply (subgoal_tac "(atom x \ atom xa) \ atom ca \ CPS1_CPS2_sumC (Inr (M, c~))") - apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) - apply (erule fresh_eqvt_at) - apply (simp add: finite_supp supp_Inr) - apply (simp add: fresh_Inr fresh_Pair lt.fresh) - apply rule - apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) - apply (simp add: fresh_def supp_at_base) - apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3)) - done - -termination - by lexicographic_order - -definition psi:: "lt => lt" - where "psi V == V*(\x. x)" - -section {* Simple consequence of CPS *} - -lemma value_eq1 : "isValue V \ eqvt k \ V*k = k (psi V)" - apply (cases V rule: lt.exhaust) - apply (auto simp add: psi_def) - apply (subst CPS1.simps) - apply (simp add: eqvt_def eqvt_bound eqvt_lambda) - apply rule - apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) - apply (subst CPS1.simps(3)) - apply assumption+ - apply (subst CPS1.simps(3)) - apply (simp add: eqvt_def eqvt_bound eqvt_lambda) - apply assumption - apply rule - done - -end - - - diff -r a30d0bb76869 -r 9f667f6da04f Nominal/CPS/Lt.thy --- a/Nominal/CPS/Lt.thy Thu Jun 16 21:23:38 2011 +0900 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,131 +0,0 @@ -header {* The Call-by-Value Lambda Calculus *} -theory Lt -imports Nominal2 -begin - -atom_decl name - -nominal_datatype lt = - Var name ("_~" [150] 149) - | Abs x::"name" t::"lt" bind x in t - | App lt lt (infixl "$" 100) - -nominal_primrec - subst :: "lt \ lt \ name \ lt" ("_[_'/_]" [200,0,0] 190) -where - "(y~)[L/x] = (if y = x then L else y~)" -| "atom y\L \ atom y\x \ (Abs y M)[L/x] = Abs y (M[L/x])" -| "(M $ N)[L/x] = M[L/x] $ N[L/x]" - unfolding eqvt_def subst_graph_def - apply(perm_simp) - apply(auto) - apply(rule_tac y="a" and c="(aa, b)" in lt.strong_exhaust) - apply(simp_all add: fresh_star_def fresh_Pair) - apply blast+ - apply (erule Abs_lst1_fcb) - apply (simp_all add: Abs_fresh_iff)[2] - apply(drule_tac a="atom (ya)" in fresh_eqvt_at) - apply(simp add: finite_supp fresh_Pair) - apply(simp_all add: fresh_Pair Abs_fresh_iff) - apply(subgoal_tac "(atom y \ atom ya) \ La = La") - apply(subgoal_tac "(atom y \ atom ya) \ xa = xa") - apply(simp add: atom_eqvt eqvt_at_def Abs1_eq_iff swap_commute) - apply (simp_all add: swap_fresh_fresh) - done - -termination - by (relation "measure (\(t, _, _). size t)") - (simp_all add: lt.size) - -lemma subst_eqvt[eqvt]: - shows "p\(M[V/(x::name)]) = (p\M)[(p\V)/(p\x)]" - by (induct M V x rule: subst.induct) (simp_all) - -lemma forget[simp]: - shows "atom x \ M \ M[s/x] = M" - by (nominal_induct M avoiding: x s rule: lt.strong_induct) - (auto simp add: lt.fresh fresh_at_base) - -lemma [simp]: "supp ( M[V/(x::name)] ) <= (supp(M) - {atom x}) Un (supp V)" - by (nominal_induct M avoiding: x V rule: lt.strong_induct) - (auto simp add: lt.supp supp_at_base, blast, blast) - -nominal_primrec - isValue:: "lt => bool" -where - "isValue (Var x) = True" -| "isValue (Abs y N) = True" -| "isValue (A $ B) = False" - unfolding eqvt_def isValue_graph_def - by (perm_simp, auto) - (erule lt.exhaust, auto) - -termination - by (relation "measure size") - (simp_all add: lt.size) - -lemma is_Value_eqvt[eqvt]: - shows "p\(isValue (M::lt)) = isValue (p\M)" - by (induct M rule: lt.induct) (simp_all add: eqvts) - -inductive - eval :: "[lt, lt] \ bool" (" _ \\<^isub>\ _" [80,80] 80) - where - evbeta: "\atom x\V; isValue V\ \ ((Abs x M) $ V) \\<^isub>\ (M[V/x])" -| ev1: "\isValue V; M \\<^isub>\ M' \ \ (V $ M) \\<^isub>\ (V $ M')" -| ev2: "M \\<^isub>\ M' \ (M $ N) \\<^isub>\ (M' $ N)" - -equivariance eval - -nominal_inductive eval -done - -(*lemmas [simp] = lt.supp(2)*) - -lemma closedev1: assumes "s \\<^isub>\ t" - shows "supp t <= supp s" - using assms - by (induct, auto simp add: lt.supp) - - -lemma [simp]: "~ ((Abs x M) \\<^isub>\ N)" -by (rule, erule eval.cases, simp_all) - -lemma [simp]: assumes "M \\<^isub>\ N" shows "~ isValue M" -using assms -by (cases, auto) - - -inductive - eval_star :: "[lt, lt] \ bool" (" _ \\<^isub>\\<^sup>* _" [80,80] 80) - where - evs1: "M \\<^isub>\\<^sup>* M" -| evs2: "\M \\<^isub>\ M'; M' \\<^isub>\\<^sup>* M'' \ \ M \\<^isub>\\<^sup>* M''" - -lemma eval_evs: assumes *: "M \\<^isub>\ M'" shows "M \\<^isub>\\<^sup>* M'" -by (rule evs2, rule *, rule evs1) - -lemma eval_trans[trans]: - assumes "M1 \\<^isub>\\<^sup>* M2" - and "M2 \\<^isub>\\<^sup>* M3" - shows "M1 \\<^isub>\\<^sup>* M3" - using assms - by (induct, auto intro: evs2) - -lemma evs3[rule_format]: assumes "M1 \\<^isub>\\<^sup>* M2" - shows "M2 \\<^isub>\ M3 \ M1 \\<^isub>\\<^sup>* M3" - using assms - by (induct, auto intro: eval_evs evs2) - -equivariance eval_star - -lemma evbeta': - fixes x :: name - assumes "isValue V" and "atom x\V" and "N = (M[V/x])" - shows "((Abs x M) $ V) \\<^isub>\\<^sup>* N" - using assms by simp (rule evs2, rule evbeta, simp_all add: evs1) - -end - - - diff -r a30d0bb76869 -r 9f667f6da04f Nominal/Ex/CPS/CPS1_Plotkin.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Nominal/Ex/CPS/CPS1_Plotkin.thy Thu Jun 16 22:00:52 2011 +0900 @@ -0,0 +1,366 @@ +header {* CPS conversion *} +theory Plotkin +imports Lt +begin + +nominal_primrec + CPS :: "lt \ lt" ("_*" [250] 250) +where + "atom k \ x \ (x~)* = (Abs k ((k~) $ (x~)))" +| "atom k \ (x, M) \ (Abs x M)* = Abs k (k~ $ Abs x (M*))" +| "atom k \ (M, N) \ atom m \ (N, k) \ atom n \ (k, m) \ + (M $ N)* = Abs k (M* $ Abs m (N* $ Abs n (m~ $ n~ $ k~)))" +unfolding eqvt_def CPS_graph_def +apply (rule, perm_simp, rule, rule) +apply (simp_all add: fresh_Pair_elim) +apply (rule_tac y="x" in lt.exhaust) +apply (auto) +apply (rule_tac x="name" and ?'a="name" in obtain_fresh) +apply (simp_all add: fresh_at_base)[3] +apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) +apply (simp add: fresh_Pair_elim fresh_at_base)[2] +apply (rule_tac x="(lt1, lt2)" and ?'a="name" in obtain_fresh) +apply (rule_tac x="(lt2, a)" and ?'a="name" in obtain_fresh) +apply (rule_tac x="(a, aa)" and ?'a="name" in obtain_fresh) +apply (simp add: fresh_Pair_elim fresh_at_base) +apply (simp add: Abs1_eq_iff lt.fresh fresh_at_base) +--"-" +apply(rule_tac s="[[atom ka]]lst. ka~ $ Abs x (CPS_sumC M)" in trans) +apply (case_tac "k = ka") +apply simp +apply(simp (no_asm) add: Abs1_eq_iff del:eqvts) +apply (simp del: eqvts add: lt.fresh fresh_at_base) +apply (simp only: lt.perm_simps(1) lt.perm_simps(3) flip_def[symmetric] lt.eq_iff(3)) +apply (subst flip_at_base_simps(2)) +apply simp +apply (intro conjI refl) +apply (rule flip_fresh_fresh[symmetric]) +apply (simp_all add: lt.fresh) +apply (metis fresh_eqvt_at lt.fsupp) +apply (case_tac "ka = x") +apply simp_all[2] +apply (metis Abs_fresh_iff(3) atom_eq_iff finite_set fresh_Cons fresh_Nil fresh_atom fresh_eqvt_at fresh_finite_atom_set fresh_set lt.fsupp) +apply (metis Abs_fresh_iff(3) atom_eq_iff finite_set fresh_Cons fresh_Nil fresh_atom fresh_eqvt_at fresh_finite_atom_set fresh_set lt.fsupp) +--"-" +apply (simp add: Abs1_eq(3)) +apply (erule Abs_lst1_fcb) +apply (simp add: fresh_def supp_Abs) +apply (drule_tac a="atom xa" in fresh_eqvt_at) +apply (simp add: finite_supp) +apply assumption +apply (simp add: fresh_def supp_Abs) +apply (simp add: eqvts eqvt_at_def) +apply simp +--"-" +apply (rename_tac k' M N m' n') +apply (subgoal_tac "atom k \ CPS_sumC M \ atom k' \ CPS_sumC M \ atom k \ CPS_sumC N \ atom k' \ CPS_sumC N \ + atom m \ CPS_sumC N \ atom m' \ CPS_sumC N") +prefer 2 +apply (intro conjI) +apply (erule fresh_eqvt_at, simp add: finite_supp, assumption)+ +apply clarify +apply (case_tac "k = k'", case_tac [!] "m' = k",case_tac [!]"m = k'",case_tac[!] "m = m'") +apply (simp_all add: Abs1_eq_iff lt.fresh flip_def[symmetric] fresh_at_base flip_fresh_fresh permute_eq_iff) +by (metis flip_at_base_simps(3) flip_at_simps(2) flip_commute permute_flip_at)+ + +termination + by (relation "measure size") (simp_all add: lt.size) + +lemmas [simp] = fresh_Pair_elim CPS.simps(2,3)[simplified fresh_Pair_elim] + +lemma [simp]: "supp (M*) = supp M" + by (induct rule: CPS.induct, simp_all add: lt.supp supp_at_base fresh_at_base fresh_def supp_Pair) + (simp_all only: atom_eq_iff[symmetric], blast+) + +lemma [simp]: "x \ M* = x \ M" + unfolding fresh_def by simp + +(* Will be provided automatically by nominal_primrec *) +lemma CPS_eqvt[eqvt]: + shows "p \ M* = (p \ M)*" + apply (induct M rule: lt.induct) + apply (rule_tac x="(name, p \ name, p)" and ?'a="name" in obtain_fresh) + apply simp + apply (simp add: Abs1_eq_iff lt.fresh flip_def[symmetric]) + apply (metis atom_eqvt flip_fresh_fresh fresh_perm atom_eq_iff fresh_at_base) + apply (rule_tac x="(name, lt, p \ name, p \ lt, p)" and ?'a="name" in obtain_fresh) + apply simp + apply (metis atom_eqvt fresh_perm atom_eq_iff) + apply (rule_tac x="(lt1, p \ lt1, lt2, p \ lt2, p)" and ?'a="name" in obtain_fresh) + apply (rule_tac x="(a, lt2, p \ lt2, p)" and ?'a="name" in obtain_fresh) + apply (rule_tac x="(a, aa, p)" and ?'a="name" in obtain_fresh) + apply (simp) + apply (simp add: Abs1_eq_iff lt.fresh flip_def[symmetric]) + apply (metis atom_eqvt fresh_perm atom_eq_iff) + done + +nominal_primrec + convert:: "lt => lt" ("_+" [250] 250) +where + "(Var x)+ = Var x" +| "(Abs x M)+ = Abs x (M*)" +| "(M $ N)+ = M $ N" + unfolding convert_graph_def eqvt_def + apply (rule, perm_simp, rule, rule) + apply (erule lt.exhaust) + apply (simp_all) + apply blast + apply (simp add: Abs1_eq_iff CPS_eqvt) + by blast + +termination + by (relation "measure size") (simp_all add: lt.size) + +lemma convert_supp[simp]: + shows "supp (M+) = supp M" + by (induct M rule: lt.induct, simp_all add: lt.supp) + +lemma convert_fresh[simp]: + shows "x \ (M+) = x \ M" + unfolding fresh_def by simp + +lemma convert_eqvt[eqvt]: + shows "p \ (M+) = (p \ M)+" + by (nominal_induct M rule: lt.strong_induct, auto simp add: CPS_eqvt) + +lemma [simp]: + shows "isValue (p \ (M::lt)) = isValue M" + by (nominal_induct M rule: lt.strong_induct) auto + +lemma [eqvt]: + shows "p \ isValue M = isValue (p \ M)" + by (induct M rule: lt.induct) (perm_simp, rule refl)+ + +nominal_primrec + Kapply :: "lt \ lt \ lt" (infixl ";" 100) +where + "Kapply (Abs x M) K = K $ (Abs x M)+" +| "Kapply (Var x) K = K $ Var x" +| "isValue M \ isValue N \ Kapply (M $ N) K = M+ $ N+ $ K" +| "isValue M \ \isValue N \ atom n \ M \ atom n \ K \ + Kapply (M $ N) K = N; (Abs n (M+ $ Var n $ K))" +| "\isValue M \ atom m \ N \ atom m \ K \ atom n \ m \ atom n \ K \ + Kapply (M $ N) K = M; (Abs m (N* $ (Abs n (Var m $ Var n $ K))))" + unfolding Kapply_graph_def eqvt_def + apply (rule, perm_simp, rule, rule) +apply (simp_all) +apply (case_tac x) +apply (rule_tac y="a" in lt.exhaust) +apply (auto) +apply (case_tac "isValue lt1") +apply (case_tac "isValue lt2") +apply (auto)[1] +apply (rule_tac x="(lt1, ba)" and ?'a="name" in obtain_fresh) +apply (simp add: fresh_Pair_elim fresh_at_base) +apply (rule_tac x="(lt2, ba)" and ?'a="name" in obtain_fresh) +apply (rule_tac x="(a, ba)" and ?'a="name" in obtain_fresh) +apply (simp add: fresh_Pair_elim fresh_at_base) +apply (auto simp add: Abs1_eq_iff eqvts)[1] +apply (rename_tac M N u K) +apply (subgoal_tac "Abs n (M+ $ n~ $ K) = Abs u (M+ $ u~ $ K)") +apply (simp only:) +apply (auto simp add: Abs1_eq_iff flip_def[symmetric] lt.fresh fresh_at_base flip_fresh_fresh[symmetric])[1] +apply (subgoal_tac "Abs m (Na* $ Abs n (m~ $ n~ $ Ka)) = Abs ma (Na* $ Abs na (ma~ $ na~ $ Ka))") +apply (simp only:) +apply (simp add: Abs1_eq_iff flip_def[symmetric] lt.fresh fresh_at_base) +apply (subgoal_tac "Ka = (n \ na) \ Ka") +apply (subgoal_tac "Ka = (m \ ma) \ Ka") +apply (subgoal_tac "Ka = (n \ (m \ ma) \ na) \ Ka") +apply (case_tac "m = ma") +apply simp_all +apply rule +apply (auto simp add: flip_fresh_fresh[symmetric]) +apply (metis flip_at_base_simps(3) flip_fresh_fresh permute_flip_at)+ +done + +termination + by (relation "measure (\(t, _). size t)") (simp_all add: lt.size) + +section{* lemma related to Kapply *} + +lemma [simp]: "isValue V \ V; K = K $ (V+)" + by (nominal_induct V rule: lt.strong_induct) auto + +section{* lemma related to CPS conversion *} + +lemma value_CPS: + assumes "isValue V" + and "atom a \ V" + shows "V* = Abs a (a~ $ V+)" + using assms +proof (nominal_induct V avoiding: a rule: lt.strong_induct, simp_all add: lt.fresh) + fix name :: name and lt aa + assume a: "atom name \ aa" "\b. \isValue lt; atom b \ lt\ \ lt* = Abs b (b~ $ lt+)" + "atom aa \ lt \ aa = name" + obtain ab :: name where b: "atom ab \ (name, lt, a)" using obtain_fresh by blast + show "Abs name lt* = Abs aa (aa~ $ Abs name (lt*))" using a b + by (simp add: Abs1_eq_iff fresh_at_base lt.fresh) +qed + +section{* first lemma CPS subst *} + +lemma CPS_subst_fv: + assumes *:"isValue V" + shows "((M[V/x])* = (M*)[V+/x])" +using * proof (nominal_induct M avoiding: V x rule: lt.strong_induct) + case (Var name) + assume *: "isValue V" + obtain a :: name where a: "atom a \ (x, name, V)" using obtain_fresh by blast + show "((name~)[V/x])* = (name~)*[V+/x]" using a + by (simp add: fresh_at_base * value_CPS) +next + case (Abs name lt V x) + assume *: "atom name \ V" "atom name \ x" "\b ba. isValue b \ (lt[b/ba])* = lt*[b+/ba]" + "isValue V" + obtain a :: name where a: "atom a \ (name, lt, lt[V/x], x, V)" using obtain_fresh by blast + show "(Abs name lt[V/x])* = Abs name lt*[V+/x]" using * a + by (simp add: fresh_at_base) +next + case (App lt1 lt2 V x) + assume *: "\b ba. isValue b \ (lt1[b/ba])* = lt1*[b+/ba]" "\b ba. isValue b \ (lt2[b/ba])* = lt2*[b+/ba]" + "isValue V" + obtain a :: name where a: "atom a \ (lt1[V/x], lt1, lt2[V/x], lt2, V, x)" using obtain_fresh by blast + obtain b :: name where b: "atom b \ (lt2[V/x], lt2, a, V, x)" using obtain_fresh by blast + obtain c :: name where c: "atom c \ (a, b, V, x)" using obtain_fresh by blast + show "((lt1 $ lt2)[V/x])* = (lt1 $ lt2)*[V+/x]" using * a b c + by (simp add: fresh_at_base) +qed + +lemma [simp]: "isValue V \ isValue (V+)" + by (nominal_induct V rule: lt.strong_induct, auto) + +lemma CPS_eval_Kapply: + assumes a: "isValue K" + shows "(M* $ K) \\<^isub>\\<^sup>* (M ; K)" + using a +proof (nominal_induct M avoiding: K rule: lt.strong_induct, simp_all) + case (Var name K) + assume *: "isValue K" + obtain a :: name where a: "atom a \ (name, K)" using obtain_fresh by blast + show "(name~)* $ K \\<^isub>\\<^sup>* K $ name~" using * a + by simp (rule evbeta', simp_all add: fresh_at_base) +next + fix name :: name and lt K + assume *: "atom name \ K" "\b. isValue b \ lt* $ b \\<^isub>\\<^sup>* lt ; b" "isValue K" + obtain a :: name where a: "atom a \ (name, K, lt)" using obtain_fresh by blast + then have b: "atom name \ a" using fresh_PairD(1) fresh_at_base atom_eq_iff by metis + show "Abs name lt* $ K \\<^isub>\\<^sup>* K $ Abs name (lt*)" using * a b + by simp (rule evbeta', simp_all) +next + fix lt1 lt2 K + assume *: "\b. isValue b \ lt1* $ b \\<^isub>\\<^sup>* lt1 ; b" "\b. isValue b \ lt2* $ b \\<^isub>\\<^sup>* lt2 ; b" "isValue K" + obtain a :: name where a: "atom a \ (lt1, lt2, K)" using obtain_fresh by blast + obtain b :: name where b: "atom b \ (lt1, lt2, K, a)" using obtain_fresh by blast + obtain c :: name where c: "atom c \ (lt1, lt2, K, a, b)" using obtain_fresh by blast + have d: "atom a \ lt1" "atom a \ lt2" "atom a \ K" "atom b \ lt1" "atom b \ lt2" "atom b \ K" "atom b \ a" + "atom c \ lt1" "atom c \ lt2" "atom c \ K" "atom c \ a" "atom c \ b" using fresh_Pair a b c by simp_all + have "(lt1 $ lt2)* $ K \\<^isub>\\<^sup>* lt1* $ Abs b (lt2* $ Abs c (b~ $ c~ $ K))" using * d + by (simp add: fresh_at_base) (rule evbeta', simp_all add: fresh_at_base) + also have "... \\<^isub>\\<^sup>* lt1 $ lt2 ; K" proof (cases "isValue lt1") + assume e: "isValue lt1" + have "lt1* $ Abs b (lt2* $ Abs c (b~ $ c~ $ K)) \\<^isub>\\<^sup>* Abs b (lt2* $ Abs c (b~ $ c~ $ K)) $ lt1+" + using * d e by simp + also have "... \\<^isub>\\<^sup>* lt2* $ Abs c (lt1+ $ c~ $ K)" + by (rule evbeta', simp_all add: * d e, metis d(12) fresh_at_base) + also have "... \\<^isub>\\<^sup>* lt1 $ lt2 ; K" proof (cases "isValue lt2") + assume f: "isValue lt2" + have "lt2* $ Abs c (lt1+ $ c~ $ K) \\<^isub>\\<^sup>* Abs c (lt1+ $ c~ $ K) $ lt2+" using * d e f by simp + also have "... \\<^isub>\\<^sup>* lt1+ $ lt2+ $ K" + by (rule evbeta', simp_all add: d e f) + finally show ?thesis using * d e f by simp + next + assume f: "\ isValue lt2" + have "lt2* $ Abs c (lt1+ $ c~ $ K) \\<^isub>\\<^sup>* lt2 ; Abs c (lt1+ $ c~ $ K)" using * d e f by simp + also have "... \\<^isub>\\<^sup>* lt2 ; Abs a (lt1+ $ a~ $ K)" using Kapply.simps(4) d e evs1 f by metis + finally show ?thesis using * d e f by simp + qed + finally show ?thesis . + qed (metis Kapply.simps(5) isValue.simps(2) * d) + finally show "(lt1 $ lt2)* $ K \\<^isub>\\<^sup>* lt1 $ lt2 ; K" . +qed + +lemma Kapply_eval: + assumes a: "M \\<^isub>\ N" "isValue K" + shows "(M; K) \\<^isub>\\<^sup>* (N; K)" + using assms +proof (induct arbitrary: K rule: eval.induct) + case (evbeta x V M) + fix K + assume a: "isValue K" "isValue V" "atom x \ V" + have "Abs x (M*) $ V+ $ K \\<^isub>\\<^sup>* ((M*)[V+/x] $ K)" + by (rule evs2,rule ev2,rule Lt.evbeta) (simp_all add: fresh_def a[simplified fresh_def] evs1) + also have "... = ((M[V/x])* $ K)" by (simp add: CPS_subst_fv a) + also have "... \\<^isub>\\<^sup>* (M[V/x] ; K)" by (rule CPS_eval_Kapply, simp_all add: a) + finally show "(Abs x M $ V ; K) \\<^isub>\\<^sup>* (M[V/x] ; K)" using a by simp +next + case (ev1 V M N) + fix V M N K + assume a: "isValue V" "M \\<^isub>\ N" "\K. isValue K \ M ; K \\<^isub>\\<^sup>* N ; K" "isValue K" + obtain a :: name where b: "atom a \ (V, K, M, N)" using obtain_fresh by blast + show "V $ M ; K \\<^isub>\\<^sup>* V $ N ; K" proof (cases "isValue N") + assume "\ isValue N" + then show "V $ M ; K \\<^isub>\\<^sup>* V $ N ; K" using a b by simp + next + assume n: "isValue N" + have c: "M; Abs a (V+ $ a~ $ K) \\<^isub>\\<^sup>* Abs a (V+ $ a~ $ K) $ N+" using a b by (simp add: n) + also have d: "... \\<^isub>\\<^sup>* V+ $ N+ $ K" by (rule evbeta') (simp_all add: a b n) + finally show "V $ M ; K \\<^isub>\\<^sup>* V $ N ; K" using a b by (simp add: n) + qed +next + case (ev2 M M' N) + assume *: "M \\<^isub>\ M'" "\K. isValue K \ M ; K \\<^isub>\\<^sup>* M' ; K" "isValue K" + obtain a :: name where a: "atom a \ (K, M, N, M')" using obtain_fresh by blast + obtain b :: name where b: "atom b \ (a, K, M, N, M', N+)" using obtain_fresh by blast + have d: "atom a \ K" "atom a \ M" "atom a \ N" "atom a \ M'" "atom b \ a" "atom b \ K" + "atom b \ M" "atom b \ N" "atom b \ M'" using a b fresh_Pair by simp_all + have "M $ N ; K \\<^isub>\\<^sup>* M' ; Abs a (N* $ Abs b (a~ $ b~ $ K))" using * d by simp + also have "... \\<^isub>\\<^sup>* M' $ N ; K" proof (cases "isValue M'") + assume "\ isValue M'" + then show ?thesis using * d by (simp_all add: evs1) + next + assume e: "isValue M'" + then have "M' ; Abs a (N* $ Abs b (a~ $ b~ $ K)) = Abs a (N* $ Abs b (a~ $ b~ $ K)) $ M'+" by simp + also have "... \\<^isub>\\<^sup>* (N* $ Abs b (a~ $ b~ $ K))[M'+/a]" + by (rule evbeta') (simp_all add: fresh_at_base e d) + also have "... = N* $ Abs b (M'+ $ b~ $ K)" using * d by (simp add: fresh_at_base) + also have "... \\<^isub>\\<^sup>* M' $ N ; K" proof (cases "isValue N") + assume f: "isValue N" + have "N* $ Abs b (M'+ $ b~ $ K) \\<^isub>\\<^sup>* Abs b (M'+ $ b~ $ K) $ N+" + by (rule eval_trans, rule CPS_eval_Kapply) (simp_all add: d e f * evs1) + also have "... \\<^isub>\\<^sup>* M' $ N ; K" by (rule evbeta') (simp_all add: d e f evs1) + finally show ?thesis . + next + assume "\ isValue N" + then show ?thesis using d e + by (metis CPS_eval_Kapply Kapply.simps(4) isValue.simps(2)) + qed + finally show ?thesis . + qed + finally show ?case . +qed + +lemma Kapply_eval_rtrancl: + assumes H: "M \\<^isub>\\<^sup>* N" and "isValue K" + shows "(M;K) \\<^isub>\\<^sup>* (N;K)" + using H + by (induct) (metis Kapply_eval assms(2) eval_trans evs1)+ + +lemma + assumes "isValue V" "M \\<^isub>\\<^sup>* V" + shows "M* $ (Abs x (x~)) \\<^isub>\\<^sup>* V+" +proof- + obtain y::name where *: "atom y \ V" using obtain_fresh by blast + have e: "Abs x (x~) = Abs y (y~)" + by (simp add: Abs1_eq_iff lt.fresh fresh_at_base) + have "M* $ Abs x (x~) \\<^isub>\\<^sup>* M ; Abs x (x~)" + by(rule CPS_eval_Kapply,simp_all add: assms) + also have "... \\<^isub>\\<^sup>* (V ; Abs x (x~))" by (rule Kapply_eval_rtrancl, simp_all add: assms) + also have "... = V ; Abs y (y~)" using e by (simp only:) + also have "... \\<^isub>\\<^sup>* (V+)" by (simp add: assms, rule evbeta') (simp_all add: assms *) + finally show "M* $ (Abs x (x~)) \\<^isub>\\<^sup>* (V+)" . +qed + +end + + + diff -r a30d0bb76869 -r 9f667f6da04f Nominal/Ex/CPS/CPS2_DanvyNielsen.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Nominal/Ex/CPS/CPS2_DanvyNielsen.thy Thu Jun 16 22:00:52 2011 +0900 @@ -0,0 +1,83 @@ +header {* CPS transformation of Danvy and Nielsen *} +theory DanvyNielsen +imports Lt +begin + +nominal_datatype cpsctxt = + Hole +| CFun cpsctxt lt +| CArg lt cpsctxt +| CAbs x::name c::cpsctxt bind x in c + +nominal_primrec + fill :: "cpsctxt \ lt \ lt" ("_<_>" [200, 200] 100) +where + fill_hole : "Hole = M" +| fill_fun : "(CFun C N) = (C) $ N" +| fill_arg : "(CArg N C) = N $ (C)" +| fill_abs : "atom x \ M \ (CAbs x C) = Abs x (C)" + unfolding eqvt_def fill_graph_def + apply perm_simp + apply auto + apply (rule_tac y="a" and c="b" in cpsctxt.strong_exhaust) + apply (auto simp add: fresh_star_def) + apply (erule Abs_lst1_fcb) + apply (simp_all add: Abs_fresh_iff) + apply (erule fresh_eqvt_at) + apply (simp add: finite_supp) + apply (simp add: fresh_Pair) + apply (simp add: eqvt_at_def swap_fresh_fresh) + done + +termination + by (relation "measure (\(x, _). size x)") (auto simp add: cpsctxt.size) + +lemma [eqvt]: "p \ fill c t = fill (p \ c) (p \ t)" + by (nominal_induct c avoiding: t rule: cpsctxt.strong_induct) simp_all + +nominal_primrec + ccomp :: "cpsctxt => cpsctxt => cpsctxt" +where + "ccomp Hole C = C" +| "atom x \ C' \ ccomp (CAbs x C) C' = CAbs x (ccomp C C')" +| "ccomp (CArg N C) C' = CArg N (ccomp C C')" +| "ccomp (CFun C N) C' = CFun (ccomp C C') N" + unfolding eqvt_def ccomp_graph_def + apply perm_simp + apply auto + apply (rule_tac y="a" and c="b" in cpsctxt.strong_exhaust) + apply (auto simp add: fresh_star_def) + apply blast+ + apply (erule Abs_lst1_fcb) + apply (simp_all add: Abs_fresh_iff) + apply (erule fresh_eqvt_at) + apply (simp add: finite_supp) + apply (simp add: fresh_Pair) + apply (simp add: eqvt_at_def swap_fresh_fresh) + done + +termination + by (relation "measure (\(x, _). size x)") (auto simp add: cpsctxt.size) + +lemma [eqvt]: "p \ ccomp c c' = ccomp (p \ c) (p \ c')" + by (nominal_induct c avoiding: c' rule: cpsctxt.strong_induct) simp_all + +nominal_primrec + CPSv :: "lt => lt" +and CPS :: "lt => cpsctxt" where + "CPSv (Var x) = x~" +| "CPS (Var x) = CFun Hole (x~)" +| "atom b \ M \ CPSv (Abs y M) = Abs y (Abs b ((CPS M)))" +| "atom b \ M \ CPS (Abs y M) = CFun Hole (Abs y (Abs b ((CPS M))))" +| "CPSv (M $ N) = Abs x (Var x)" +| "isValue M \ isValue N \ CPS (M $ N) = CArg (CPSv M $ CPSv N) Hole" +| "isValue M \ ~isValue N \ atom a \ N \ CPS (M $ N) = + ccomp (CPS N) (CAbs a (CArg (CPSv M $ Var a) Hole))" +| "~isValue M \ isValue N \ atom a \ N \ CPS (M $ N) = + ccomp (CPS M) (CAbs a (CArg (Var a $ (CPSv N)) Hole))" +| "~isValue M \ ~isValue N \ atom a \ (N, b) \ CPS (M $ N) = + ccomp (CPS M) (CAbs a (ccomp (CPS N) (CAbs b (CArg (Var a $ Var b) Hole))))" + apply auto + oops --"The goals seem reasonable" + +end diff -r a30d0bb76869 -r 9f667f6da04f Nominal/Ex/CPS/CPS3_DanvyFilinski.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Nominal/Ex/CPS/CPS3_DanvyFilinski.thy Thu Jun 16 22:00:52 2011 +0900 @@ -0,0 +1,240 @@ +header {* CPS transformation of Danvy and Filinski *} +theory DanvyFilinski imports Lt begin + +nominal_primrec + CPS1 :: "lt \ (lt \ lt) \ lt" ("_*_" [100,100] 100) +and + CPS2 :: "lt \ lt \ lt" ("_^_" [100,100] 100) +where + "eqvt k \ (x~)*k = k (x~)" +| "eqvt k \ (M$N)*k = M*(%m. (N*(%n.((m $ n) $ (Abs c (k (c~)))))))" +| "eqvt k \ atom c \ (x, M) \ (Abs x M)*k = k (Abs x (Abs c (M^(c~))))" +| "\eqvt k \ (CPS1 t k) = t" +| "(x~)^l = l $ (x~)" +| "(M$N)^l = M*(%m. (N*(%n.((m $ n) $ l))))" +| "atom c \ (x, M) \ (Abs x M)^l = l $ (Abs x (Abs c (M^(c~))))" + apply (simp only: eqvt_def CPS1_CPS2_graph_def) + apply (rule, perm_simp, rule) + apply auto + apply (case_tac x) + apply (case_tac a) + apply (case_tac "eqvt b") + apply (rule_tac y="aa" in lt.strong_exhaust) + apply auto[4] + apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) + apply (simp add: fresh_at_base Abs1_eq_iff) + apply (case_tac b) + apply (rule_tac y="a" in lt.strong_exhaust) + apply auto[3] + apply blast + apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) + apply (simp add: fresh_at_base Abs1_eq_iff) + apply blast +--"-" + apply (subgoal_tac "Abs c (ka (c~)) = Abs ca (ka (ca~))") + apply (simp only:) + apply (simp add: Abs1_eq_iff) + apply (case_tac "c=ca") + apply simp_all[2] + apply rule + apply (perm_simp) + apply (simp add: eqvt_def) + apply (simp add: fresh_def) + apply (rule contra_subsetD[OF supp_fun_app]) + back + apply (simp add: supp_fun_eqvt lt.supp supp_at_base) +--"-" + apply (rule arg_cong) + back + apply simp + apply (thin_tac "eqvt ka") + apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh) + apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))") + prefer 2 + apply (simp add: Abs1_eq_iff') + apply (case_tac "c = a") + apply simp_all[2] + apply rule + apply (simp add: eqvt_at_def) + apply (simp add: swap_fresh_fresh fresh_Pair_elim) + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) + apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))") + prefer 2 + apply (simp add: Abs1_eq_iff') + apply (case_tac "ca = a") + apply simp_all[2] + apply rule + apply (simp add: eqvt_at_def) + apply (simp add: swap_fresh_fresh fresh_Pair_elim) + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) + apply (simp only: ) + apply (erule Abs_lst1_fcb) + apply (simp add: Abs_fresh_iff) + apply (drule sym) + apply (simp only:) + apply (simp add: Abs_fresh_iff lt.fresh) + apply clarify + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) + apply (drule sym) + apply (drule sym) + apply (drule sym) + apply (simp only:) + apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))") + apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))") + apply (thin_tac "atom a \ (c, ca, x, xa, M, Ma)") + apply (simp add: fresh_Pair_elim) + apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]]) + back + back + back + apply assumption + apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh) + apply (case_tac "(atom x \ atom xa) \ c = ca") + apply simp_all[3] + apply rule + apply (case_tac "c = xa") + apply simp_all[2] + apply (simp add: eqvt_at_def) + apply clarify + apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh) + apply (simp add: eqvt_at_def) + apply clarify + apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh) + apply (case_tac "c = xa") + apply simp + apply (subgoal_tac "((ca \ x) \ (atom x)) \ (ca \ x) \ CPS1_CPS2_sumC (Inr (Ma, ca~))") + apply (simp add: atom_eqvt eqvt_at_def) + apply (simp add: flip_fresh_fresh) + apply (subst fresh_permute_iff) + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair) + apply simp + apply clarify + apply (subgoal_tac "atom ca \ (atom x \ atom xa) \ CPS1_CPS2_sumC (Inr (M, c~))") + apply (simp add: eqvt_at_def) + apply (subgoal_tac "(atom x \ atom xa) \ atom ca \ CPS1_CPS2_sumC (Inr (M, c~))") + apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) + apply (erule fresh_eqvt_at) + apply (simp add: finite_supp supp_Inr) + apply (simp add: fresh_Inr fresh_Pair lt.fresh) + apply rule + apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) + apply (simp add: fresh_def supp_at_base) + apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3)) +--"-" + apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh) + apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))") + prefer 2 + apply (simp add: Abs1_eq_iff') + apply (case_tac "c = a") + apply simp_all[2] + apply rule + apply (simp add: eqvt_at_def) + apply (simp add: swap_fresh_fresh fresh_Pair_elim) + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) + apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))") + prefer 2 + apply (simp add: Abs1_eq_iff') + apply (case_tac "ca = a") + apply simp_all[2] + apply rule + apply (simp add: eqvt_at_def) + apply (simp add: swap_fresh_fresh fresh_Pair_elim) + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) + apply (simp only: ) + apply (erule Abs_lst1_fcb) + apply (simp add: Abs_fresh_iff) + apply (drule sym) + apply (simp only:) + apply (simp add: Abs_fresh_iff lt.fresh) + apply clarify + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) + apply (drule sym) + apply (drule sym) + apply (drule sym) + apply (simp only:) + apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))") + apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))") + apply (thin_tac "atom a \ (c, ca, x, xa, M, Ma)") + apply (simp add: fresh_Pair_elim) + apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]]) + back + back + back + apply assumption + apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh) + apply (case_tac "(atom x \ atom xa) \ c = ca") + apply simp_all[3] + apply rule + apply (case_tac "c = xa") + apply simp_all[2] + apply (simp add: eqvt_at_def) + apply clarify + apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh) + apply (simp add: eqvt_at_def) + apply clarify + apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh) + apply (case_tac "c = xa") + apply simp + apply (subgoal_tac "((ca \ x) \ (atom x)) \ (ca \ x) \ CPS1_CPS2_sumC (Inr (Ma, ca~))") + apply (simp add: atom_eqvt eqvt_at_def) + apply (simp add: flip_fresh_fresh) + apply (subst fresh_permute_iff) + apply (erule fresh_eqvt_at) + apply (simp add: supp_Inr finite_supp) + apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair) + apply simp + apply clarify + apply (subgoal_tac "atom ca \ (atom x \ atom xa) \ CPS1_CPS2_sumC (Inr (M, c~))") + apply (simp add: eqvt_at_def) + apply (subgoal_tac "(atom x \ atom xa) \ atom ca \ CPS1_CPS2_sumC (Inr (M, c~))") + apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) + apply (erule fresh_eqvt_at) + apply (simp add: finite_supp supp_Inr) + apply (simp add: fresh_Inr fresh_Pair lt.fresh) + apply rule + apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) + apply (simp add: fresh_def supp_at_base) + apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3)) + done + +termination + by lexicographic_order + +definition psi:: "lt => lt" + where "psi V == V*(\x. x)" + +section {* Simple consequence of CPS *} + +lemma value_eq1 : "isValue V \ eqvt k \ V*k = k (psi V)" + apply (cases V rule: lt.exhaust) + apply (auto simp add: psi_def) + apply (subst CPS1.simps) + apply (simp add: eqvt_def eqvt_bound eqvt_lambda) + apply rule + apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) + apply (subst CPS1.simps(3)) + apply assumption+ + apply (subst CPS1.simps(3)) + apply (simp add: eqvt_def eqvt_bound eqvt_lambda) + apply assumption + apply rule + done + +end + + + diff -r a30d0bb76869 -r 9f667f6da04f Nominal/Ex/CPS/Lt.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Nominal/Ex/CPS/Lt.thy Thu Jun 16 22:00:52 2011 +0900 @@ -0,0 +1,131 @@ +header {* The Call-by-Value Lambda Calculus *} +theory Lt +imports Nominal2 +begin + +atom_decl name + +nominal_datatype lt = + Var name ("_~" [150] 149) + | Abs x::"name" t::"lt" bind x in t + | App lt lt (infixl "$" 100) + +nominal_primrec + subst :: "lt \ lt \ name \ lt" ("_[_'/_]" [200,0,0] 190) +where + "(y~)[L/x] = (if y = x then L else y~)" +| "atom y\L \ atom y\x \ (Abs y M)[L/x] = Abs y (M[L/x])" +| "(M $ N)[L/x] = M[L/x] $ N[L/x]" + unfolding eqvt_def subst_graph_def + apply(perm_simp) + apply(auto) + apply(rule_tac y="a" and c="(aa, b)" in lt.strong_exhaust) + apply(simp_all add: fresh_star_def fresh_Pair) + apply blast+ + apply (erule Abs_lst1_fcb) + apply (simp_all add: Abs_fresh_iff)[2] + apply(drule_tac a="atom (ya)" in fresh_eqvt_at) + apply(simp add: finite_supp fresh_Pair) + apply(simp_all add: fresh_Pair Abs_fresh_iff) + apply(subgoal_tac "(atom y \ atom ya) \ La = La") + apply(subgoal_tac "(atom y \ atom ya) \ xa = xa") + apply(simp add: atom_eqvt eqvt_at_def Abs1_eq_iff swap_commute) + apply (simp_all add: swap_fresh_fresh) + done + +termination + by (relation "measure (\(t, _, _). size t)") + (simp_all add: lt.size) + +lemma subst_eqvt[eqvt]: + shows "p\(M[V/(x::name)]) = (p\M)[(p\V)/(p\x)]" + by (induct M V x rule: subst.induct) (simp_all) + +lemma forget[simp]: + shows "atom x \ M \ M[s/x] = M" + by (nominal_induct M avoiding: x s rule: lt.strong_induct) + (auto simp add: lt.fresh fresh_at_base) + +lemma [simp]: "supp ( M[V/(x::name)] ) <= (supp(M) - {atom x}) Un (supp V)" + by (nominal_induct M avoiding: x V rule: lt.strong_induct) + (auto simp add: lt.supp supp_at_base, blast, blast) + +nominal_primrec + isValue:: "lt => bool" +where + "isValue (Var x) = True" +| "isValue (Abs y N) = True" +| "isValue (A $ B) = False" + unfolding eqvt_def isValue_graph_def + by (perm_simp, auto) + (erule lt.exhaust, auto) + +termination + by (relation "measure size") + (simp_all add: lt.size) + +lemma is_Value_eqvt[eqvt]: + shows "p\(isValue (M::lt)) = isValue (p\M)" + by (induct M rule: lt.induct) (simp_all add: eqvts) + +inductive + eval :: "[lt, lt] \ bool" (" _ \\<^isub>\ _" [80,80] 80) + where + evbeta: "\atom x\V; isValue V\ \ ((Abs x M) $ V) \\<^isub>\ (M[V/x])" +| ev1: "\isValue V; M \\<^isub>\ M' \ \ (V $ M) \\<^isub>\ (V $ M')" +| ev2: "M \\<^isub>\ M' \ (M $ N) \\<^isub>\ (M' $ N)" + +equivariance eval + +nominal_inductive eval +done + +(*lemmas [simp] = lt.supp(2)*) + +lemma closedev1: assumes "s \\<^isub>\ t" + shows "supp t <= supp s" + using assms + by (induct, auto simp add: lt.supp) + + +lemma [simp]: "~ ((Abs x M) \\<^isub>\ N)" +by (rule, erule eval.cases, simp_all) + +lemma [simp]: assumes "M \\<^isub>\ N" shows "~ isValue M" +using assms +by (cases, auto) + + +inductive + eval_star :: "[lt, lt] \ bool" (" _ \\<^isub>\\<^sup>* _" [80,80] 80) + where + evs1: "M \\<^isub>\\<^sup>* M" +| evs2: "\M \\<^isub>\ M'; M' \\<^isub>\\<^sup>* M'' \ \ M \\<^isub>\\<^sup>* M''" + +lemma eval_evs: assumes *: "M \\<^isub>\ M'" shows "M \\<^isub>\\<^sup>* M'" +by (rule evs2, rule *, rule evs1) + +lemma eval_trans[trans]: + assumes "M1 \\<^isub>\\<^sup>* M2" + and "M2 \\<^isub>\\<^sup>* M3" + shows "M1 \\<^isub>\\<^sup>* M3" + using assms + by (induct, auto intro: evs2) + +lemma evs3[rule_format]: assumes "M1 \\<^isub>\\<^sup>* M2" + shows "M2 \\<^isub>\ M3 \ M1 \\<^isub>\\<^sup>* M3" + using assms + by (induct, auto intro: eval_evs evs2) + +equivariance eval_star + +lemma evbeta': + fixes x :: name + assumes "isValue V" and "atom x\V" and "N = (M[V/x])" + shows "((Abs x M) $ V) \\<^isub>\\<^sup>* N" + using assms by simp (rule evs2, rule evbeta, simp_all add: evs1) + +end + + +