# HG changeset patch # User Cezary Kaliszyk # Date 1274970790 -7200 # Node ID 8fe1a706ade76002b6858604631d6ee94f71939c # Parent 3a6afcb187ec13380106e64abeb6bcc3053d418e qpaper / injection statement diff -r 3a6afcb187ec -r 8fe1a706ade7 Quotient-Paper/Paper.thy --- a/Quotient-Paper/Paper.thy Thu May 27 16:06:43 2010 +0200 +++ b/Quotient-Paper/Paper.thy Thu May 27 16:33:10 2010 +0200 @@ -376,20 +376,40 @@ by appropriate aggregate relations. It is defined as follows: \begin{itemize} - \item @{text "REG (\x : \. t, \y : \. s) = \x : \. REG (t, s)"} - \item @{text "REG (\x : \. t, \y : \. s) = \x : \ \ Res (REL (\, \)). REG (t, s)"} - \item @{text "REG (\x : \. t, \y : \. s) = \x : \. REG (t, s)"} - \item @{text "REG (\x : \. t, \y : \. s) = \x : \ \ Res (REL (\, \)). REG (t, s)"} + \item @{text "REG (\x : \. t, \x : \. s) = \x : \. REG (t, s)"} + \item @{text "REG (\x : \. t, \x : \. s) = \x : \ \ Res (REL (\, \)). REG (t, s)"} + \item @{text "REG (\x : \. t, \x : \. s) = \x : \. REG (t, s)"} + \item @{text "REG (\x : \. t, \x : \. s) = \x : \ \ Res (REL (\, \)). REG (t, s)"} \item @{text "REG ((op =) : \, (op =) : \) = (op =) : \"} \item @{text "REG ((op =) : \, (op =) : \) = REL (\, \) : \"} \item @{text "REG (t\<^isub>1 t\<^isub>2, s\<^isub>1 s\<^isub>2) = REG (t\<^isub>1, s\<^isub>1) REG (t\<^isub>2, s\<^isub>2)"} - \item @{text "REG (_, v) = v"} - \item @{text "REG (_, c) = c"} + \item @{text "REG (v\<^isub>1, v\<^isub>2) = v\<^isub>1"} + \item @{text "REG (c\<^isub>1, c\<^isub>2) = c\<^isub>1"} \end{itemize} Existential quantifiers and unique existential quantifiers are defined similarily to the universal one. + The function that gives the statment of the injected theorem + takes the statement of the regularized theorems and the statement + of the lifted theorem both as terms. + + \begin{itemize} + \item @{text "INJ ((\x. t) : \, (\x. s) : \) = \x. (INJ (t, s)"} + \item @{text "INJ ((\x. t) : \, (\x. s) : \) = REP(\,\) (ABS (\,\) (\x. (INJ (t, s))))"} + \item @{text "INJ ((\x \ R. t) : \, (\x. s) : \) = REP(\,\) (ABS (\,\) (\x \ R. (INJ (t, s))))"} + \item @{text "INJ (\ t, \ s) = \ (INJ (t, s)"} + \item @{text "INJ (\ t \ R, \ s) = \ (INJ (t, s) \ R"} + \item @{text "INJ (t\<^isub>1 t\<^isub>2, s\<^isub>1 s\<^isub>2) = INJ (t\<^isub>1, s\<^isub>1) INJ (t\<^isub>2, s\<^isub>2)"} + \item @{text "INJ (v\<^isub>1 : \, v\<^isub>2 : \) = v\<^isub>1"} + \item @{text "INJ (v\<^isub>1 : \, v\<^isub>2 : \) = REP(\,\) (ABS (\,\) (v\<^isub>1))"} + \item @{text "INJ (c\<^isub>1 : \, c\<^isub>2 : \) = c\<^isub>1"} + \item @{text "INJ (c\<^isub>1 : \, c\<^isub>2 : \) = REP(\,\) (ABS (\,\) (c\<^isub>1))"} + \end{itemize} + + For existential quantifiers and unique existential quantifiers it is + defined similarily to the universal one. + *} subsection {* Proof of Regularization *}