# HG changeset patch # User Christian Urban # Date 1260316486 -3600 # Node ID 5ededdde9e9f30d668a8d84de8de18b339296349 # Parent 02fd9de9d45e2ac67390b006ff4c6adad97b7633 tuned code diff -r 02fd9de9d45e -r 5ededdde9e9f Quot/QuotMain.thy --- a/Quot/QuotMain.thy Wed Dec 09 00:03:18 2009 +0100 +++ b/Quot/QuotMain.thy Wed Dec 09 00:54:46 2009 +0100 @@ -142,7 +142,6 @@ (* the auxiliary data for the quotient types *) use "quotient_info.ML" - declare [[map "fun" = (fun_map, fun_rel)]] (* Throws now an exception: *) @@ -212,8 +211,6 @@ section {* Infrastructure about id *} -print_attributes - (* TODO: think where should this be *) lemma prod_fun_id: "prod_fun id id \ id" by (rule eq_reflection) (simp add: prod_fun_def) @@ -375,8 +372,7 @@ let val subtrm = apply_subt (regularize_trm lthy) t t' in - if ty = ty' - then Const (@{const_name "All"}, ty) $ subtrm + if ty = ty' then Const (@{const_name "All"}, ty) $ subtrm else mk_ball $ (mk_resp $ mk_resp_arg lthy (qnt_typ ty, qnt_typ ty')) $ subtrm end @@ -384,8 +380,7 @@ let val subtrm = apply_subt (regularize_trm lthy) t t' in - if ty = ty' - then Const (@{const_name "Ex"}, ty) $ subtrm + if ty = ty' then Const (@{const_name "Ex"}, ty) $ subtrm else mk_bex $ (mk_resp $ mk_resp_arg lthy (qnt_typ ty, qnt_typ ty')) $ subtrm end @@ -401,8 +396,7 @@ val rel_ty = (fastype_of rel) handle TERM _ => raise exc val rel' = mk_resp_arg lthy (domain_type rel_ty, domain_type ty') in - if rel' = rel - then rtrm else raise exc + if rel' = rel then rtrm else raise exc end | (_, Const (s, _)) => let @@ -418,9 +412,7 @@ val thy = ProofContext.theory_of lthy val rtrm' = (#rconst (qconsts_lookup thy s)) handle NotFound => raise (exc1 s) in - if matches_term (rtrm, rtrm') - then rtrm - else raise exc2 + if matches_term (rtrm, rtrm') then rtrm else raise exc2 end end @@ -443,7 +435,6 @@ ML {* fun equiv_tac ctxt = - (K (print_tac "equiv tac")) THEN' REPEAT_ALL_NEW (resolve_tac (equiv_rules_get ctxt)) fun equiv_solver_tac ss = equiv_tac (Simplifier.the_context ss) @@ -719,8 +710,7 @@ and QT_ex: "QUOT_TRUE (Ex P) \ QUOT_TRUE P" and QT_lam: "QUOT_TRUE (\x. P x) \ (\x. QUOT_TRUE (P x))" and QT_ext: "(\x. QUOT_TRUE (a x) \ f x = g x) \ (QUOT_TRUE a \ f = g)" -apply(simp_all add: QUOT_TRUE_def ext) -done +by (simp_all add: QUOT_TRUE_def ext) lemma QUOT_TRUE_i: "(QUOT_TRUE (a :: bool) \ P) \ P" by (simp add: QUOT_TRUE_def) @@ -1047,12 +1037,6 @@ thm fun_map.simps Quotient_abs_rep Quotient_rel_rep id_simps (* 4. Test for refl *) -thm fun_map.simps - -ML {* Conv.abs_conv; term_of *} - -thm fun_map.simps[THEN eq_reflection] - ML {* fun fun_map_conv xs ctxt ctrm = case (term_of ctrm) of @@ -1064,9 +1048,7 @@ | _ $ _ => Conv.comb_conv (fun_map_conv xs ctxt) ctrm | Abs _ => Conv.abs_conv (fn (x, ctxt) => fun_map_conv ((term_of x)::xs) ctxt) ctxt ctrm | _ => Conv.all_conv ctrm -*} -ML {* fun fun_map_tac ctxt = CONVERSION (fun_map_conv [] ctxt) *}