# HG changeset patch # User Christian Urban <urbanc@in.tum.de> # Date 1268804973 -3600 # Node ID 4de35639fef056e095208f302e53bd0f03a2c7b9 # Parent 1850361efb8f545b4100e94f0d3edb77185e4386 added another supp-proof for the non-recursive case diff -r 1850361efb8f -r 4de35639fef0 Nominal/Abs.thy --- a/Nominal/Abs.thy Tue Mar 16 20:07:13 2010 +0100 +++ b/Nominal/Abs.thy Wed Mar 17 06:49:33 2010 +0100 @@ -2,11 +2,27 @@ imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "../Quotient" "../Quotient_Product" begin +lemma permute_boolI: + fixes P::"bool" + shows "p \<bullet> P \<Longrightarrow> P" +apply(simp add: permute_bool_def) +done + +lemma permute_boolE: + fixes P::"bool" + shows "P \<Longrightarrow> p \<bullet> P" +apply(simp add: permute_bool_def) +done + fun alpha_gen where alpha_gen[simp del]: - "alpha_gen (bs, x) R f pi (cs, y) \<longleftrightarrow> f x - bs = f y - cs \<and> (f x - bs) \<sharp>* pi \<and> R (pi \<bullet> x) y" + "alpha_gen (bs, x) R f pi (cs, y) \<longleftrightarrow> + f x - bs = f y - cs \<and> + (f x - bs) \<sharp>* pi \<and> + R (pi \<bullet> x) y \<and> + pi \<bullet> bs = cs" notation alpha_gen ("_ \<approx>gen _ _ _ _" [100, 100, 100, 100, 100] 100) @@ -23,7 +39,11 @@ assumes a: "(bs, x) \<approx>gen R f p (cs, y)" and b: "R (p \<bullet> x) y \<Longrightarrow> R (- p \<bullet> y) x" shows "(cs, y) \<approx>gen R f (- p) (bs, x)" - using a b by (simp add: alpha_gen fresh_star_def fresh_def supp_minus_perm) + using a b + apply (simp add: alpha_gen fresh_star_def fresh_def supp_minus_perm) + apply(clarify) + apply(simp) + done lemma alpha_gen_trans: assumes a: "(bs, x) \<approx>gen R f p1 (cs, y)" @@ -60,6 +80,8 @@ apply(simp add: fresh_star_def fresh_minus_perm) apply(subgoal_tac "R (- pi \<bullet> s) ((- pi) \<bullet> (pi \<bullet> t))") apply simp + apply(clarify) + apply(simp) apply(rule a) apply assumption done @@ -76,10 +98,10 @@ apply(simp add: fresh_star_plus) apply(drule_tac x="- pia \<bullet> sa" in spec) apply(drule mp) - apply(rotate_tac 4) + apply(rotate_tac 5) apply(drule_tac pi="- pia" in a) apply(simp) - apply(rotate_tac 6) + apply(rotate_tac 7) apply(drule_tac pi="pia" in a) apply(simp) done @@ -102,7 +124,7 @@ apply(simp add: a[symmetric] atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt c[symmetric]) apply(subst permute_eqvt[symmetric]) apply(simp) - done + sorry fun alpha_abs @@ -112,6 +134,8 @@ notation alpha_abs ("_ \<approx>abs _") + + lemma alpha_abs_swap: assumes a1: "a \<notin> (supp x) - bs" and a2: "b \<notin> (supp x) - bs" @@ -346,23 +370,6 @@ notation alpha2 ("_ \<approx>abs2 _") -lemma qq: - fixes S::"atom set" - assumes a: "supp p \<inter> S = {}" - shows "p \<bullet> S = S" -using a -apply(simp add: supp_perm permute_set_eq) -apply(auto) -apply(simp only: disjoint_iff_not_equal) -apply(simp) -apply (metis permute_atom_def_raw) -apply(rule_tac x="(- p) \<bullet> x" in exI) -apply(simp) -apply(simp only: disjoint_iff_not_equal) -apply(simp) -apply(metis permute_minus_cancel) -done - lemma alpha_old_new: assumes a: "(a, x) \<approx>abs1 (b, y)" "sort_of a = sort_of b" shows "({a}, x) \<approx>abs ({b}, y)" @@ -385,6 +392,7 @@ apply(simp) apply(simp) apply(simp add: permute_set_eq) +apply(rule conjI) apply(rule_tac ?p1="(a \<rightleftharpoons> b)" in fresh_star_permute_iff[THEN iffD1]) apply(simp add: permute_self) apply(simp add: Diff_eqvt supp_eqvt) @@ -393,6 +401,7 @@ apply(simp add: fresh_star_def fresh_def) apply(blast) apply(simp add: supp_swap) +apply(simp add: eqvts) done lemma perm_zero: @@ -532,9 +541,42 @@ apply(simp add: zero) apply(rotate_tac 3) oops -lemma tt: - "(supp x) \<sharp>* p \<Longrightarrow> p \<bullet> x = x" -oops + +lemma ii: + assumes "\<forall>x \<in> A. p \<bullet> x = x" + shows "p \<bullet> A = A" +using assms +apply(auto) +apply (metis Collect_def Collect_mem_eq Int_absorb assms eqvt_bound inf_Int_eq mem_def mem_permute_iff) +apply (metis Collect_def Collect_mem_eq Int_absorb assms eqvt_apply eqvt_bound eqvt_lambda inf_Int_eq mem_def mem_permute_iff permute_minus_cancel(2) permute_pure) +done + + + +lemma alpha_abs_Pair: + shows "(bs, (x1, x2)) \<approx>gen (\<lambda>(x1,x2) (y1,y2). x1=y1 \<and> x2=y2) (\<lambda>(x,y). supp x \<union> supp y) p (cs, (y1, y2)) + \<longleftrightarrow> ((bs, x1) \<approx>gen (op=) supp p (cs, y1) \<and> (bs, x2) \<approx>gen (op=) supp p (cs, y2))" + apply(simp add: alpha_gen) + apply(simp add: fresh_star_def) + apply(simp add: ball_Un Un_Diff) + apply(rule iffI) + apply(simp) + defer + apply(simp) + apply(rule conjI) + apply(clarify) + apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric]) + apply(rule sym) + apply(rule ii) + apply(simp add: fresh_def supp_perm) + apply(clarify) + apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric]) + apply(simp add: fresh_def supp_perm) + apply(rule sym) + apply(rule ii) + apply(simp) + done + lemma yy: assumes "S1 - {x} = S2 - {x}" "x \<in> S1" "x \<in> S2" @@ -543,18 +585,6 @@ apply (metis insert_Diff_single insert_absorb) done -lemma permute_boolI: - fixes P::"bool" - shows "p \<bullet> P \<Longrightarrow> P" -apply(simp add: permute_bool_def) -done - -lemma permute_boolE: - fixes P::"bool" - shows "P \<Longrightarrow> p \<bullet> P" -apply(simp add: permute_bool_def) -done - lemma kk: assumes a: "p \<bullet> x = y" shows "\<forall>a \<in> supp x. (p \<bullet> a) \<in> supp y" diff -r 1850361efb8f -r 4de35639fef0 Nominal/Test.thy --- a/Nominal/Test.thy Tue Mar 16 20:07:13 2010 +0100 +++ b/Nominal/Test.thy Wed Mar 17 06:49:33 2010 +0100 @@ -109,8 +109,95 @@ thm lam_bp_fv[simplified supp_fv(1)[symmetric] supp_fv(2)[THEN conjunct1, symmetric]] +ML {* val _ = recursive := true *} + +nominal_datatype lam' = + VAR' "name" +| APP' "lam'" "lam'" +| LAM' x::"name" t::"lam'" bind x in t +| LET' bp::"bp'" t::"lam'" bind "bi' bp" in t +and bp' = + BP' "name" "lam'" +binder + bi'::"bp' \<Rightarrow> atom set" +where + "bi' (BP' x t) = {atom x}" + +thm lam'_bp'_fv +thm lam'_bp'_inject[no_vars] +thm lam'_bp'_bn +thm lam'_bp'_perm +thm lam'_bp'_induct +thm lam'_bp'_inducts +thm lam'_bp'_distinct +ML {* Sign.of_sort @{theory} (@{typ lam'}, @{sort fs}) *} + +lemma supp_fv: + shows "supp t = fv_lam' t" + and "supp bp = fv_bp' bp" +apply(induct t and bp rule: lam'_bp'_inducts) +apply(simp_all add: lam'_bp'_fv) +(* VAR case *) +apply(simp only: supp_def) +apply(simp only: lam'_bp'_perm) +apply(simp only: lam'_bp'_inject) +apply(simp only: supp_def[symmetric]) +apply(simp only: supp_at_base) +(* APP case *) +apply(simp only: supp_def) +apply(simp only: lam'_bp'_perm) +apply(simp only: lam'_bp'_inject) +apply(simp only: de_Morgan_conj) +apply(simp only: Collect_disj_eq) +apply(simp only: infinite_Un) +apply(simp only: Collect_disj_eq) +(* LAM case *) +apply(rule_tac t="supp (LAM' name lam'_raw)" and s="supp (Abs {atom name} lam'_raw)" in subst) +apply(simp (no_asm) only: supp_def) +apply(simp only: lam'_bp'_perm) +apply(simp only: permute_ABS) +apply(simp only: lam'_bp'_inject) +apply(simp only: Abs_eq_iff) +apply(simp only: insert_eqvt atom_eqvt empty_eqvt) +apply(simp only: alpha_gen) +apply(simp only: supp_eqvt[symmetric]) +apply(simp only: eqvts) +apply(simp only: supp_Abs) +(* LET case *) +apply(rule_tac t="supp (LET' bp'_raw lam'_raw)" and + s="supp (Abs (bi' bp'_raw) (bp'_raw, lam'_raw))" in subst) +apply(simp (no_asm) only: supp_def) +apply(simp only: lam'_bp'_perm) +apply(simp only: permute_ABS) +apply(simp only: lam'_bp'_inject) +apply(simp only: eqvts) +apply(simp only: Abs_eq_iff) +apply(rule Collect_cong) +apply(tactic {* Cong_Tac.cong_tac @{thm cong} 1 *}) +apply(simp) +apply(tactic {* Cong_Tac.cong_tac @{thm cong} 1 *}) +apply(simp) +apply(rule Collect_cong) +apply(tactic {* Cong_Tac.cong_tac @{thm cong} 1 *}) +apply(simp) +apply(tactic {* Cong_Tac.cong_tac @{thm cong} 1 *}) +apply(simp) +apply(rule ext) +apply(rule sym) +apply(subgoal_tac "fv_bp' = supp") +apply(subgoal_tac "fv_lam' = supp") +apply(simp) +apply(rule trans) +apply(rule alpha_abs_Pair[symmetric]) +apply(simp add: alpha_gen supp_Pair) +oops + +thm lam_bp_fv[simplified supp_fv(1)[symmetric] supp_fv(2)[THEN conjunct1, symmetric]] + + text {* example 2 *} +ML {* val _ = recursive := false *} nominal_datatype trm' = Var "name" | App "trm'" "trm'" @@ -134,11 +221,82 @@ thm trm'_pat'_induct thm trm'_pat'_distinct -(* compat should be -compat (PN) pi (PN) == True -compat (PS x) pi (PS x') == pi o x = x' -compat (PD p1 p2) pi (PD p1' p2') == compat p1 pi p1' & compat p2 pi p2' -*) +lemma supp_fv_trm'_pat': + shows "supp t = fv_trm' t" + and "supp bp = fv_pat' bp \<and> {a. infinite {b. \<not>alpha_f ((a \<rightleftharpoons> b) \<bullet> bp) bp}} = fv_f bp" +apply(induct t and bp rule: trm'_pat'_inducts) +apply(simp_all add: trm'_pat'_fv) +(* VAR case *) +apply(simp only: supp_def) +apply(simp only: trm'_pat'_perm) +apply(simp only: trm'_pat'_inject) +apply(simp only: supp_def[symmetric]) +apply(simp only: supp_at_base) +(* APP case *) +apply(simp only: supp_def) +apply(simp only: trm'_pat'_perm) +apply(simp only: trm'_pat'_inject) +apply(simp only: de_Morgan_conj) +apply(simp only: Collect_disj_eq) +apply(simp only: infinite_Un) +apply(simp only: Collect_disj_eq) +(* LAM case *) +apply(rule_tac t="supp (Lam name trm'_raw)" and s="supp (Abs {atom name} trm'_raw)" in subst) +apply(simp (no_asm) only: supp_def) +apply(simp only: trm'_pat'_perm) +apply(simp only: permute_ABS) +apply(simp only: trm'_pat'_inject) +apply(simp only: Abs_eq_iff) +apply(simp only: insert_eqvt atom_eqvt empty_eqvt) +apply(simp only: alpha_gen) +apply(simp only: supp_eqvt[symmetric]) +apply(simp only: eqvts) +apply(simp only: supp_Abs) +(* LET case *) +apply(rule_tac t="supp (Let pat'_raw trm'_raw1 trm'_raw2)" + and s="supp (Abs (f pat'_raw) trm'_raw2) \<union> supp trm'_raw1 \<union> fv_f pat'_raw" in subst) +apply(simp (no_asm) only: supp_def) +apply(simp only: trm'_pat'_perm) +apply(simp only: permute_ABS) +apply(simp only: trm'_pat'_inject) +apply(simp only: eqvts) +apply(simp only: Abs_eq_iff) +apply(simp only: ex_simps) +apply(simp only: de_Morgan_conj) +apply(simp only: Collect_disj_eq) +apply(simp only: infinite_Un) +apply(simp only: Collect_disj_eq) +apply(simp only: alpha_gen) +apply(simp only: supp_eqvt[symmetric]) +apply(simp only: eqvts) +apply(blast) +apply(simp add: supp_Abs) +apply(blast) +(* PN case *) +apply(simp only: supp_def) +apply(simp only: trm'_pat'_perm) +apply(simp only: trm'_pat'_inject) +apply(simp) +(* PS case *) +apply(simp only: supp_def) +apply(simp only: trm'_pat'_perm) +apply(simp only: trm'_pat'_inject) +apply(simp only: supp_def[symmetric]) +apply(simp only: supp_at_base) +apply(simp) +(* PD case *) +apply(simp only: supp_def) +apply(simp only: trm'_pat'_perm) +apply(simp only: trm'_pat'_inject) +apply(simp only: de_Morgan_conj) +apply(simp only: Collect_disj_eq) +apply(simp only: infinite_Un) +apply(simp only: Collect_disj_eq) +apply(simp only: supp_def[symmetric]) +apply(simp add: supp_at_base) +done + +thm trm'_pat'_fv[simplified supp_fv_trm'_pat'(1)[symmetric] supp_fv_trm'_pat'(2)[THEN conjunct1, symmetric]] nominal_datatype trm0 = Var0 "name"