# HG changeset patch # User Christian Urban # Date 1274727757 -3600 # Node ID 45a69c9cc4ccc460a86bb528878f53e9c538a8d2 # Parent 8aff3f3ce47fb12a85cadf9d448e93c715fbf240 alpha works now diff -r 8aff3f3ce47f -r 45a69c9cc4cc Nominal-General/nominal_library.ML --- a/Nominal-General/nominal_library.ML Sun May 23 02:15:24 2010 +0100 +++ b/Nominal-General/nominal_library.ML Mon May 24 20:02:37 2010 +0100 @@ -22,6 +22,7 @@ val mk_atom: term -> term val supp_ty: typ -> typ + val supp_const: typ -> term val mk_supp_ty: typ -> term -> term val mk_supp: term -> term @@ -29,15 +30,17 @@ val safe_mk_equiv: thm -> thm val mk_diff: term * term -> term + val mk_append: term * term -> term val mk_union: term * term -> term val fold_union: term list -> term (* datatype operations *) + val all_dtyps: Datatype_Aux.descr -> (string * sort) list -> typ list val nth_dtyp: Datatype_Aux.descr -> (string * sort) list -> int -> typ val all_dtyp_constrs_types: Datatype_Aux.descr -> (string * sort) list -> - (term * typ * typ list) list list + (term * typ * typ list * bool list) list list val nth_dtyp_constrs_types: Datatype_Aux.descr -> (string * sort) list -> int -> - (term * typ * typ list) list + (term * typ * typ list * bool list) list val prefix_dt_names: Datatype_Aux.descr -> (string * sort) list -> string -> string list end @@ -61,7 +64,6 @@ fun dest_perm (Const (@{const_name "permute"}, _) $ p $ t) = (p, t) | dest_perm t = raise TERM ("dest_perm", [t]); - fun mk_sort_of t = @{term "sort_of"} $ t; fun atom_ty ty = ty --> @{typ "atom"}; @@ -70,7 +72,8 @@ fun supp_ty ty = ty --> @{typ "atom set"}; -fun mk_supp_ty ty t = Const (@{const_name "supp"}, supp_ty ty) $ t; +fun supp_const ty = Const (@{const_name "supp"}, supp_ty ty) +fun mk_supp_ty ty t = supp_const ty $ t; fun mk_supp t = mk_supp_ty (fastype_of t) t; @@ -78,25 +81,35 @@ fun safe_mk_equiv r = mk_equiv r handle Thm.THM _ => r; -(* functions that construct differences and unions - but avoid producing empty atom sets *) +(* functions that construct differences, appends and unions + but avoid producing empty atom sets or empty atom lists *) fun mk_diff (@{term "{}::atom set"}, _) = @{term "{}::atom set"} | mk_diff (t1, @{term "{}::atom set"}) = t1 | mk_diff (t1, t2) = HOLogic.mk_binop @{const_name minus} (t1, t2) +fun mk_append (@{term "[]::atom list"}, @{term "[]::atom list"}) = @{term "[]::atom list"} + | mk_append (t1, @{term "[]::atom list"}) = t1 + | mk_append (@{term "[]::atom list"}, t2) = t2 + | mk_append (t1, t2) = HOLogic.mk_binop @{const_name "append"} (t1, t2) + fun mk_union (@{term "{}::atom set"}, @{term "{}::atom set"}) = @{term "{}::atom set"} | mk_union (t1 , @{term "{}::atom set"}) = t1 | mk_union (@{term "{}::atom set"}, t2) = t2 - | mk_union (t1, t2) = HOLogic.mk_binop @{const_name sup} (t1, t2) + | mk_union (t1, t2) = HOLogic.mk_binop @{const_name "sup"} (t1, t2) fun fold_union trms = fold (curry mk_union) trms @{term "{}::atom set"} + + (** datatypes **) (* returns the type of the nth datatype *) +fun all_dtyps descr sorts = + map (fn n => Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec n)) (0 upto (length descr - 1)) + fun nth_dtyp descr sorts n = Datatype_Aux.typ_of_dtyp descr sorts (Datatype_Aux.DtRec n); @@ -113,8 +126,9 @@ val vs_tys = map (Datatype_Aux.typ_of_dtyp descr sorts) vs val ty = Type (ty_name, vs_tys) val arg_tys = map (Datatype_Aux.typ_of_dtyp descr sorts) args + val is_rec = map Datatype_Aux.is_rec_type args in - (Const (cname, arg_tys ---> ty), ty, arg_tys) + (Const (cname, arg_tys ---> ty), ty, arg_tys, is_rec) end in map (map aux) (all_dtyp_constrs_info descr) diff -r 8aff3f3ce47f -r 45a69c9cc4cc Nominal/Abs.thy --- a/Nominal/Abs.thy Sun May 23 02:15:24 2010 +0100 +++ b/Nominal/Abs.thy Mon May 24 20:02:37 2010 +0100 @@ -830,8 +830,14 @@ where "prod_fv fvx fvy (x, y) = (fvx x \ fvy y)" +definition + prod_alpha :: "('a \ 'a \ bool) \ ('b \ 'b \ bool) \ ('a \ 'b \ 'a \ 'b \ bool)" +where + "prod_alpha = prod_rel" + + lemma [quot_respect]: - "((R1 ===> op =) ===> (R2 ===> op =) ===> prod_rel R1 R2 ===> op =) prod_fv prod_fv" + shows "((R1 ===> op =) ===> (R2 ===> op =) ===> prod_rel R1 R2 ===> op =) prod_fv prod_fv" by auto lemma [quot_preserve]: @@ -840,11 +846,13 @@ shows "((abs1 ---> id) ---> (abs2 ---> id) ---> prod_fun rep1 rep2 ---> id) prod_fv = prod_fv" by (simp add: expand_fun_eq Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) -lemma [mono]: "A <= B \ C <= D ==> prod_rel A C <= prod_rel B D" +lemma [mono]: + shows "A <= B \ C <= D ==> prod_rel A C <= prod_rel B D" by auto lemma [eqvt]: - shows "p \ prod_rel A B x y = prod_rel (p \ A) (p \ B) (p \ x) (p \ y)" + shows "p \ prod_alpha A B x y = prod_alpha (p \ A) (p \ B) (p \ x) (p \ y)" + unfolding prod_alpha_def unfolding prod_rel.simps by (perm_simp) (rule refl) diff -r 8aff3f3ce47f -r 45a69c9cc4cc Nominal/Equivp.thy --- a/Nominal/Equivp.thy Sun May 23 02:15:24 2010 +0100 +++ b/Nominal/Equivp.thy Mon May 24 20:02:37 2010 +0100 @@ -1,5 +1,5 @@ theory Equivp -imports "NewFv" "Tacs" "Rsp" +imports "Abs" "Perm" "Tacs" "Rsp" begin ML {* diff -r 8aff3f3ce47f -r 45a69c9cc4cc Nominal/Ex/SingleLet.thy --- a/Nominal/Ex/SingleLet.thy Sun May 23 02:15:24 2010 +0100 +++ b/Nominal/Ex/SingleLet.thy Mon May 24 20:02:37 2010 +0100 @@ -13,6 +13,8 @@ | App "trm" "trm" | Lam x::"name" t::"trm" bind_set x in t | Let a::"assg" t::"trm" bind_set "bn a" in t +| Foo x::"name" y::"name" t::"trm" bind_set x in y t +| Bar x::"name" y::"name" t::"trm" bind y x in t x y and assg = As "name" "trm" binder @@ -20,10 +22,12 @@ where "bn (As x t) = {atom x}" + thm fv_trm_raw.simps[no_vars] fv_assg_raw.simps[no_vars] fv_bn_raw.simps[no_vars] bn_raw.simps[no_vars] thm alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros[no_vars] + ML {* Inductive.the_inductive *} thm trm_assg.fv thm trm_assg.supp diff -r 8aff3f3ce47f -r 45a69c9cc4cc Nominal/Lift.thy --- a/Nominal/Lift.thy Sun May 23 02:15:24 2010 +0100 +++ b/Nominal/Lift.thy Mon May 24 20:02:37 2010 +0100 @@ -2,7 +2,7 @@ imports "../Nominal-General/Nominal2_Atoms" "../Nominal-General/Nominal2_Eqvt" "../Nominal-General/Nominal2_Supp" - "Abs" "Perm" "Equivp" "Rsp" + "Abs" "Perm" "Rsp" begin diff -r 8aff3f3ce47f -r 45a69c9cc4cc Nominal/NewAlpha.thy --- a/Nominal/NewAlpha.thy Sun May 23 02:15:24 2010 +0100 +++ b/Nominal/NewAlpha.thy Mon May 24 20:02:37 2010 +0100 @@ -1,236 +1,231 @@ theory NewAlpha -imports "Abs" "Perm" "Nominal2_FSet" -uses ("nominal_dt_rawperm.ML") - ("nominal_dt_rawfuns.ML") +imports "Abs" "Perm" begin -use "nominal_dt_rawperm.ML" -use "nominal_dt_rawfuns.ML" - ML {* -open Nominal_Dt_RawPerm -open Nominal_Dt_RawFuns -*} - - -ML {* -fun mk_binop2 ctxt s (l, r) = - Syntax.check_term ctxt (Const (s, dummyT) $ l $ r) +fun mk_prod_fv (t1, t2) = +let + val ty1 = fastype_of t1 + val ty2 = fastype_of t2 + val resT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2) --> @{typ "atom set"} +in + Const (@{const_name "prod_fv"}, [ty1, ty2] ---> resT) $ t1 $ t2 +end *} ML {* -fun mk_compound_fv' ctxt = foldr1 (mk_binop2 ctxt @{const_name prod_fv}) -fun mk_compound_alpha' ctxt = foldr1 (mk_binop2 ctxt @{const_name prod_rel}) +fun mk_prod_alpha (t1, t2) = +let + val ty1 = fastype_of t1 + val ty2 = fastype_of t2 + val prodT = HOLogic.mk_prodT (domain_type ty1, domain_type ty2) + val resT = [prodT, prodT] ---> @{typ "bool"} +in + Const (@{const_name "prod_alpha"}, [ty1, ty2] ---> resT) $ t1 $ t2 +end *} ML {* -fun alpha_bm_lsts lthy dt_descr sorts dts args args2 alpha_frees fv_frees - bn_alphabn alpha_const binds bodys = +fun mk_binders lthy bmode args bodies = +let + fun bind_set lthy args (NONE, i) = setify lthy (nth args i) + | bind_set _ args (SOME bn, i) = bn $ (nth args i) + fun bind_lst lthy args (NONE, i) = listify lthy (nth args i) + | bind_lst _ args (SOME bn, i) = bn $ (nth args i) + + val (connect_fn, bind_fn) = + case bmode of + Lst => (mk_append, bind_lst) + | Set => (mk_union, bind_set) + | Res => (mk_union, bind_set) +in + foldl1 connect_fn (map (bind_fn lthy args) bodies) +end +*} + +ML {* +fun mk_alpha_prem bmode fv alpha args args' binders binders' = let - fun bind_set args (NONE, no) = setify lthy (nth args no) - | bind_set args (SOME f, no) = f $ (nth args no) - fun bind_lst args (NONE, no) = listify lthy (nth args no) - | bind_lst args (SOME f, no) = f $ (nth args no) - fun append (t1, t2) = - Const(@{const_name append}, @{typ "atom list \ atom list \ atom list"}) $ t1 $ t2; - fun binds_fn args nos = - if alpha_const = @{const_name alpha_lst} - then foldr1 append (map (bind_lst args) nos) - else fold_union (map (bind_set args) nos); - val lhs_binds = binds_fn args binds; - val rhs_binds = binds_fn args2 binds; - val lhs_bodys = foldr1 HOLogic.mk_prod (map (nth args) bodys); - val rhs_bodys = foldr1 HOLogic.mk_prod (map (nth args2) bodys); - val lhs = HOLogic.mk_prod (lhs_binds, lhs_bodys); - val rhs = HOLogic.mk_prod (rhs_binds, rhs_bodys); - val body_dts = map (nth dts) bodys; - fun fv_for_dt dt = - if Datatype_Aux.is_rec_type dt - then nth fv_frees (Datatype_Aux.body_index dt) - else Const (@{const_name supp}, - Datatype_Aux.typ_of_dtyp dt_descr sorts dt --> @{typ "atom set"}) - val fvs = map fv_for_dt body_dts; - val fv = mk_compound_fv' lthy fvs; - fun alpha_for_dt dt = - if Datatype_Aux.is_rec_type dt - then nth alpha_frees (Datatype_Aux.body_index dt) - else Const (@{const_name "op ="}, - Datatype_Aux.typ_of_dtyp dt_descr sorts dt --> - Datatype_Aux.typ_of_dtyp dt_descr sorts dt --> @{typ bool}) - val alphas = map alpha_for_dt body_dts; - val alpha = mk_compound_alpha' lthy alphas; - val alpha_gen_pre = Const (alpha_const, dummyT) $ lhs $ alpha $ fv $ (Bound 0) $ rhs - val alpha_gen_ex = HOLogic.exists_const @{typ perm} $ Abs ("p", @{typ perm}, alpha_gen_pre) - val t = Syntax.check_term lthy alpha_gen_ex - fun alpha_bn_bind (SOME bn, i) = - if member (op =) bodys i then NONE - else SOME ((the (AList.lookup (op=) bn_alphabn bn)) $ nth args i $ nth args2 i) - | alpha_bn_bind (NONE, _) = NONE + val (alpha_name, binder_ty) = + case bmode of + Lst => (@{const_name "alpha_lst"}, @{typ "atom list"}) + | Set => (@{const_name "alpha_gen"}, @{typ "atom set"}) + | Res => (@{const_name "alpha_res"}, @{typ "atom set"}) + val ty = fastype_of args + val pair_ty = HOLogic.mk_prodT (binder_ty, ty) + val alpha_ty = [ty, ty] ---> @{typ "bool"} + val fv_ty = ty --> @{typ "atom set"} in - t :: (map_filter alpha_bn_bind binds) + HOLogic.exists_const @{typ perm} $ Abs ("p", @{typ perm}, + Const (alpha_name, [pair_ty, alpha_ty, fv_ty, @{typ "perm"}, pair_ty] ---> @{typ bool}) + $ HOLogic.mk_prod (binders, args) $ alpha $ fv $ (Bound 0) $ HOLogic.mk_prod (binders', args')) end *} ML {* -fun alpha_bn_bm lthy dt_descr sorts dts args args2 alpha_frees fv_frees bn_alphabn args_in_bn bm = -case bm of - BC (_, [], [i]) => - let - val arg = nth args i; - val arg2 = nth args2 i; - val dt = nth dts i; - in - case AList.lookup (op=) args_in_bn i of - NONE => if Datatype_Aux.is_rec_type dt - then [(nth alpha_frees (Datatype_Aux.body_index dt)) $ arg $ arg2] - else [HOLogic.mk_eq (arg, arg2)] - | SOME (SOME (f : term)) => [(the (AList.lookup (op=) bn_alphabn f)) $ arg $ arg2] - | SOME NONE => [] - end -| BC (Lst, x, y) => alpha_bm_lsts lthy dt_descr sorts dts args args2 alpha_frees - fv_frees bn_alphabn @{const_name alpha_lst} x y -| BC (Set, x, y) => alpha_bm_lsts lthy dt_descr sorts dts args args2 alpha_frees - fv_frees bn_alphabn @{const_name alpha_gen} x y -| BC (Res, x, y) => alpha_bm_lsts lthy dt_descr sorts dts args args2 alpha_frees - fv_frees bn_alphabn @{const_name alpha_res} x y +fun mk_alpha_bn_prem alpha_bn_map args args' bodies binder = + case binder of + (NONE, i) => [] + | (SOME bn, i) => + if member (op=) bodies i + then [] + else [the (AList.lookup (op=) alpha_bn_map bn) $ (nth args i) $ (nth args' i)] *} - ML {* -fun alpha_bn lthy dt_descr sorts alpha_frees fv_frees bn_alphabn bclausess - (alphabn, (_, ith_dtyp, args_in_bns)) = +fun mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause = let - fun alpha_bn_constr (cname, dts) (args_in_bn, bclauses) = - let - val Ts = map (Datatype_Aux.typ_of_dtyp dt_descr sorts) dts; - val names = Datatype_Prop.make_tnames Ts; - val names2 = Name.variant_list names (Datatype_Prop.make_tnames Ts); - val args = map Free (names ~~ Ts); - val args2 = map Free (names2 ~~ Ts); - val c = Const (cname, Ts ---> (nth_dtyp dt_descr sorts ith_dtyp)); - val alpha_bn_bm = alpha_bn_bm lthy dt_descr sorts dts args args2 alpha_frees - fv_frees bn_alphabn args_in_bn; - val rhs = HOLogic.mk_Trueprop - (alphabn $ (list_comb (c, args)) $ (list_comb (c, args2))); - val lhss = map HOLogic.mk_Trueprop (flat (map alpha_bn_bm bclauses)) - in - Library.foldr Logic.mk_implies (lhss, rhs) - end; - val (_, (_, _, constrs)) = nth dt_descr ith_dtyp; + fun mk_frees i = + let + val arg = nth args i + val arg' = nth args' i + val ty = fastype_of arg + in + if nth is_rec i + then fst (the (AList.lookup (op=) alpha_map ty)) $ arg $ arg' + else HOLogic.mk_eq (arg, arg') + end + fun mk_alpha_fv i = + let + val ty = fastype_of (nth args i) + in + case AList.lookup (op=) alpha_map ty of + NONE => (HOLogic.eq_const ty, supp_const ty) + | SOME (alpha, fv) => (alpha, fv) + end + in - map2 alpha_bn_constr constrs (args_in_bns ~~ bclausess) + case bclause of + BC (_, [], bodies) => map (HOLogic.mk_Trueprop o mk_frees) bodies + | BC (bmode, binders, bodies) => + let + val (alphas, fvs) = split_list (map mk_alpha_fv bodies) + val comp_fv = foldl1 mk_prod_fv fvs + val comp_alpha = foldl1 mk_prod_alpha alphas + val comp_args = foldl1 HOLogic.mk_prod (map (nth args) bodies) + val comp_args' = foldl1 HOLogic.mk_prod (map (nth args') bodies) + val comp_binders = mk_binders lthy bmode args binders + val comp_binders' = mk_binders lthy bmode args' binders + val alpha_prem = + mk_alpha_prem bmode comp_fv comp_alpha comp_args comp_args' comp_binders comp_binders' + val alpha_bn_prems = flat (map (mk_alpha_bn_prem alpha_bn_map args args' bodies) binders) + in + map HOLogic.mk_Trueprop (alpha_prem::alpha_bn_prems) + end end *} ML {* -fun alpha_bns lthy dt_descr sorts alpha_frees fv_frees bn_funs bclausesss = +fun mk_alpha_intros lthy alpha_map alpha_bn_map (constr, ty, arg_tys, is_rec) bclauses = let - fun mk_alphabn_free (bn, ith, _) = - let - val alphabn_name = "alpha_" ^ (Long_Name.base_name (fst (dest_Const bn))); - val ty = nth_dtyp dt_descr sorts ith; - val alphabn_type = ty --> ty --> @{typ bool}; - val alphabn_free = Free(alphabn_name, alphabn_type); - in - (alphabn_name, alphabn_free) - end; - val (alphabn_names, alphabn_frees) = split_list (map mk_alphabn_free bn_funs); - val bn_alphabn = (map (fn (bn, _, _) => bn) bn_funs) ~~ alphabn_frees - val bclausessl = map (fn (_, i, _) => nth bclausesss i) bn_funs; - val eqs = map2 (alpha_bn lthy dt_descr sorts alpha_frees fv_frees bn_alphabn) bclausessl - (alphabn_frees ~~ bn_funs); + val arg_names = Datatype_Prop.make_tnames arg_tys + val arg_names' = Name.variant_list arg_names arg_names + val args = map Free (arg_names ~~ arg_tys) + val args' = map Free (arg_names' ~~ arg_tys) + val alpha = fst (the (AList.lookup (op=) alpha_map ty)) + val concl = HOLogic.mk_Trueprop (alpha $ list_comb (constr, args) $ list_comb (constr, args')) + val prems = map (mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args')) bclauses in - (bn_alphabn, alphabn_names, eqs) + Library.foldr Logic.mk_implies (flat prems, concl) end *} ML {* -fun alpha_bm lthy dt_descr sorts dts args args2 alpha_frees fv_frees bn_alphabn bm = -case bm of - BC (_, [], [i]) => - let - val arg = nth args i; - val arg2 = nth args2 i; - val dt = nth dts i; - in - if Datatype_Aux.is_rec_type dt - then [(nth alpha_frees (Datatype_Aux.body_index dt)) $ arg $ arg2] - else [HOLogic.mk_eq (arg, arg2)] - end -| BC (Lst, x, y) => alpha_bm_lsts lthy dt_descr sorts dts args args2 alpha_frees - fv_frees bn_alphabn @{const_name alpha_lst} x y -| BC (Set, x, y) => alpha_bm_lsts lthy dt_descr sorts dts args args2 alpha_frees - fv_frees bn_alphabn @{const_name alpha_gen} x y -| BC (Res, x, y) => alpha_bm_lsts lthy dt_descr sorts dts args args2 alpha_frees - fv_frees bn_alphabn @{const_name alpha_res} x y +fun mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args') bclause = +let + fun mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args') i = + let + val arg = nth args i + val arg' = nth args' i + val ty = fastype_of arg + in + case AList.lookup (op=) bn_args i of + NONE => (case (AList.lookup (op=) alpha_map ty) of + NONE => [HOLogic.mk_eq (arg, arg')] + | SOME (alpha, _) => [alpha $ arg $ arg']) + | SOME (NONE) => [] + | SOME (SOME bn) => [the (AList.lookup (op=) alpha_bn_map bn) $ arg $ arg'] + end +in + case bclause of + BC (_, [], bodies) => + map HOLogic.mk_Trueprop + (flat (map (mk_alpha_bn_prem alpha_map alpha_bn_map bn_args (args, args')) bodies)) + | _ => mk_alpha_prems lthy alpha_map alpha_bn_map is_rec (args, args') bclause +end *} ML {* -fun alpha lthy dt_descr sorts alpha_frees fv_frees bn_alphabn bclausess (alpha_free, ith_dtyp) = +fun mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map (bn_args, (constr, _, arg_tys, is_rec)) bclauses = let - fun alpha_constr (cname, dts) bclauses = - let - val Ts = map (Datatype_Aux.typ_of_dtyp dt_descr sorts) dts; - val names = Datatype_Prop.make_tnames Ts; - val names2 = Name.variant_list names (Datatype_Prop.make_tnames Ts); - val args = map Free (names ~~ Ts); - val args2 = map Free (names2 ~~ Ts); - val c = Const (cname, Ts ---> (nth_dtyp dt_descr sorts ith_dtyp)); - val alpha_bm = alpha_bm lthy dt_descr sorts dts args args2 alpha_frees fv_frees bn_alphabn - val rhs = HOLogic.mk_Trueprop - (alpha_free $ (list_comb (c, args)) $ (list_comb (c, args2))); - val lhss = map HOLogic.mk_Trueprop (flat (map alpha_bm bclauses)) - in - Library.foldr Logic.mk_implies (lhss, rhs) - end; - val (_, (_, _, constrs)) = nth dt_descr ith_dtyp; + val arg_names = Datatype_Prop.make_tnames arg_tys + val arg_names' = Name.variant_list arg_names arg_names + val args = map Free (arg_names ~~ arg_tys) + val args' = map Free (arg_names' ~~ arg_tys) + val alpha_bn = the (AList.lookup (op=) alpha_bn_map bn_trm) + val concl = HOLogic.mk_Trueprop (alpha_bn $ list_comb (constr, args) $ list_comb (constr, args')) + val prems = map (mk_alpha_bn lthy alpha_map alpha_bn_map bn_args is_rec (args, args')) bclauses in - map2 alpha_constr constrs bclausess + Library.foldr Logic.mk_implies (flat prems, concl) end *} ML {* -fun define_raw_alpha dt_descr sorts bn_funs bclausesss fv_frees lthy = +fun mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) = let - val alpha_names = prefix_dt_names dt_descr sorts "alpha_"; - val alpha_types = map (fn (i, _) => - nth_dtyp dt_descr sorts i --> nth_dtyp dt_descr sorts i --> @{typ bool}) dt_descr; - val alpha_frees = map Free (alpha_names ~~ alpha_types); + val nth_constrs_info = nth constrs_info bn_n + val nth_bclausess = nth bclausesss bn_n +in + map2 (mk_alpha_bn_intro lthy bn_trm alpha_map alpha_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess +end +*} - val (bn_alphabn, alpha_bn_names, alpha_bn_eqs) = - alpha_bns lthy dt_descr sorts alpha_frees fv_frees bn_funs bclausesss +ML {* +fun define_raw_alpha descr sorts bn_info bclausesss fvs fv_bns lthy = +let + val alpha_names = prefix_dt_names descr sorts "alpha_" + val alpha_arg_tys = all_dtyps descr sorts + val alpha_tys = map (fn ty => [ty, ty] ---> @{typ bool}) alpha_arg_tys + val alpha_frees = map Free (alpha_names ~~ alpha_tys) + val alpha_map = alpha_arg_tys ~~ (alpha_frees ~~ fvs) - val alpha_bns = map snd bn_alphabn; - val alpha_bn_types = map fastype_of alpha_bns; + val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info) + val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns + val alpha_bn_names = map (prefix "alpha_") bn_names + val alpha_bn_arg_tys = map (fn i => nth_dtyp descr sorts i) bn_tys + val alpha_bn_tys = map (fn ty => [ty, ty] ---> @{typ "bool"}) alpha_bn_arg_tys + val alpha_bn_frees = map Free (alpha_bn_names ~~ alpha_bn_tys) + val alpha_bn_map = bns ~~ alpha_bn_frees - val alpha_nums = 0 upto (length alpha_frees - 1) + val constrs_info = all_dtyp_constrs_types descr sorts - val alpha_eqs = map2 (alpha lthy dt_descr sorts alpha_frees fv_frees bn_alphabn) bclausesss - (alpha_frees ~~ alpha_nums); + val alpha_intros = map2 (map2 (mk_alpha_intros lthy alpha_map alpha_bn_map)) constrs_info bclausesss + val alpha_bn_intros = map (mk_alpha_bn_intros lthy alpha_map alpha_bn_map constrs_info bclausesss) bn_info val all_alpha_names = map2 (fn s => fn ty => ((Binding.name s, ty), NoSyn)) - (alpha_names @ alpha_bn_names) (alpha_types @ alpha_bn_types) - val all_alpha_eqs = map (pair Attrib.empty_binding) (flat alpha_eqs @ flat alpha_bn_eqs) - + (alpha_names @ alpha_bn_names) (alpha_tys @ alpha_bn_tys) + val all_alpha_intros = map (pair Attrib.empty_binding) (flat alpha_intros @ flat alpha_bn_intros) + val (alphas, lthy') = Inductive.add_inductive_i {quiet_mode = true, verbose = false, alt_name = Binding.empty, coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false} - all_alpha_names [] all_alpha_eqs [] lthy + all_alpha_names [] all_alpha_intros [] lthy - val alpha_ts_loc = #preds alphas; + val alpha_trms_loc = #preds alphas; val alpha_induct_loc = #raw_induct alphas; val alpha_intros_loc = #intrs alphas; val alpha_cases_loc = #elims alphas; - val morphism = ProofContext.export_morphism lthy' lthy; + val phi = ProofContext.export_morphism lthy' lthy; - val alpha_ts = map (Morphism.term morphism) alpha_ts_loc; - val alpha_induct = Morphism.thm morphism alpha_induct_loc; - val alpha_intros = Morphism.fact morphism alpha_intros_loc - val alpha_cases = Morphism.fact morphism alpha_cases_loc + val alpha_trms = map (Morphism.term phi) alpha_trms_loc; + val alpha_induct = Morphism.thm phi alpha_induct_loc; + val alpha_intros = map (Morphism.thm phi) alpha_intros_loc + val alpha_cases = map (Morphism.thm phi) alpha_cases_loc in - (alpha_ts, alpha_intros, alpha_cases, alpha_induct, lthy') + (alpha_trms, alpha_intros, alpha_cases, alpha_induct, lthy') end -handle UnequalLengths => error "Main" *} +ML {* ProofContext.export_morphism *} + end diff -r 8aff3f3ce47f -r 45a69c9cc4cc Nominal/NewParser.thy --- a/Nominal/NewParser.thy Sun May 23 02:15:24 2010 +0100 +++ b/Nominal/NewParser.thy Mon May 24 20:02:37 2010 +0100 @@ -343,19 +343,18 @@ (* definition of raw fv_functions *) val lthy3 = Theory_Target.init NONE thy; - val (fv, fv_bn, fv_def, lthy3a) = + val (raw_fvs, raw_fv_bns, raw_fv_defs, lthy3a) = if get_STEPS lthy2 > 3 then define_raw_fvs descr sorts raw_bn_info raw_bclauses lthy3 else raise TEST lthy3 - (* definition of raw alphas *) val (alpha_ts, alpha_intros, alpha_cases, alpha_induct, lthy4) = if get_STEPS lthy > 4 - then define_raw_alpha descr sorts raw_bn_info raw_bclauses fv lthy3a + then define_raw_alpha descr sorts raw_bn_info raw_bclauses raw_fvs raw_fv_bns lthy3a else raise TEST lthy3a - val (alpha_ts_nobn, alpha_ts_bn) = chop (length fv) alpha_ts + val (alpha_ts_nobn, alpha_ts_bn) = chop (length raw_fvs) alpha_ts val dts_names = map (fn (i, (s, _, _)) => (s, i)) descr; val bn_tys = map (domain_type o fastype_of) raw_bn_funs; @@ -377,12 +376,12 @@ (* proving equivariance lemmas *) val _ = warning "Proving equivariance"; val (bv_eqvt, lthy5) = prove_eqvt all_tys induct_thm ((*raw_bn_eqs @*) raw_perm_defs) (map fst bns) lthy4 - val (fv_eqvt, lthy6) = prove_eqvt all_tys induct_thm (fv_def @ raw_perm_defs) (fv @ fv_bn) lthy5 + val (fv_eqvt, lthy6) = prove_eqvt all_tys induct_thm (raw_fv_defs @ raw_perm_defs) (raw_fvs @ raw_fv_bns) lthy5 val (alpha_eqvt, lthy6a) = Nominal_Eqvt.equivariance alpha_ts alpha_induct alpha_intros lthy6; (* proving alpha equivalence *) val _ = warning "Proving equivalence"; - val fv_alpha_all = combine_fv_alpha_bns (fv, fv_bn) (alpha_ts_nobn, alpha_ts_bn) bn_nos; + val fv_alpha_all = combine_fv_alpha_bns (raw_fvs, raw_fv_bns) (alpha_ts_nobn, alpha_ts_bn) bn_nos; val reflps = build_alpha_refl fv_alpha_all alpha_ts induct_thm alpha_eq_iff_simp lthy6a; val alpha_equivp = if !cheat_equivp then map (equivp_hack lthy6a) alpha_ts @@ -407,11 +406,11 @@ val bns_rsp = flat (map snd bns_rsp_pre); fun fv_rsp_tac _ = if !cheat_fv_rsp then Skip_Proof.cheat_tac thy - else fvbv_rsp_tac alpha_induct fv_def lthy8 1; + else fvbv_rsp_tac alpha_induct raw_fv_defs lthy8 1; val fv_rsps = prove_fv_rsp fv_alpha_all alpha_ts fv_rsp_tac lthy9; val (fv_rsp_pre, lthy10) = fold_map (fn fv => fn ctxt => prove_const_rsp qtys Binding.empty [fv] - (fn _ => asm_simp_tac (HOL_ss addsimps fv_rsps) 1) ctxt) (fv @ fv_bn) lthy9; + (fn _ => asm_simp_tac (HOL_ss addsimps fv_rsps) 1) ctxt) (raw_fvs @ raw_fv_bns) lthy9; val fv_rsp = flat (map snd fv_rsp_pre); val (perms_rsp, lthy11) = prove_const_rsp qtys Binding.empty raw_perm_funs (fn _ => asm_simp_tac (HOL_ss addsimps alpha_eqvt) 1) lthy10; @@ -425,8 +424,8 @@ in constr_rsp_tac alpha_eq_iff_simp (fv_rsp @ bns_rsp @ reflps @ alpha_alphabn) 1 end val (const_rsps, lthy12) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst] const_rsp_tac) raw_consts lthy11a - val qfv_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) (fv @ fv_bn) - val (qfv_ts, qfv_defs, lthy12a) = quotient_lift_consts_export qtys (qfv_names ~~ (fv @ fv_bn)) lthy12; + val qfv_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) (raw_fvs @ raw_fv_bns) + val (qfv_ts, qfv_defs, lthy12a) = quotient_lift_consts_export qtys (qfv_names ~~ (raw_fvs @ raw_fv_bns)) lthy12; val (qfv_ts_nobn, qfv_ts_bn) = chop (length raw_perm_funs) qfv_ts; val qbn_names = map (fn (b, _ , _) => Name.of_binding b) bn_funs val (qbn_ts, qbn_defs, lthy12b) = quotient_lift_consts_export qtys (qbn_names ~~ [] (*raw_bn_funs*)) lthy12a; @@ -450,11 +449,11 @@ val (_, lthy14) = Local_Theory.note ((suffix_bind "induct", [Attrib.internal (K (Rule_Cases.case_names constr_names))]), [Rule_Cases.name constr_names q_induct]) lthy13; - val q_inducts = Project_Rule.projects lthy13 (1 upto (length fv)) q_induct + val q_inducts = Project_Rule.projects lthy13 (1 upto (length raw_fvs)) q_induct val (_, lthy14a) = Local_Theory.note ((suffix_bind "inducts", []), q_inducts) lthy14; val q_perm = map (lift_thm qtys lthy14) raw_perm_defs; val lthy15 = note_simp_suffix "perm" q_perm lthy14a; - val q_fv = map (lift_thm qtys lthy15) fv_def; + val q_fv = map (lift_thm qtys lthy15) raw_fv_defs; val lthy16 = note_simp_suffix "fv" q_fv lthy15; val q_bn = map (lift_thm qtys lthy16) [] (*raw_bn_eqs;*) val lthy17 = note_simp_suffix "bn" q_bn lthy16; diff -r 8aff3f3ce47f -r 45a69c9cc4cc Nominal/Perm.thy --- a/Nominal/Perm.thy Sun May 23 02:15:24 2010 +0100 +++ b/Nominal/Perm.thy Mon May 24 20:02:37 2010 +0100 @@ -1,10 +1,55 @@ theory Perm imports "../Nominal-General/Nominal2_Base" - "../Nominal-General/Nominal2_Atoms" + "../Nominal-General/Nominal2_Atoms" + "Nominal2_FSet" +uses ("nominal_dt_rawperm.ML") + ("nominal_dt_rawfuns.ML") begin +use "nominal_dt_rawperm.ML" +use "nominal_dt_rawfuns.ML" +ML {* +open Nominal_Dt_RawPerm +open Nominal_Dt_RawFuns +*} + +ML {* +fun is_atom ctxt ty = + Sign.of_sort (ProofContext.theory_of ctxt) (ty, @{sort at_base}) + +fun is_atom_set ctxt (Type ("fun", [t, @{typ bool}])) = is_atom ctxt t + | is_atom_set _ _ = false; + +fun is_atom_fset ctxt (Type (@{type_name "fset"}, [t])) = is_atom ctxt t + | is_atom_fset _ _ = false; + +fun is_atom_list ctxt (Type (@{type_name "list"}, [t])) = is_atom ctxt t + | is_atom_list _ _ = false + + +(* functions for producing sets, fsets and lists of general atom type + out from concrete atom types *) +fun mk_atom_set t = +let + val ty = fastype_of t; + val atom_ty = HOLogic.dest_setT ty --> @{typ "atom"}; + val img_ty = atom_ty --> ty --> @{typ "atom set"}; +in + Const (@{const_name image}, img_ty) $ mk_atom_ty atom_ty t +end + +fun mk_atom_fset t = +let + val ty = fastype_of t; + val atom_ty = dest_fsetT ty --> @{typ "atom"}; + val fmap_ty = atom_ty --> ty --> @{typ "atom fset"}; + val fset_to_set = @{term "fset_to_set :: atom fset => atom set"} +in + fset_to_set $ (Const (@{const_name fmap}, fmap_ty) $ Const (@{const_name atom}, atom_ty) $ t) +end +*} (* permutations for quotient types *) ML {* Class_Target.prove_instantiation_exit_result *} diff -r 8aff3f3ce47f -r 45a69c9cc4cc Nominal/nominal_dt_rawfuns.ML --- a/Nominal/nominal_dt_rawfuns.ML Sun May 23 02:15:24 2010 +0100 +++ b/Nominal/nominal_dt_rawfuns.ML Mon May 24 20:02:37 2010 +0100 @@ -15,6 +15,14 @@ datatype bmode = Lst | Res | Set datatype bclause = BC of bmode * (term option * int) list * int list + val is_atom: Proof.context -> typ -> bool + val is_atom_set: Proof.context -> typ -> bool + val is_atom_fset: Proof.context -> typ -> bool + val is_atom_list: Proof.context -> typ -> bool + val mk_atom_set: term -> term + val mk_atom_fset: term -> term + + val setify: Proof.context -> term -> term val listify: Proof.context -> term -> term @@ -151,7 +159,7 @@ case AList.lookup (op=) bn_args i of NONE => (case (AList.lookup (op=) fv_map ty) of NONE => mk_supp arg - | SOME fv => fv $ arg) + | SOME fv => fv $ arg) | SOME (NONE) => @{term "{}::atom set"} | SOME (SOME bn) => the (AList.lookup (op=) fv_bn_map bn) $ arg end @@ -161,7 +169,7 @@ | _ => mk_fv_rhs lthy fv_map fv_bn_map args bclause end -fun mk_fv_eq lthy fv_map fv_bn_map (constr, ty, arg_tys) bclauses = +fun mk_fv_eq lthy fv_map fv_bn_map (constr, ty, arg_tys, _) bclauses = let val arg_names = Datatype_Prop.make_tnames arg_tys val args = map Free (arg_names ~~ arg_tys) @@ -173,7 +181,7 @@ HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)) end -fun mk_fv_bn_eq lthy bn_trm fv_map fv_bn_map (bn_args, (constr, _, arg_tys)) bclauses = +fun mk_fv_bn_eq lthy bn_trm fv_map fv_bn_map (bn_args, (constr, _, arg_tys, _)) bclauses = let val arg_names = Datatype_Prop.make_tnames arg_tys val args = map Free (arg_names ~~ arg_tys) @@ -196,7 +204,7 @@ fun define_raw_fvs descr sorts bn_info bclausesss lthy = let val fv_names = prefix_dt_names descr sorts "fv_" - val fv_arg_tys = map (fn (i, _) => nth_dtyp descr sorts i) descr; + val fv_arg_tys = all_dtyps descr sorts val fv_tys = map (fn ty => ty --> @{typ "atom set"}) fv_arg_tys; val fv_frees = map Free (fv_names ~~ fv_tys); val fv_map = fv_arg_tys ~~ fv_frees