# HG changeset patch # User Cezary Kaliszyk # Date 1264489762 -3600 # Node ID 44c92eaa4fad6c22705bfbd2d93554a7e52491fb # Parent 04ef4bd3b93615329356cae41004098c83c3a48a More eqreflection/equiv cleaning. diff -r 04ef4bd3b936 -r 44c92eaa4fad Quot/QuotProd.thy --- a/Quot/QuotProd.thy Tue Jan 26 07:42:52 2010 +0100 +++ b/Quot/QuotProd.thy Tue Jan 26 08:09:22 2010 +0100 @@ -14,37 +14,37 @@ assumes a: "equivp R1" assumes b: "equivp R2" shows "equivp (prod_rel R1 R2)" -unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def -apply(auto simp add: equivp_reflp[OF a] equivp_reflp[OF b]) -apply(simp only: equivp_symp[OF a]) -apply(simp only: equivp_symp[OF b]) -using equivp_transp[OF a] apply blast -using equivp_transp[OF b] apply blast -done + unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def + apply (auto simp add: equivp_reflp[OF a] equivp_reflp[OF b]) + apply (simp only: equivp_symp[OF a]) + apply (simp only: equivp_symp[OF b]) + using equivp_transp[OF a] apply blast + using equivp_transp[OF b] apply blast + done lemma prod_quotient[quot_thm]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "Quotient (prod_rel R1 R2) (prod_fun Abs1 Abs2) (prod_fun Rep1 Rep2)" -unfolding Quotient_def -using q1 q2 -apply (simp add: Quotient_abs_rep Quotient_abs_rep Quotient_rel_rep Quotient_rel_rep) -using Quotient_rel[OF q1] Quotient_rel[OF q2] -by blast + unfolding Quotient_def + using q1 q2 + apply (simp add: Quotient_abs_rep Quotient_rel_rep) + using Quotient_rel[OF q1] Quotient_rel[OF q2] + by blast lemma pair_rsp[quot_respect]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(R1 ===> R2 ===> prod_rel R1 R2) Pair Pair" -by simp + by simp lemma pair_prs[quot_preserve]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(Rep1 ---> Rep2 ---> (prod_fun Abs1 Abs2)) Pair = Pair" -apply(simp add: expand_fun_eq) -apply(simp add: Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) -done + apply (simp add: expand_fun_eq) + apply (simp add: Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) + done lemma fst_rsp[quot_respect]: assumes "Quotient R1 Abs1 Rep1" @@ -56,32 +56,30 @@ assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(prod_fun Rep1 Rep2 ---> Abs1) fst = fst" -apply(simp add: expand_fun_eq) -apply(simp add: Quotient_abs_rep[OF q1]) -done + apply (simp add: expand_fun_eq) + apply (simp add: Quotient_abs_rep[OF q1]) + done lemma snd_rsp[quot_respect]: assumes "Quotient R1 Abs1 Rep1" assumes "Quotient R2 Abs2 Rep2" shows "(prod_rel R1 R2 ===> R2) snd snd" by simp - + lemma snd_prs[quot_preserve]: assumes q1: "Quotient R1 Abs1 Rep1" assumes q2: "Quotient R2 Abs2 Rep2" shows "(prod_fun Rep1 Rep2 ---> Abs2) snd = snd" -apply(simp add: expand_fun_eq) -apply(simp add: Quotient_abs_rep[OF q2]) -done + apply (simp add: expand_fun_eq) + apply (simp add: Quotient_abs_rep[OF q2]) + done -lemma prod_fun_id[id_simps]: - shows "prod_fun id id \ id" - by (rule eq_reflection) - (simp add: prod_fun_def) +lemma prod_fun_id[id_simps]: + shows "prod_fun id id = id" + by (simp add: prod_fun_def) -lemma prod_rel_eq[id_simps]: - shows "prod_rel (op =) (op =) \ (op =)" - apply (rule eq_reflection) +lemma prod_rel_eq[id_simps]: + shows "(prod_rel (op =) (op =)) = (op =)" apply (rule ext)+ apply auto done