# HG changeset patch # User Cezary Kaliszyk # Date 1307664024 -32400 # Node ID 43bb260ef29063c77e6b1a09311767ba6ba0bd95 # Parent f8d660de0cf7dfecc98a59ddc457c217d930f012 Experiments with Let diff -r f8d660de0cf7 -r 43bb260ef290 Nominal/Ex/Let.thy --- a/Nominal/Ex/Let.thy Thu Jun 09 15:34:51 2011 +0900 +++ b/Nominal/Ex/Let.thy Fri Jun 10 09:00:24 2011 +0900 @@ -100,72 +100,30 @@ | "set (bn as) \* (s, t) \ subst s t (Let as b) = Let (substa s t as) (subst s t b)" | "substa s t ANil = ANil" | "substa s t (ACons v t' as) = ACons v (subst v t t') as" -oops - -(*apply (subgoal_tac "\l. \!r. subst_substa_graph l r") -defer -apply rule -apply (simp only: Ex1_def) -apply (case_tac l) -apply (case_tac a) -apply (rule_tac y="c" and c="(aa,b)" in trm_assn.strong_exhaust(1)) -apply simp_all[3] -apply rule -apply rule -apply (rule subst_substa_graph.intros)*) +(*unfolding eqvt_def subst_substa_graph_def + apply (rule, perm_simp)*) + defer + apply (rule TrueI) + apply (case_tac x) + apply (case_tac a) + apply (rule_tac y="c" and c="(aa,b)" in trm_assn.strong_exhaust(1)) + apply (auto simp add: fresh_star_def)[3] + apply (drule_tac x="assn" in meta_spec) + apply (simp add: Abs1_eq_iff alpha_bn_refl) + apply (case_tac b) + apply (case_tac c rule: trm_assn.exhaust(2)) + apply (auto)[2] + apply blast + apply blast + apply auto + apply (simp_all add: meta_eq_to_obj_eq[OF subst_def, symmetric, unfolded fun_eq_iff]) + apply (simp_all add: meta_eq_to_obj_eq[OF substa_def, symmetric, unfolded fun_eq_iff]) + prefer 3 + apply (erule alpha_bn_inducts) + apply (simp add: alpha_bn_refl) + (* Needs an invariant *) + oops -(* -defer -apply (case_tac x) -apply (case_tac a) -thm trm_assn.strong_exhaust(1) -apply (rule_tac y="c" and c="(aa,b)" in trm_assn.strong_exhaust(1)) -apply (simp add: trm_assn.distinct trm_assn.eq_iff) -apply auto[1] -apply (simp add: trm_assn.distinct trm_assn.eq_iff) -apply auto[1] -apply (simp add: trm_assn.distinct trm_assn.eq_iff fresh_star_def) -apply (simp add: trm_assn.distinct trm_assn.eq_iff) -apply (drule_tac x="assn" in meta_spec) -apply (rotate_tac 3) -apply (drule_tac x="aa" in meta_spec) -apply (rotate_tac -1) -apply (drule_tac x="b" in meta_spec) -apply (rotate_tac -1) -apply (drule_tac x="trm" in meta_spec) -apply (auto simp add: alpha_bn_refl)[1] -apply (case_tac b) -apply (rule_tac ya="c" in trm_assn.strong_exhaust(2)) -apply (simp add: trm_assn.distinct trm_assn.eq_iff) -apply auto[1] -apply blast -apply (simp add: trm_assn.distinct trm_assn.eq_iff) -apply auto[1] -apply blast -apply (simp_all only: sum.simps Pair_eq trm_assn.distinct trm_assn.eq_iff) -apply simp_all -apply (simp_all add: meta_eq_to_obj_eq[OF subst_def, symmetric, unfolded fun_eq_iff]) -apply (simp_all add: meta_eq_to_obj_eq[OF substa_def, symmetric, unfolded fun_eq_iff]) -apply clarify -prefer 2 -apply clarify -apply (rule conjI) -prefer 2 -apply (rename_tac a pp vv zzz a2 s t zz) -apply (erule alpha_bn_inducts) -apply (rule alpha_bn_refl) -apply clarify -apply (rename_tac t' a1 a2 n1 n2) -thm subst_substa_graph.intros[no_vars] -. -alpha_bn (substa s t (ACons n1 t' a1)) - (substa s t (ACons n2 t' a2)) - -alpha_bn (Acons s (subst a t t') a1) - (Acons s (subst a t t') a2) - -ACons v (subst v t t') as" -*) end