# HG changeset patch # User Cezary Kaliszyk # Date 1276510075 -7200 # Node ID 280b92df6a8b8fa3d56eb8f652ec1fd14f40463e # Parent e907165b953b51bc0bb4d9892b816576fb0be516 qpaper / INJ diff -r e907165b953b -r 280b92df6a8b Quotient-Paper/Paper.thy --- a/Quotient-Paper/Paper.thy Mon Jun 14 11:42:07 2010 +0200 +++ b/Quotient-Paper/Paper.thy Mon Jun 14 12:07:55 2010 +0200 @@ -714,10 +714,10 @@ \multicolumn{3}{@ {\hspace{-4mm}}l}{quantification (over same types and different types):}\\ @{text "REG (\x : \. t, \x : \. s)"} & $\dn$ & @{text "\x : \. REG (t, s)"}\\ @{text "REG (\x : \. t, \x : \. s)"} & $\dn$ & @{text "\x : \ \ Res (REL (\, \)). REG (t, s)"}\\ - \multicolumn{3}{@ {\hspace{-4mm}}l}{equality (with same types and different types):}\\ + \multicolumn{3}{@ {\hspace{-4mm}}l}{equalities (with same types and different types):}\\ @{text "REG ((op =) : \, (op =) : \)"} & $\dn$ & @{text "(op =) : \"}\\ @{text "REG ((op =) : \, (op =) : \)"} & $\dn$ & @{text "REL (\, \) : \"}\\ - \multicolumn{3}{@ {\hspace{-4mm}}l}{application, variable, constant:}\\ + \multicolumn{3}{@ {\hspace{-4mm}}l}{applications, variables, constants:}\\ @{text "REG (t\<^isub>1 t\<^isub>2, s\<^isub>1 s\<^isub>2)"} & $\dn$ & @{text "REG (t\<^isub>1, s\<^isub>1) REG (t\<^isub>2, s\<^isub>2)"}\\ @{text "REG (v\<^isub>1, v\<^isub>2)"} & $\dn$ & @{text "v\<^isub>1"}\\ @{text "REG (c\<^isub>1, c\<^isub>2)"} & $\dn$ & @{text "c\<^isub>1"}\\ @@ -732,18 +732,23 @@ the regularized theorems and the statement of the lifted theorem both as terms and returns the statement of the injected theorem: - \begin{itemize} - \item @{text "INJ ((\x. t) : \, (\x. s) : \) = \x. (INJ (t, s)"} - \item @{text "INJ ((\x. t) : \, (\x. s) : \) = REP(\,\) (ABS (\,\) (\x. (INJ (t, s))))"} - \item @{text "INJ ((\x \ R. t) : \, (\x. s) : \) = REP(\,\) (ABS (\,\) (\x \ R. (INJ (t, s))))"} - \item @{text "INJ (\ t, \ s) = \ (INJ (t, s)"} - \item @{text "INJ (\ t \ R, \ s) = \ (INJ (t, s) \ R"} - \item @{text "INJ (t\<^isub>1 t\<^isub>2, s\<^isub>1 s\<^isub>2) = INJ (t\<^isub>1, s\<^isub>1) INJ (t\<^isub>2, s\<^isub>2)"} - \item @{text "INJ (v\<^isub>1 : \, v\<^isub>2 : \) = v\<^isub>1"} - \item @{text "INJ (v\<^isub>1 : \, v\<^isub>2 : \) = REP(\,\) (ABS (\,\) (v\<^isub>1))"} - \item @{text "INJ (c\<^isub>1 : \, c\<^isub>2 : \) = c\<^isub>1"} - \item @{text "INJ (c\<^isub>1 : \, c\<^isub>2 : \) = REP(\,\) (ABS (\,\) (c\<^isub>1))"} - \end{itemize} + \begin{center} + \begin{tabular}{rcl} + \multicolumn{3}{@ {\hspace{-4mm}}l}{abstractions (with same types and different types):}\\ + @{text "INJ ((\x. t) : \, (\x. s) : \) "} & $\dn$ & @{text "\x. INJ (t, s)"}\\ + @{text "INJ ((\x. t) : \, (\x. s) : \) "} & $\dn$ & @{text "REP(\,\) (ABS (\,\) (\x. (INJ (t, s))))"}\\ + @{text "INJ ((\x \ R. t) : \, (\x. s) : \) "} & $\dn$ & @{text "REP(\,\) (ABS (\,\) (\x \ R. (INJ (t, s))))"}\\ + \multicolumn{3}{@ {\hspace{-4mm}}l}{quantification (over same types and different types):}\\ + @{text "INJ (\ t, \ s) "} & $\dn$ & @{text "\ (INJ (t, s))"}\\ + @{text "INJ (\ t \ R, \ s) "} & $\dn$ & @{text "\ INJ (t, s) \ R"}\\ + \multicolumn{3}{@ {\hspace{-4mm}}l}{applications, variables, constants:}\\ + @{text "INJ (t\<^isub>1 t\<^isub>2, s\<^isub>1 s\<^isub>2) "} & $\dn$ & @{text " INJ (t\<^isub>1, s\<^isub>1) INJ (t\<^isub>2, s\<^isub>2)"}\\ + @{text "INJ (v\<^isub>1 : \, v\<^isub>2 : \) "} & $\dn$ & @{text "v\<^isub>1"}\\ + @{text "INJ (v\<^isub>1 : \, v\<^isub>2 : \) "} & $\dn$ & @{text "REP(\,\) (ABS (\,\) (v\<^isub>1))"}\\ + @{text "INJ (c\<^isub>1 : \, c\<^isub>2 : \) "} & $\dn$ & @{text "c\<^isub>1"}\\ + @{text "INJ (c\<^isub>1 : \, c\<^isub>2 : \) "} & $\dn$ & @{text "REP(\,\) (ABS (\,\) (c\<^isub>1))"}\\ + \end{tabular} + \end{center} For existential quantifiers and unique existential quantifiers it is defined similarly to the universal one.