# HG changeset patch # User Christian Urban # Date 1268902941 -3600 # Node ID 212e7a3494eb9fb5add02cd6676bac3a7156df6a # Parent 21dda372fb1115c54359a5bb609592a77b569153 vixed variable names diff -r 21dda372fb11 -r 212e7a3494eb Nominal/Test.thy --- a/Nominal/Test.thy Thu Mar 18 09:31:31 2010 +0100 +++ b/Nominal/Test.thy Thu Mar 18 10:02:21 2010 +0100 @@ -61,8 +61,8 @@ lemma fixes c::"'a::fs" assumes a1: "\name c. P c (Vr name)" - and a2: "\lm_raw1 lm_raw2 c. \\d. P d lm_raw1; \d. P d lm_raw2\ \ P c (Ap lm_raw1 lm_raw2)" - and a3: "\name lm_raw c. \\d. P d lm_raw\ \ P c (Lm name lm_raw)" + and a2: "\lm1 lm2 c. \\d. P d lm1; \d. P d lm2\ \ P c (Ap lm1 lm2)" + and a3: "\name lm c. \\d. P d lm\ \ P c (Lm name lm)" shows "P c lm" proof - have "\p. P c (p \ lm)" @@ -73,10 +73,10 @@ apply(rule a2) apply(blast)[1] apply(assumption) - apply(subgoal_tac "\new::name. (atom new) \ (c, Lm (p \ name) (p \ lm_raw))") + apply(subgoal_tac "\new::name. (atom new) \ (c, Lm (p \ name) (p \ lm))") apply(erule exE) - apply(rule_tac t="p \ Lm name lm_raw" and - s="(((p \ name) \ new) + p) \ Lm name lm_raw" in subst) + apply(rule_tac t="p \ Lm name lm" and + s="(((p \ name) \ new) + p) \ Lm name lm" in subst) apply(simp) apply(subst lm_perm) apply(subst (2) lm_perm) @@ -90,7 +90,7 @@ apply(drule_tac x="((p \ name) \ new) + p" in meta_spec) apply(simp) apply(simp add: fresh_def) - apply(rule_tac X="supp (c, Lm (p \ name) (p \ lm_raw))" in obtain_at_base) + apply(rule_tac X="supp (c, Lm (p \ name) (p \ lm))" in obtain_at_base) apply(simp add: supp_Pair finite_supp) apply(blast) done