# HG changeset patch # User Christian Urban # Date 1309832325 -7200 # Node ID 09834ba7ce590ab7432bac4fd9796a046a8c3d22 # Parent dc003667cd174f65de058c6514cf7eaefc7227c4 exported various FCB-lemmas to a separate file diff -r dc003667cd17 -r 09834ba7ce59 Nominal/Ex/Classical.thy --- a/Nominal/Ex/Classical.thy Mon Jul 04 23:56:19 2011 +0200 +++ b/Nominal/Ex/Classical.thy Tue Jul 05 04:18:45 2011 +0200 @@ -47,269 +47,6 @@ thm trm.supp thm trm.supp[simplified] -lemma Abs_set_fcb2: - fixes as bs :: "atom set" - and x y :: "'b :: fs" - and c::"'c::fs" - assumes eq: "[as]set. x = [bs]set. y" - and fin: "finite as" "finite bs" - and fcb1: "as \* f as x c" - and fresh1: "as \* c" - and fresh2: "bs \* c" - and perm1: "\p. supp p \* c \ p \ (f as x c) = f (p \ as) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f bs y c) = f (p \ bs) (p \ y) c" - shows "f as x c = f bs y c" -proof - - have "supp (as, x, c) supports (f as x c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) - then have fin1: "finite (supp (f as x c))" - using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair) - have "supp (bs, y, c) supports (f bs y c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) - then have fin2: "finite (supp (f bs y c))" - using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair) - obtain q::"perm" where - fr1: "(q \ as) \* (x, c, f as x c, f bs y c)" and - fr2: "supp q \* ([as]set. x)" and - inc: "supp q \ as \ (q \ as)" - using at_set_avoiding3[where xs="as" and c="(x, c, f as x c, f bs y c)" and x="[as]set. x"] - fin1 fin2 fin - by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) - have "[q \ as]set. (q \ x) = q \ ([as]set. x)" by simp - also have "\ = [as]set. x" - by (simp only: fr2 perm_supp_eq) - finally have "[q \ as]set. (q \ x) = [bs]set. y" using eq by simp - then obtain r::perm where - qq1: "q \ x = r \ y" and - qq2: "q \ as = r \ bs" and - qq3: "supp r \ (q \ as) \ bs" - apply(drule_tac sym) - apply(simp only: Abs_eq_iff2 alphas) - apply(erule exE) - apply(erule conjE)+ - apply(drule_tac x="p" in meta_spec) - apply(simp add: set_eqvt) - apply(blast) - done - have "as \* f as x c" by (rule fcb1) - then have "q \ (as \* f as x c)" - by (simp add: permute_bool_def) - then have "(q \ as) \* f (q \ as) (q \ x) c" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm1) - using inc fresh1 fr1 - apply(auto simp add: fresh_star_def fresh_Pair) - done - then have "(r \ bs) \* f (r \ bs) (r \ y) c" using qq1 qq2 by simp - then have "r \ (bs \* f bs y c)" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm2[symmetric]) - using qq3 fresh2 fr1 - apply(auto simp add: set_eqvt fresh_star_def fresh_Pair) - done - then have fcb2: "bs \* f bs y c" by (simp add: permute_bool_def) - have "f as x c = q \ (f as x c)" - apply(rule perm_supp_eq[symmetric]) - using inc fcb1 fr1 by (auto simp add: fresh_star_def) - also have "\ = f (q \ as) (q \ x) c" - apply(rule perm1) - using inc fresh1 fr1 by (auto simp add: fresh_star_def) - also have "\ = f (r \ bs) (r \ y) c" using qq1 qq2 by simp - also have "\ = r \ (f bs y c)" - apply(rule perm2[symmetric]) - using qq3 fresh2 fr1 by (auto simp add: fresh_star_def) - also have "... = f bs y c" - apply(rule perm_supp_eq) - using qq3 fr1 fcb2 by (auto simp add: fresh_star_def) - finally show ?thesis by simp -qed - -lemma Abs_res_fcb2: - fixes as bs :: "atom set" - and x y :: "'b :: fs" - and c::"'c::fs" - assumes eq: "[as]res. x = [bs]res. y" - and fin: "finite as" "finite bs" - and fcb1: "as \* f as x c" - and fresh1: "as \* c" - and fresh2: "bs \* c" - and perm1: "\p. supp p \* c \ p \ (f as x c) = f (p \ as) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f bs y c) = f (p \ bs) (p \ y) c" - shows "f as x c = f bs y c" -proof - - have "supp (as, x, c) supports (f as x c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) - then have fin1: "finite (supp (f as x c))" - using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair) - have "supp (bs, y, c) supports (f bs y c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) - then have fin2: "finite (supp (f bs y c))" - using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair) - obtain q::"perm" where - fr1: "(q \ as) \* (x, c, f as x c, f bs y c)" and - fr2: "supp q \* ([as]res. x)" and - inc: "supp q \ as \ (q \ as)" - using at_set_avoiding3[where xs="as" and c="(x, c, f as x c, f bs y c)" and x="[as]res. x"] - fin1 fin2 fin - by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) - have "[q \ as]res. (q \ x) = q \ ([as]res. x)" by simp - also have "\ = [as]res. x" - by (simp only: fr2 perm_supp_eq) - finally have "[q \ as]res. (q \ x) = [bs]res. y" using eq by simp - then obtain r::perm where - qq1: "q \ x = r \ y" and - qq2: "(q \ as \ supp (q \ x)) = r \ (bs \ supp y)" and - qq3: "supp r \ bs \ supp y \ q \ as \ supp (q \ x)" - apply(drule_tac sym) - apply(subst(asm) Abs_eq_res_set) - apply(simp only: Abs_eq_iff2 alphas) - apply(erule exE) - apply(erule conjE)+ - apply(drule_tac x="p" in meta_spec) - apply(simp add: set_eqvt) - done - have "(as \ supp x) \* f (as \ supp x) x c" sorry (* FCB? *) - then have "q \ ((as \ supp x) \* f (as \ supp x) x c)" - by (simp add: permute_bool_def) - then have "(q \ (as \ supp x)) \* f (q \ (as \ supp x)) (q \ x) c" - apply(simp add: fresh_star_eqvt set_eqvt) - sorry (* perm? *) - then have "r \ (bs \ supp y) \* f (r \ (bs \ supp y)) (r \ y) c" using qq2 - apply (simp add: inter_eqvt) - sorry - (* rest similar reversing it other way around... *) - show ?thesis sorry -qed - - - -lemma Abs_lst_fcb2: - fixes as bs :: "atom list" - and x y :: "'b :: fs" - and c::"'c::fs" - assumes eq: "[as]lst. x = [bs]lst. y" - and fcb1: "(set as) \* f as x c" - and fresh1: "set as \* c" - and fresh2: "set bs \* c" - and perm1: "\p. supp p \* c \ p \ (f as x c) = f (p \ as) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f bs y c) = f (p \ bs) (p \ y) c" - shows "f as x c = f bs y c" -proof - - have "supp (as, x, c) supports (f as x c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) - then have fin1: "finite (supp (f as x c))" - by (auto intro: supports_finite simp add: finite_supp) - have "supp (bs, y, c) supports (f bs y c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) - then have fin2: "finite (supp (f bs y c))" - by (auto intro: supports_finite simp add: finite_supp) - obtain q::"perm" where - fr1: "(q \ (set as)) \* (x, c, f as x c, f bs y c)" and - fr2: "supp q \* Abs_lst as x" and - inc: "supp q \ (set as) \ q \ (set as)" - using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"] - fin1 fin2 - by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) - have "Abs_lst (q \ as) (q \ x) = q \ Abs_lst as x" by simp - also have "\ = Abs_lst as x" - by (simp only: fr2 perm_supp_eq) - finally have "Abs_lst (q \ as) (q \ x) = Abs_lst bs y" using eq by simp - then obtain r::perm where - qq1: "q \ x = r \ y" and - qq2: "q \ as = r \ bs" and - qq3: "supp r \ (q \ (set as)) \ set bs" - apply(drule_tac sym) - apply(simp only: Abs_eq_iff2 alphas) - apply(erule exE) - apply(erule conjE)+ - apply(drule_tac x="p" in meta_spec) - apply(simp add: set_eqvt) - apply(blast) - done - have "(set as) \* f as x c" by (rule fcb1) - then have "q \ ((set as) \* f as x c)" - by (simp add: permute_bool_def) - then have "set (q \ as) \* f (q \ as) (q \ x) c" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm1) - using inc fresh1 fr1 - apply(auto simp add: fresh_star_def fresh_Pair) - done - then have "set (r \ bs) \* f (r \ bs) (r \ y) c" using qq1 qq2 by simp - then have "r \ ((set bs) \* f bs y c)" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm2[symmetric]) - using qq3 fresh2 fr1 - apply(auto simp add: set_eqvt fresh_star_def fresh_Pair) - done - then have fcb2: "(set bs) \* f bs y c" by (simp add: permute_bool_def) - have "f as x c = q \ (f as x c)" - apply(rule perm_supp_eq[symmetric]) - using inc fcb1 fr1 by (auto simp add: fresh_star_def) - also have "\ = f (q \ as) (q \ x) c" - apply(rule perm1) - using inc fresh1 fr1 by (auto simp add: fresh_star_def) - also have "\ = f (r \ bs) (r \ y) c" using qq1 qq2 by simp - also have "\ = r \ (f bs y c)" - apply(rule perm2[symmetric]) - using qq3 fresh2 fr1 by (auto simp add: fresh_star_def) - also have "... = f bs y c" - apply(rule perm_supp_eq) - using qq3 fr1 fcb2 by (auto simp add: fresh_star_def) - finally show ?thesis by simp -qed - -lemma Abs_lst1_fcb2: - fixes a b :: "atom" - and x y :: "'b :: fs" - and c::"'c :: fs" - assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)" - and fcb1: "a \ f a x c" - and fresh: "{a, b} \* c" - and perm1: "\p. supp p \* c \ p \ (f a x c) = f (p \ a) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f b y c) = f (p \ b) (p \ y) c" - shows "f a x c = f b y c" -using e -apply(drule_tac Abs_lst_fcb2[where c="c" and f="\(as::atom list) . f (hd as)"]) -apply(simp_all) -using fcb1 fresh perm1 perm2 -apply(simp_all add: fresh_star_def) -done - -lemma supp_zero_perm_zero: - shows "supp (p :: perm) = {} \ p = 0" - by (metis supp_perm_singleton supp_zero_perm) - -lemma permute_atom_list_id: - shows "p \ l = l \ supp p \ set l = {}" - by (induct l) (auto simp add: supp_Nil supp_perm) - -lemma permute_length_eq: - shows "p \ xs = ys \ length xs = length ys" - by (auto simp add: length_eqvt[symmetric] permute_pure) - -lemma Abs_lst_binder_length: - shows "[xs]lst. T = [ys]lst. S \ length xs = length ys" - by (auto simp add: Abs_eq_iff alphas length_eqvt[symmetric] permute_pure) - -lemma Abs_lst_binder_eq: - shows "Abs_lst l T = Abs_lst l S \ T = S" - by (rule, simp_all add: Abs_eq_iff2 alphas) - (metis fresh_star_zero inf_absorb1 permute_atom_list_id supp_perm_eq - supp_zero_perm_zero) - -lemma in_permute_list: - shows "py \ p \ xs = px \ xs \ x \ set xs \ py \ p \ x = px \ x" - by (induct xs) auto - - - nominal_primrec crename :: "trm \ coname \ coname \ trm" ("_[_\c>_]" [100,100,100] 100) diff -r dc003667cd17 -r 09834ba7ce59 Nominal/Ex/Lambda.thy --- a/Nominal/Ex/Lambda.thy Mon Jul 04 23:56:19 2011 +0200 +++ b/Nominal/Ex/Lambda.thy Tue Jul 05 04:18:45 2011 +0200 @@ -2,117 +2,6 @@ imports "../Nominal2" begin -lemma Abs_lst_fcb2: - fixes as bs :: "atom list" - and x y :: "'b :: fs" - and c::"'c::fs" - assumes eq: "[as]lst. x = [bs]lst. y" - and fcb1: "(set as) \* f as x c" - and fresh1: "set as \* c" - and fresh2: "set bs \* c" - and perm1: "\p. supp p \* c \ p \ (f as x c) = f (p \ as) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f bs y c) = f (p \ bs) (p \ y) c" - shows "f as x c = f bs y c" -proof - - have "supp (as, x, c) supports (f as x c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) - then have fin1: "finite (supp (f as x c))" - by (auto intro: supports_finite simp add: finite_supp) - have "supp (bs, y, c) supports (f bs y c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) - then have fin2: "finite (supp (f bs y c))" - by (auto intro: supports_finite simp add: finite_supp) - obtain q::"perm" where - fr1: "(q \ (set as)) \* (x, c, f as x c, f bs y c)" and - fr2: "supp q \* Abs_lst as x" and - inc: "supp q \ (set as) \ q \ (set as)" - using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"] - fin1 fin2 - by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) - have "Abs_lst (q \ as) (q \ x) = q \ Abs_lst as x" by simp - also have "\ = Abs_lst as x" - by (simp only: fr2 perm_supp_eq) - finally have "Abs_lst (q \ as) (q \ x) = Abs_lst bs y" using eq by simp - then obtain r::perm where - qq1: "q \ x = r \ y" and - qq2: "q \ as = r \ bs" and - qq3: "supp r \ (q \ (set as)) \ set bs" - apply(drule_tac sym) - apply(simp only: Abs_eq_iff2 alphas) - apply(erule exE) - apply(erule conjE)+ - apply(drule_tac x="p" in meta_spec) - apply(simp add: set_eqvt) - apply(blast) - done - have "(set as) \* f as x c" by (rule fcb1) - then have "q \ ((set as) \* f as x c)" - by (simp add: permute_bool_def) - then have "set (q \ as) \* f (q \ as) (q \ x) c" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm1) - using inc fresh1 fr1 - apply(auto simp add: fresh_star_def fresh_Pair) - done - then have "set (r \ bs) \* f (r \ bs) (r \ y) c" using qq1 qq2 by simp - then have "r \ ((set bs) \* f bs y c)" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm2[symmetric]) - using qq3 fresh2 fr1 - apply(auto simp add: set_eqvt fresh_star_def fresh_Pair) - done - then have fcb2: "(set bs) \* f bs y c" by (simp add: permute_bool_def) - have "f as x c = q \ (f as x c)" - apply(rule perm_supp_eq[symmetric]) - using inc fcb1 fr1 by (auto simp add: fresh_star_def) - also have "\ = f (q \ as) (q \ x) c" - apply(rule perm1) - using inc fresh1 fr1 by (auto simp add: fresh_star_def) - also have "\ = f (r \ bs) (r \ y) c" using qq1 qq2 by simp - also have "\ = r \ (f bs y c)" - apply(rule perm2[symmetric]) - using qq3 fresh2 fr1 by (auto simp add: fresh_star_def) - also have "... = f bs y c" - apply(rule perm_supp_eq) - using qq3 fr1 fcb2 by (auto simp add: fresh_star_def) - finally show ?thesis by simp -qed - -lemma Abs_lst1_fcb2: - fixes a b :: "atom" - and x y :: "'b :: fs" - and c::"'c :: fs" - assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)" - and fcb1: "a \ f a x c" - and fresh: "{a, b} \* c" - and perm1: "\p. supp p \* c \ p \ (f a x c) = f (p \ a) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f b y c) = f (p \ b) (p \ y) c" - shows "f a x c = f b y c" -using e -apply(drule_tac Abs_lst_fcb2[where c="c" and f="\(as::atom list) . f (hd as)"]) -apply(simp_all) -using fcb1 fresh perm1 perm2 -apply(simp_all add: fresh_star_def) -done - -lemma Abs_lst1_fcb2': - fixes a b :: "'a::at" - and x y :: "'b :: fs" - and c::"'c :: fs" - assumes e: "(Abs_lst [atom a] x) = (Abs_lst [atom b] y)" - and fcb1: "atom a \ f a x c" - and fresh: "{atom a, atom b} \* c" - and perm1: "\p. supp p \* c \ p \ (f a x c) = f (p \ a) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f b y c) = f (p \ b) (p \ y) c" - shows "f a x c = f b y c" -using e -apply(drule_tac Abs_lst1_fcb2[where c="c" and f="\a . f ((inv atom) a)"]) -using fcb1 fresh perm1 perm2 -apply(simp_all add: fresh_star_def inv_f_f inj_on_def atom_eqvt) -done - atom_decl name diff -r dc003667cd17 -r 09834ba7ce59 Nominal/Ex/Let.thy --- a/Nominal/Ex/Let.thy Mon Jul 04 23:56:19 2011 +0200 +++ b/Nominal/Ex/Let.thy Tue Jul 05 04:18:45 2011 +0200 @@ -77,104 +77,6 @@ apply(simp add: atom_eqvt) done -lemma Abs_lst_fcb2: - fixes as bs :: "atom list" - and x y :: "'b :: fs" - and c::"'c::fs" - assumes eq: "[as]lst. x = [bs]lst. y" - and fcb1: "(set as) \* c \ (set as) \* f as x c" - and fresh1: "set as \* c" - and fresh2: "set bs \* c" - and perm1: "\p. supp p \* c \ p \ (f as x c) = f (p \ as) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f bs y c) = f (p \ bs) (p \ y) c" - shows "f as x c = f bs y c" -proof - - have "supp (as, x, c) supports (f as x c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) - then have fin1: "finite (supp (f as x c))" - by (auto intro: supports_finite simp add: finite_supp) - have "supp (bs, y, c) supports (f bs y c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) - then have fin2: "finite (supp (f bs y c))" - by (auto intro: supports_finite simp add: finite_supp) - obtain q::"perm" where - fr1: "(q \ (set as)) \* (x, c, f as x c, f bs y c)" and - fr2: "supp q \* Abs_lst as x" and - inc: "supp q \ (set as) \ q \ (set as)" - using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"] - fin1 fin2 - by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) - have "Abs_lst (q \ as) (q \ x) = q \ Abs_lst as x" by simp - also have "\ = Abs_lst as x" - by (simp only: fr2 perm_supp_eq) - finally have "Abs_lst (q \ as) (q \ x) = Abs_lst bs y" using eq by simp - then obtain r::perm where - qq1: "q \ x = r \ y" and - qq2: "q \ as = r \ bs" and - qq3: "supp r \ (q \ (set as)) \ set bs" - apply(drule_tac sym) - apply(simp only: Abs_eq_iff2 alphas) - apply(erule exE) - apply(erule conjE)+ - apply(drule_tac x="p" in meta_spec) - apply(simp add: set_eqvt) - apply(blast) - done - have "(set as) \* f as x c" - apply(rule fcb1) - apply(rule fresh1) - done - then have "q \ ((set as) \* f as x c)" - by (simp add: permute_bool_def) - then have "set (q \ as) \* f (q \ as) (q \ x) c" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm1) - using inc fresh1 fr1 - apply(auto simp add: fresh_star_def fresh_Pair) - done - then have "set (r \ bs) \* f (r \ bs) (r \ y) c" using qq1 qq2 by simp - then have "r \ ((set bs) \* f bs y c)" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm2[symmetric]) - using qq3 fresh2 fr1 - apply(auto simp add: set_eqvt fresh_star_def fresh_Pair) - done - then have fcb2: "(set bs) \* f bs y c" by (simp add: permute_bool_def) - have "f as x c = q \ (f as x c)" - apply(rule perm_supp_eq[symmetric]) - using inc fcb1[OF fresh1] fr1 by (auto simp add: fresh_star_def) - also have "\ = f (q \ as) (q \ x) c" - apply(rule perm1) - using inc fresh1 fr1 by (auto simp add: fresh_star_def) - also have "\ = f (r \ bs) (r \ y) c" using qq1 qq2 by simp - also have "\ = r \ (f bs y c)" - apply(rule perm2[symmetric]) - using qq3 fresh2 fr1 by (auto simp add: fresh_star_def) - also have "... = f bs y c" - apply(rule perm_supp_eq) - using qq3 fr1 fcb2 by (auto simp add: fresh_star_def) - finally show ?thesis by simp -qed - -lemma Abs_lst1_fcb2: - fixes a b :: "atom" - and x y :: "'b :: fs" - and c::"'c :: fs" - assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)" - and fcb1: "a \ c \ a \ f a x c" - and fresh: "{a, b} \* c" - and perm1: "\p. supp p \* c \ p \ (f a x c) = f (p \ a) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f b y c) = f (p \ b) (p \ y) c" - shows "f a x c = f b y c" -using e -apply(drule_tac Abs_lst_fcb2[where c="c" and f="\(as::atom list) . f (hd as)"]) -apply(simp_all) -using fcb1 fresh perm1 perm2 -apply(simp_all add: fresh_star_def) -done - lemma max_eqvt[eqvt]: "p \ (max (a :: _ :: pure) b) = max (p \ a) (p \ b)" by (simp add: permute_pure) diff -r dc003667cd17 -r 09834ba7ce59 Nominal/Ex/LetSimple1.thy --- a/Nominal/Ex/LetSimple1.thy Mon Jul 04 23:56:19 2011 +0200 +++ b/Nominal/Ex/LetSimple1.thy Tue Jul 05 04:18:45 2011 +0200 @@ -2,102 +2,6 @@ imports "../Nominal2" begin -lemma Abs_lst_fcb2: - fixes as bs :: "atom list" - and x y :: "'b :: fs" - and c::"'c::fs" - assumes eq: "[as]lst. x = [bs]lst. y" - and fcb1: "(set as) \* f as x c" - and fresh1: "set as \* c" - and fresh2: "set bs \* c" - and perm1: "\p. supp p \* c \ p \ (f as x c) = f (p \ as) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f bs y c) = f (p \ bs) (p \ y) c" - shows "f as x c = f bs y c" -proof - - have "supp (as, x, c) supports (f as x c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) - then have fin1: "finite (supp (f as x c))" - by (auto intro: supports_finite simp add: finite_supp) - have "supp (bs, y, c) supports (f bs y c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) - then have fin2: "finite (supp (f bs y c))" - by (auto intro: supports_finite simp add: finite_supp) - obtain q::"perm" where - fr1: "(q \ (set as)) \* (x, c, f as x c, f bs y c)" and - fr2: "supp q \* Abs_lst as x" and - inc: "supp q \ (set as) \ q \ (set as)" - using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"] - fin1 fin2 - by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) - have "Abs_lst (q \ as) (q \ x) = q \ Abs_lst as x" by simp - also have "\ = Abs_lst as x" - by (simp only: fr2 perm_supp_eq) - finally have "Abs_lst (q \ as) (q \ x) = Abs_lst bs y" using eq by simp - then obtain r::perm where - qq1: "q \ x = r \ y" and - qq2: "q \ as = r \ bs" and - qq3: "supp r \ (q \ (set as)) \ set bs" - apply(drule_tac sym) - apply(simp only: Abs_eq_iff2 alphas) - apply(erule exE) - apply(erule conjE)+ - apply(drule_tac x="p" in meta_spec) - apply(simp add: set_eqvt) - apply(blast) - done - have "(set as) \* f as x c" by (rule fcb1) - then have "q \ ((set as) \* f as x c)" - by (simp add: permute_bool_def) - then have "set (q \ as) \* f (q \ as) (q \ x) c" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm1) - using inc fresh1 fr1 - apply(auto simp add: fresh_star_def fresh_Pair) - done - then have "set (r \ bs) \* f (r \ bs) (r \ y) c" using qq1 qq2 by simp - then have "r \ ((set bs) \* f bs y c)" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm2[symmetric]) - using qq3 fresh2 fr1 - apply(auto simp add: set_eqvt fresh_star_def fresh_Pair) - done - then have fcb2: "(set bs) \* f bs y c" by (simp add: permute_bool_def) - have "f as x c = q \ (f as x c)" - apply(rule perm_supp_eq[symmetric]) - using inc fcb1 fr1 by (auto simp add: fresh_star_def) - also have "\ = f (q \ as) (q \ x) c" - apply(rule perm1) - using inc fresh1 fr1 by (auto simp add: fresh_star_def) - also have "\ = f (r \ bs) (r \ y) c" using qq1 qq2 by simp - also have "\ = r \ (f bs y c)" - apply(rule perm2[symmetric]) - using qq3 fresh2 fr1 by (auto simp add: fresh_star_def) - also have "... = f bs y c" - apply(rule perm_supp_eq) - using qq3 fr1 fcb2 by (auto simp add: fresh_star_def) - finally show ?thesis by simp -qed - -lemma Abs_lst1_fcb2: - fixes a b :: "atom" - and x y :: "'b :: fs" - and c::"'c :: fs" - assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)" - and fcb1: "a \ f a x c" - and fresh: "{a, b} \* c" - and perm1: "\p. supp p \* c \ p \ (f a x c) = f (p \ a) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f b y c) = f (p \ b) (p \ y) c" - shows "f a x c = f b y c" -using e -apply(drule_tac Abs_lst_fcb2[where c="c" and f="\(as::atom list) . f (hd as)"]) -apply(simp_all) -using fcb1 fresh perm1 perm2 -apply(simp_all add: fresh_star_def) -done - - atom_decl name nominal_datatype trm = diff -r dc003667cd17 -r 09834ba7ce59 Nominal/Ex/LetSimple2.thy --- a/Nominal/Ex/LetSimple2.thy Mon Jul 04 23:56:19 2011 +0200 +++ b/Nominal/Ex/LetSimple2.thy Tue Jul 05 04:18:45 2011 +0200 @@ -2,105 +2,6 @@ imports "../Nominal2" begin - -lemma Abs_lst_fcb2: - fixes as bs :: "atom list" - and x y :: "'b :: fs" - and c::"'c::fs" - assumes eq: "[as]lst. x = [bs]lst. y" - and fcb1: "(set as) \* c \ (set as) \* f as x c" - and fresh1: "set as \* c" - and fresh2: "set bs \* c" - and perm1: "\p. supp p \* c \ p \ (f as x c) = f (p \ as) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f bs y c) = f (p \ bs) (p \ y) c" - shows "f as x c = f bs y c" -proof - - have "supp (as, x, c) supports (f as x c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) - then have fin1: "finite (supp (f as x c))" - by (auto intro: supports_finite simp add: finite_supp) - have "supp (bs, y, c) supports (f bs y c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) - then have fin2: "finite (supp (f bs y c))" - by (auto intro: supports_finite simp add: finite_supp) - obtain q::"perm" where - fr1: "(q \ (set as)) \* (x, c, f as x c, f bs y c)" and - fr2: "supp q \* Abs_lst as x" and - inc: "supp q \ (set as) \ q \ (set as)" - using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"] - fin1 fin2 - by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) - have "Abs_lst (q \ as) (q \ x) = q \ Abs_lst as x" by simp - also have "\ = Abs_lst as x" - by (simp only: fr2 perm_supp_eq) - finally have "Abs_lst (q \ as) (q \ x) = Abs_lst bs y" using eq by simp - then obtain r::perm where - qq1: "q \ x = r \ y" and - qq2: "q \ as = r \ bs" and - qq3: "supp r \ (q \ (set as)) \ set bs" - apply(drule_tac sym) - apply(simp only: Abs_eq_iff2 alphas) - apply(erule exE) - apply(erule conjE)+ - apply(drule_tac x="p" in meta_spec) - apply(simp add: set_eqvt) - apply(blast) - done - have "(set as) \* f as x c" - apply(rule fcb1) - apply(rule fresh1) - done - then have "q \ ((set as) \* f as x c)" - by (simp add: permute_bool_def) - then have "set (q \ as) \* f (q \ as) (q \ x) c" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm1) - using inc fresh1 fr1 - apply(auto simp add: fresh_star_def fresh_Pair) - done - then have "set (r \ bs) \* f (r \ bs) (r \ y) c" using qq1 qq2 by simp - then have "r \ ((set bs) \* f bs y c)" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm2[symmetric]) - using qq3 fresh2 fr1 - apply(auto simp add: set_eqvt fresh_star_def fresh_Pair) - done - then have fcb2: "(set bs) \* f bs y c" by (simp add: permute_bool_def) - have "f as x c = q \ (f as x c)" - apply(rule perm_supp_eq[symmetric]) - using inc fcb1[OF fresh1] fr1 by (auto simp add: fresh_star_def) - also have "\ = f (q \ as) (q \ x) c" - apply(rule perm1) - using inc fresh1 fr1 by (auto simp add: fresh_star_def) - also have "\ = f (r \ bs) (r \ y) c" using qq1 qq2 by simp - also have "\ = r \ (f bs y c)" - apply(rule perm2[symmetric]) - using qq3 fresh2 fr1 by (auto simp add: fresh_star_def) - also have "... = f bs y c" - apply(rule perm_supp_eq) - using qq3 fr1 fcb2 by (auto simp add: fresh_star_def) - finally show ?thesis by simp -qed - -lemma Abs_lst1_fcb2: - fixes a b :: "atom" - and x y :: "'b :: fs" - and c::"'c :: fs" - assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)" - and fcb1: "a \ c \ a \ f a x c" - and fresh: "{a, b} \* c" - and perm1: "\p. supp p \* c \ p \ (f a x c) = f (p \ a) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f b y c) = f (p \ b) (p \ y) c" - shows "f a x c = f b y c" -using e -apply(drule_tac Abs_lst_fcb2[where c="c" and f="\(as::atom list) . f (hd as)"]) -apply(simp_all) -using fcb1 fresh perm1 perm2 -apply(simp_all add: fresh_star_def) -done - atom_decl name nominal_datatype trm = @@ -116,8 +17,6 @@ print_theorems - - thm bn_raw.simps thm permute_bn_raw.simps thm trm_assn.perm_bn_alpha diff -r dc003667cd17 -r 09834ba7ce59 Nominal/Nominal2.thy --- a/Nominal/Nominal2.thy Mon Jul 04 23:56:19 2011 +0200 +++ b/Nominal/Nominal2.thy Tue Jul 05 04:18:45 2011 +0200 @@ -1,6 +1,6 @@ theory Nominal2 imports - Nominal2_Base Nominal2_Abs + Nominal2_Base Nominal2_Abs Nominal2_FCB uses ("nominal_dt_rawfuns.ML") ("nominal_dt_alpha.ML") ("nominal_dt_quot.ML") diff -r dc003667cd17 -r 09834ba7ce59 Nominal/Nominal2_Abs.thy --- a/Nominal/Nominal2_Abs.thy Mon Jul 04 23:56:19 2011 +0200 +++ b/Nominal/Nominal2_Abs.thy Tue Jul 05 04:18:45 2011 +0200 @@ -1013,112 +1013,6 @@ unfolding prod_alpha_def by (auto intro!: ext) -lemma Abs_lst1_fcb: - fixes x y :: "'a :: at_base" - and S T :: "'b :: fs" - assumes e: "(Abs_lst [atom x] T) = (Abs_lst [atom y] S)" - and f1: "x \ y \ atom y \ T \ atom x \ (atom y \ atom x) \ T \ atom x \ f x T" - and f2: "x \ y \ atom y \ T \ atom x \ (atom y \ atom x) \ T \ atom y \ f x T" - and p: "S = (atom x \ atom y) \ T \ x \ y \ atom y \ T \ atom x \ S \ (atom x \ atom y) \ (f x T) = f y S" - and s: "sort_of (atom x) = sort_of (atom y)" - shows "f x T = f y S" - using e - apply(case_tac "atom x \ S") - apply(simp add: Abs1_eq_iff'[OF s s]) - apply(elim conjE disjE) - apply(simp) - apply(rule trans) - apply(rule_tac p="(atom x \ atom y)" in supp_perm_eq[symmetric]) - apply(rule fresh_star_supp_conv) - apply(simp add: supp_swap fresh_star_def s f1 f2) - apply(simp add: swap_commute p) - apply(simp add: Abs1_eq_iff[OF s s]) - done - -lemma Abs_lst_fcb: - fixes xs ys :: "'a :: fs" - and S T :: "'b :: fs" - assumes e: "(Abs_lst (ba xs) T) = (Abs_lst (ba ys) S)" - and f1: "\x. x \ set (ba xs) \ x \ f xs T" - and f2: "\x. supp T - set (ba xs) = supp S - set (ba ys) \ x \ set (ba ys) \ x \ f xs T" - and eqv: "\p. p \ T = S \ p \ ba xs = ba ys \ supp p \ set (ba xs) \ set (ba ys) \ p \ (f xs T) = f ys S" - shows "f xs T = f ys S" - using e apply - - apply(subst (asm) Abs_eq_iff2) - apply(simp add: alphas) - apply(elim exE conjE) - apply(rule trans) - apply(rule_tac p="p" in supp_perm_eq[symmetric]) - apply(rule fresh_star_supp_conv) - apply(drule fresh_star_perm_set_conv) - apply(rule finite_Diff) - apply(rule finite_supp) - apply(subgoal_tac "(set (ba xs) \ set (ba ys)) \* f xs T") - apply(metis Un_absorb2 fresh_star_Un) - apply(subst fresh_star_Un) - apply(rule conjI) - apply(simp add: fresh_star_def f1) - apply(simp add: fresh_star_def f2) - apply(simp add: eqv) - done - -lemma Abs_set_fcb: - fixes xs ys :: "'a :: fs" - and S T :: "'b :: fs" - assumes e: "(Abs_set (ba xs) T) = (Abs_set (ba ys) S)" - and f1: "\x. x \ ba xs \ x \ f xs T" - and f2: "\x. supp T - ba xs = supp S - ba ys \ x \ ba ys \ x \ f xs T" - and eqv: "\p. p \ T = S \ p \ ba xs = ba ys \ supp p \ ba xs \ ba ys \ p \ (f xs T) = f ys S" - shows "f xs T = f ys S" - using e apply - - apply(subst (asm) Abs_eq_iff2) - apply(simp add: alphas) - apply(elim exE conjE) - apply(rule trans) - apply(rule_tac p="p" in supp_perm_eq[symmetric]) - apply(rule fresh_star_supp_conv) - apply(drule fresh_star_perm_set_conv) - apply(rule finite_Diff) - apply(rule finite_supp) - apply(subgoal_tac "(ba xs \ ba ys) \* f xs T") - apply(metis Un_absorb2 fresh_star_Un) - apply(subst fresh_star_Un) - apply(rule conjI) - apply(simp add: fresh_star_def f1) - apply(simp add: fresh_star_def f2) - apply(simp add: eqv) - done - -lemma Abs_res_fcb: - fixes xs ys :: "('a :: at_base) set" - and S T :: "'b :: fs" - assumes e: "(Abs_res (atom ` xs) T) = (Abs_res (atom ` ys) S)" - and f1: "\x. x \ atom ` xs \ x \ supp T \ x \ f xs T" - and f2: "\x. supp T - atom ` xs = supp S - atom ` ys \ x \ atom ` ys \ x \ supp S \ x \ f xs T" - and eqv: "\p. p \ T = S \ supp p \ atom ` xs \ supp T \ atom ` ys \ supp S - \ p \ (atom ` xs \ supp T) = atom ` ys \ supp S \ p \ (f xs T) = f ys S" - shows "f xs T = f ys S" - using e apply - - apply(subst (asm) Abs_eq_res_set) - apply(subst (asm) Abs_eq_iff2) - apply(simp add: alphas) - apply(elim exE conjE) - apply(rule trans) - apply(rule_tac p="p" in supp_perm_eq[symmetric]) - apply(rule fresh_star_supp_conv) - apply(drule fresh_star_perm_set_conv) - apply(rule finite_Diff) - apply(rule finite_supp) - apply(subgoal_tac "(atom ` xs \ supp T \ atom ` ys \ supp S) \* f xs T") - apply(metis Un_absorb2 fresh_star_Un) - apply(subst fresh_star_Un) - apply(rule conjI) - apply(simp add: fresh_star_def f1) - apply(subgoal_tac "supp T - atom ` xs = supp S - atom ` ys") - apply(simp add: fresh_star_def f2) - apply(blast) - apply(simp add: eqv) - done end