# HG changeset patch # User Cezary Kaliszyk # Date 1308568096 -32400 # Node ID 06d91b7b575609665e6616a2b054bcde3512126c # Parent 99583bd6a7b2e6d44d0c9bd651b30b46ca889a4b Abs_set_fcb diff -r 99583bd6a7b2 -r 06d91b7b5756 Nominal/Nominal2_Abs.thy --- a/Nominal/Nominal2_Abs.thy Mon Jun 20 10:16:12 2011 +0900 +++ b/Nominal/Nominal2_Abs.thy Mon Jun 20 20:08:16 2011 +0900 @@ -1063,6 +1063,33 @@ apply(simp add: eqv) done +lemma Abs_set_fcb: + fixes xs ys :: "'a :: fs" + and S T :: "'b :: fs" + assumes e: "(Abs_set (ba xs) T) = (Abs_set (ba ys) S)" + and f1: "\x. x \ ba xs \ x \ f xs T" + and f2: "\x. supp T - ba xs = supp S - ba ys \ x \ ba ys \ x \ f xs T" + and eqv: "\p. p \ T = S \ p \ ba xs = ba ys \ supp p \ ba xs \ ba ys \ p \ (f xs T) = f ys S" + shows "f xs T = f ys S" + using e apply - + apply(subst (asm) Abs_eq_iff2) + apply(simp add: alphas) + apply(elim exE conjE) + apply(rule trans) + apply(rule_tac p="p" in supp_perm_eq[symmetric]) + apply(rule fresh_star_supp_conv) + apply(drule fresh_star_perm_set_conv) + apply(rule finite_Diff) + apply(rule finite_supp) + apply(subgoal_tac "(ba xs \ ba ys) \* f xs T") + apply(metis Un_absorb2 fresh_star_Un) + apply(subst fresh_star_Un) + apply(rule conjI) + apply(simp add: fresh_star_def f1) + apply(simp add: fresh_star_def f2) + apply(simp add: eqv) + done + lemma Abs_res_fcb: fixes xs ys :: "('a :: at_base) set" and S T :: "'b :: fs"