# HG changeset patch # User Christian Urban # Date 1259413381 -3600 # Node ID 03671ff78226adcb48e9230bd719edf387dfdf7b # Parent 7beed9b75ea28e7fe1cb5e601a6339c6fd463d08 tuned comments diff -r 7beed9b75ea2 -r 03671ff78226 QuotMain.thy --- a/QuotMain.thy Sat Nov 28 13:54:48 2009 +0100 +++ b/QuotMain.thy Sat Nov 28 14:03:01 2009 +0100 @@ -931,23 +931,23 @@ (FIRST' [ (K (print_tac "start")) THEN' (K no_tac), - (* "cong" rule of the of the relation *) - (* \a \ c; b \ d\ \ a \ b = c \ d *) + (* "cong" rule of the of the relation *) + (* a \ b = c \ d ----> \a \ c; b \ d\ *) DT ctxt "1" (resolve_tac trans2), - (* (R1 ===> R2) (\x\) (\\) \ \R1 x y\ \ R2 (\x) (\y) *) + (* (R1 ===> R2) (\x\) (\y\) ----> \R1 x y\ \ R2 (\x) (\y) *) DT ctxt "2" (lambda_res_tac ctxt), - (* = (Ball\) (Ball\) \ = (\) (\) *) + (* (op =) (Ball\) (Ball\) ----> (op =) (\) (\) *) DT ctxt "3" (rtac @{thm RES_FORALL_RSP}), - (* (R1 ===> R2) (Ball\) (Ball\) \ \R1 x y\ \ R2 (Ball\x) (Ball\y) *) + (* (R1 ===> R2) (Ball\) (Ball\) ----> \R1 x y\ \ R2 (Ball\x) (Ball\y) *) DT ctxt "4" (ball_rsp_tac ctxt), - (* = (Bex\) (Bex\) \ = (\) (\) *) + (* (op =) (Bex\) (Bex\) ----> (op =) (\) (\) *) DT ctxt "5" (rtac @{thm RES_EXISTS_RSP}), - (* (R1 ===> R2) (Bex\) (Bex\) \ \R1 x y\ \ R2 (Bex\x) (Bex\y) *) + (* (R1 ===> R2) (Bex\) (Bex\) ----> \R1 x y\ \ R2 (Bex\x) (Bex\y) *) DT ctxt "6" (bex_rsp_tac ctxt), (* respectfulness of constants *) @@ -956,7 +956,7 @@ (* reflexivity of operators arising from Cong_tac *) DT ctxt "8" (rtac @{thm refl}), - (* R (\) (Rep (Abs \)) \ R (\) (\) *) + (* R (\) (Rep (Abs \)) ----> R (\) (\) *) (* observe ---> *) DT ctxt "9" ((instantiate_tac @{thm REP_ABS_RSP(1)} ctxt THEN' (RANGE [SOLVES' (quotient_tac quot_thms)]))), @@ -968,7 +968,7 @@ (* R (t $ \) (t' $ \) \ Cong provided R = (op =) and t does not need lifting *) DT ctxt "B" (Cong_Tac.cong_tac @{thm cong}), - (* = (\x\) (\x\) \ = (\) (\) *) + (* (op =) (\x\) (\x\) ----> (op =) (\) (\) *) DT ctxt "C" (rtac @{thm ext}), (* reflexivity of the basic relations *) @@ -978,12 +978,17 @@ DT ctxt "E" (atac), (* seems not necessay:: DT ctxt "F" (SOLVES' (simp_tac (HOL_ss addsimps @{thms FUN_REL.simps}))),*) + + (* (R1 ===> R2) (\) (\y\) ----> \R1 x y\ \ R2 (\x) (\y) *) + (* (R1 ===> R2) (\x\) (\) ----> \R1 x y\ \ R2 (\x) (\y) *) DT ctxt "G" (weak_lambda_res_tac ctxt), - (* (op =) ===> (op =) \ (op =), needed to apply respectfulness theorems *) - (* works globally *) + (* (op =) ===> (op =) \ (op =), needed in order to apply respectfulness theorems *) + (* global simplification *) DT ctxt "H" (CHANGED o (asm_full_simp_tac (HOL_ss addsimps @{thms FUN_REL_EQ})))]) +*} +ML {* fun all_r_mk_comb_tac' ctxt rty quot_thms rel_refl trans2 rsp_thms = REPEAT_ALL_NEW (r_mk_comb_tac' ctxt rty quot_thms rel_refl trans2 rsp_thms) *}