Welcome!

@ Files and Programme at: http://goo.gl/Aslc9

@ Have you already installed Nominal Isabelle?

If yes, good.
isabelle jedit -1 HOL-Nominal2 Tutoriall.thy

If no, install it now.


http://goo.gl/Aslc9

Nominal Isabelle

Cezary Kaliszyk and Christian Urban

Quick overview:
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+ type preservation and progress




A Quick and Dirty Overview
of Nominal Isabelle

@ Nominal Isabelle is a definitional extension of
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A Quick and Dirty Overview
of Nominal Isabelle

@ Nominal Isabelle is a definitional extension of
Isabelle/HOL (i.e. no additional axioms, only
HOL),

@ provides an infrastructure for reasoning about
named binders,

@ for example lets you define

nominal_datatype lam =
Var "name"
| App Illamll Illamll
| Lam x::"name" |::"lam" bind x in | ("Lam [_]. _")

@ which give you named a-equivalence classes:
Lam [x].(Var x) = Lam [y].(Var y)



A Six-Slides
Crash-Course on How
to Use Isabelle and

jEdit



Isabelle/jEdit

£l Edt_Search Markers Foldng View Wities Magros elugins Help
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ssbele 1)

imports Main
begin

‘

datatype 'a seq = Empty | Seq 'a "'a seq"

= |fun conc "a seq > 'a seq = 'a seq]

+ theory seq =
" heacer {1 Finte seauences 1
v Seq

dotatype ' seq - Empty | 5¢

poenis

fun raverse i 72 5eq = a s¢
 lemma conc_empty: "cone x5

lwhere]
e
“conc Empty ys = ys" > temma conc_assoc on (¢
| "conc (Seq x xs) ys = Seq x (conc xs ys)" » lemma reverse_conc; “revers
 lemma raverss revarsa: rev
end
~ |fun reverse :: "'a seq = 'a seq”
lwhere
“reverse Empty = Empty"
LI "reverse (seq x xs) = conc (reverse xs) (Seq x Empty)" it
100% [¥) L racing 4 Auto update | update
constants r
conc :: "'aseq = 'a seq = 'a seq"
Found termination order: "(\p. size (fst p)) <*mlex*> {}"
(8[| ot | rove session B8  —
(bl sdlock 7 ssabele) - - - - UGHIIBBAMS .57 7M

106 (1457731

Important points:

@ the complete buffer is checked

@ checking also as you type



Symbols

@ ... jEdit provides a nice way to input non-ascii
characters; for example:

vV,3,0.# N T, X, #, €, ...

@ they need to be input via the combination
name-of-symbol or \<name-of-symbol>



Symbols

@ ... jEdit provides a nice way to input non-ascii
characters; for example:

vV,3,0.# N T, X, #, €, ...

@ they need to be input via the combination
name-of-symbol or \<name-of-symbol>

@ short-cuts for often used symbols

==> ... = /\ ... A
=> ... = \/ ... V



Isabelle Theories

@ Every theory is of the form

theory Name
imports T1...T,
begin

end



Isabelle Theories

@ Every theory is of the form

theory Name
imports T1...T,
begin

end

@ Normally, one T will be the theory Main.



Types

@ Isabelle is typed, has polymorphism and
overloading.
o Base types: nat, bool, string, lam...
o Type-formers: ‘alist,’'a X 'b, c set,'a = 'b...
e Type-variables: ‘a,’b, c, ...



Types

@ Isabelle is typed, has polymorphism and
overloading.

o Base types: nat, bool, string, lam...
e Type-formers: ‘alist,’a X 'b, 'c set,'a = 'b...
o Type-variables: ‘a,'b, ‘c, ...

@ Types can be queried in Isabelle using:

typ nat

typ bool

typ lam

fyp Il(la >< lb)ll
typ "'c set"

typ “a list"
typ "lam = nat"



Terms

@ The well-formedness of terms can be queried using:

term c

term "1::nat"

term 1

term "{1, 2, 3::nat}"
term "[1, 2, 3]"

term "(True, "c")"
term "Suc 0"

term "Lam [x].Var x"
term "App t1 +2"
term "atom (x::name)"



Terms

@ The well-formedness of terms can be queried using:

term c

term "1::nat"

term 1

term "{1, 2, 3::nat}"
term "[1, 2, 3]"

term "(True, "c")"
term "Suc 0"

term "Lam [x].Var x"
term "App t1 +2"
term "atom (x::name)"

@ Isabelle provides some useful colour feedback
term "True" gives "True" :: "bool"

term "true" gives "true" : "a
term "V x. P x" gives "V x.Px": "bool"



Formulae

@ Every formula in Isabelle needs to be of type bool

term "True"

term "True A False"
term "{1,2,3} = {3,2,1}"
term "V x. P x"

ter‘m IIA _) BII

term "atom x # t"



Formulae

@ Every formula in Isabelle needs to be of type bool

term "True"

term "True A False"
term "{1,2,3} = {3,2,1}"
term "V x. P x"

ter‘m IIA _) BII

term "atom x # t"

@ When working with Isabelle, one deals with an
object logic (that is HOL) and Isabelle's rule
framework (called Pure).

term "A —> B"
term " /\x. P x"

term"A — B"
term "V x. P x"



Inductive Predicates
and Theorems



inductive
eval :: "lam = lam = bool" ("_ | _" [60, 60] 60)
where
e_Lam[intro]: "Lam [x].t | Lam [x].t"
| e_Applintro]:
"[t1 § Lam [x].+; 12 Y v t[x:=v']1{ v] = App 11 12 { V"



inductive
eval :: "lam = lam = bool" ("_ |} _" [60, 60] 60)
where
e_Lam[intro]: "Lam [x].t {} Lam [x].t"
| e_App[intro]:
"[t1 § Lam [x].+; 12 Y v t[x:=v']1{ v] = App 11 12 { V"

@ The type of the predicate is always something to
bool.
@ The attribute [intro] adds the corresponding

clause to the hint-theorem base.
@ The clauses correspond to the rules

Lam [x]. + { Lam [x]. T
t1Llam[x].t 2V t[xu=v]{v

Apptlt2 v




Theorems

@ Isabelle's theorem database can be queried using

thme_Lam
thm e_App
thm conjI
thm conjunctl



Theorems

@ Isabelle's theorem database can be queried using

thme_Lam
thm e_App
thm conjI
thm conjunctl

e_Lam:
e_App:

conjI:
conjunctl:

Lam [?x]. 2t | Lam [?x]. ?t
[211.0 | Lam [?x]. 2t; 212.0 | 2V 2t [?x == 2v'] |} 3
= App ?t1.0212.0 || ?v
P—=7?2Q= 2P A?Q

PNAN?Q=—?P




Theorems

@ Isabelle's theorem database can be queried using

thme_Lam
thm e_App
thm conjI
thm conjunctl

e_Lam:
e_App:

conjI:
conjunctl:

schematic variables
Lam [?x]. 2t | Lam [?x]. ?t

[211.0 | Lam [?x]. ?t; 212.0 | 2V 2t [?x == V'] | V]
= App ?t1.0212.0 || ?v

P =?2Q=?PA2Q

PPAN?2Q=— 2P




Generated Theorems

@ Most definitions result in automatically generated
theorems: for example

thm eval.intros
thm eval.induct



Theorem / Lemma / Corollary

@ ...they are of the form:

theorem theorem_name:
fixes x::"type"

assumes "assm;"
and "assmy"

shows '"statement"

@ Grey parts are optional.



Theorem / Lemma / Corollary

® ...they ar¢|cmma alpha_equ:
shows "Lam [x].Var x = Lam [y].Var y"

lemma Lam_freshness:
assumes a: "atom y # Lam [x].t"
shows "(y = x) V (y # x A atom y # t)"

lemma neutral_element:
fixes x::"nat"
shows "x + 0 = x"

@ Grey parts are optional.



Isar Proofs



An Isar Proof ...




An Isar Proof ...

goal

stepping stones

stepping stones

assumptions




An Isar Proof ...

@ A rough schema of an Isar Proof:

have  "assumption"
have  "assumption"
have "statement"
have "statement"
"statement"

ged



An Isar Proof ...

@ A rough schema of an Isar Proof:

have nl: "assumption”
have n2: "assumption”

have n: "statement"
have m: "statement"

"statement"
ged

@ each have-statement can be given a label / name



An Isar Proof ...

@ A rough schema of an Isar Proof:

have nl: "assumption" by justification
have n2: "assumption" by justification

have n: "statement" by justification
have m: "statement" by justification

"statement" by justification
ged

@ each have-statement can be given a label / name
@ obviously, everything needs to have a justifiation



Justifications

@ Omitting proofs

sorry
@ Available facts
by fact
@ Automated proofs
by simp simplification (equations, ...)
by auto simplification & proof search

by blast proof search



Justifications

@ Omitting proofs
sorry

@ Available facts
by fact

@ Automated proofs
by simp  Justifications can also be of the form:

by auto using ...by ...
by blast
using ih by ...
using nl1 n2 n3 by ...
using lemma_name...by ...




Proofs by Induction

@ Proofs by induction involve cases, which can be
stated as:

proof (induct)
(Case-Name x...)
have "assumption" by justification

have "statment" by justification
"statment" by justification

next
(Another-Case-Name vy. . .)



A Chain of Facts

@ TIsar allows you to build a chain of facts as
follows:

have nl: "..." have *..."

have n2: *..." moreover have *..."
have ni: "..." moreover have *..."
have *..." usingnl n2 ...ni  ultimately have *..."

@ also works for



Eval Implies Machine

theorem
assumes a: "t { t"
shows "(t,[]) —* (+[])"

using a
proof (induct)
(e_Lam x t) (no assumption avail.)
"(Lam [x].1,[1) —* (Lam [x].t,[])" sorry
next
(e_Appti x TtV V)
have al: "t; | Lam [x].t" by fact (all assumptions)

have ihl: "(t;,[]) —* (Lam [x].t,[])" by fact
have a2: "t; |l v" by fact

have ih2: " (t5,[1) —* (V'[])" by fact

have a3: "t[x::=v'] |} v" by fact

have ih3: "(t[x:=V'],[1) —* (v,[])" by fact

"(App t1 t2,[1) = (v,[1)" sorry
ged



Eval Implies Machine

theorem
assumes a: "t { t"
shows "(t,[]) —* (+[])"

using a
proof (induct)
(e_Lam x t) (no assumption avail.)
"(Lam [x].1,[1) —* (Lam [x].t,[])" sorry
next
(e_Appti x TtV V)
have al: "t; | Lam [x].t" by fact (all assumptions)

have ihl: "(t;,[]) —* (Lam [x].t,[])" by fact
have a2: "t; |l v" by fact

have ih2: " (t5,[1) —* (V'[])" by fact

have a3: "t[x::=v'] |} v" by fact

have ih3: "(t[x:=V'],[1) —* (v,[])" by fact

"(App t1 t2,[1) —* (v,[])" sorry ‘

ged



Eval Implies Machine

theorem
assumes a: "t | t" thm machine.intros
shows "(t,[]) —* (t'[])" thm machines.intros
using a thm eval_to_val }
proof (induct)
(e_Lam x t) (no assumption avail.)

"(Lam [x].1,[1) —* (Lam [x].t,[])" sorry
next
(e_Appti x TtV V)
have al: "t; | Lam [x].t" by fact (all assumptions)
have ihl: "(t;,[]) —* (Lam [x].t,[])" by fact
have a2: "t; |l v" by fact
have ih2: " (t5,[1) —* (V'[])" by fact
have a3: "t[x::=v'] |} v" by fact
have ih3: "(t[x:=V'],[1) —* (v,[])" by fact

"(App t1 t2,[1) —* (v,[])" sorry ‘

ged



AL

Proof Tdea: ' " nlies Machine

(App t1 t2,[1)
—* (t1,[CAppL O t2])
—* (Lam [x].t,[CAppL [J t2])
—* (t3,[CAppR (Lam [x].+) O1)
—* (V' ,[CAppR (Lam [x].t) OI])
—* (t[x::=v'][1)
*{v.[])

i)

v

next
(e_App 1 x t t2 V' V)

thm machines.intros

thm machine.intros
thm eval_to_val

(no assumption avail.)
im [x1.1,[1)" sorry

have al: "t; | Lam [x].t" by fact (all assumptions)
have ihl: "(t;,[]) —* (Lam [x].t,[])" by fact

have a2: "t; |l v" by fact

have ih2: " (t5,[1) —* (V'[])" by fact
have a3: "t[x::=v'] |} v" by fact
have ih3: "(t[x:=V'],[1) —* (v,[])" by fact

"(App t1 t2,[1) —* (v,[])" sorry ‘

ged




Eval Implies Machine

theorem
assumes a: "t | t" thm machine.intros
shows "(t,[]) —* (t'[])" thm machines.intros
using a thm eval_to_val }
proof (induct)
(e_Lam x t) (no assumption avail.)

"(Lam [x].1,[1) —* (Lam [x].t,[])" sorry
next
(e_Appti x TtV V)
have al: "t; | Lam [x].t" by fact (all assumptions)
have ihl: "(t;,[]) —* (Lam [x].t,[])" by fact
have a2: "t; |l v" by fact
have ih2: " (t5,[1) —* (V'[])" by fact
have a3: "t[x::=v'] |} v" by fact
have ih3: "(t[x:=V'],[1) —* (v,[])" by fact

"(App t1 t2,[1) —* (v,[])" sorry ‘

ged



Eval Implies Machine

theorem
assumes at | t" thm machine.intros
shows "(t{[]) —* (+'[1)" thm machines.intros
using a thm eval_to_val }
proof (induct)
(e_Lam x t) (no assumption avail.)

"(Lam [x].1,[1) —* (Lam [x].t,[])" sorry
next
(e_Appti x TtV V)
have al: "t; | Lam [x].t" by fact (all assumptions)
have ihl: "(t;,[]) —* (Lam [x].t,[])" by fact
have a2: "t; |l v" by fact
have ih2: " (t5,[1) —* (V'[])" by fact
have a3: "t[x::=v'] |} v" by fact
have ih3: "(t[x:=V'],[1) —* (v,[])" by fact

"(App t1 t2,[1) —* (v,[])" sorry ‘

ged



Eval Implies Machine

theorem
assumes a: "t | " thm machine.intros
shows " (T,ES> —* <1‘1E5>" thm machines.intros
using a thm eval_to_val }
proof (induct arbitrary: Es)
(e_Lam x t) (no assumption avail.)
"(Lam [x].t,Es) —* (Lam [x].t Es)" sorry
next
(e_Appti x TtV v)
have al: "t; | Lam [x].t" by fact (all assumptions)

have ih1: "AEs. (t; Es) —* (Lam [x].t,Es)" by fact
have a2: "t; |l v" by fact

have ih2: "\Es. (12 Es) —* (v'Es)" by fact

have a3: "t[x::=v'] |} V" by fact

have ih3: " /\Es. (t[x::=V'],Es) —* (v,Es)" by fact

"(App t1 t2,Es) —* (v,Es)" sorry ‘

ged



Equational Reasoning in Isar

@ One frequently wants to prove an equation
t1 = t,, by means of a chain of equations, like

t1:t2:t3:t4:...:tn



Equational Reasoning in Isar

@ One frequently wants to prove an equation
t1 = t,, by means of a chain of equations, like

t1:t2:t3:t4:...:tn

@ This kind of reasoning is supported in Isar as:

have "t; = 12" by just.
also have "... = 13" by just.
also have "... = 14" by just.

also have "... = 1,," by just.
finally have "t; = +,," .



Weakening Lemma
(trivial / routine)



Definition of Types

nominal_datatype ty =
tVar "string"
| TAr‘r‘ "TYH "Ty" (II_ _> _II)



Definition of Types

nominal_datatype ty =
tVar "string"
| TAI"F‘ "Ty" "Ty" (II_ _> _II)

(iB-T)EF valid I" 't :T7—>1Ty, I'Hty:Th

F"CD:T F|—t1t2:T2

atomax # I' (x:Ty):=T'Ft: T
I'-Xx.t:Ti—1T,

atom x # I' valid I
valid [] valid (z:T):: I




Typing Judgements

types ty_ctx = "(name X ty) list"

inductive

valid :: "ty_ctx = bool"
where

vi: "valid []"
| va: "[valid I'; atom x#I'|—> valid ((x, T)#I')"
inductive

typing :: "ty_ctx = lam = ty = bool" ("_F _:_")
where

t_Var:"[valid I'; (x,T) €Eset I'| = I' - Var x: T"
| T_App "IIF [ 1 T1—>T2,' I 1o T1]| = I App 112 T2"
| +_Lam: "[atom x#I'; (x, T))#T'Ft:T,] = I' - Lam [x].t: Ty — 1



Typing Judgements

types ty_ctx = "(name X ty) list" #:  list cons
#: freshness
inductive (\<sharp>)
valid :: "ty_ctx = bool"
where
vi: "valid []"
| va: "[valid I'; atom x#I'|—> valid ((x, T)#I')"

inductive
typing :: "ty_ctx = lam = ty = bool" ("_F _:_")
where
t_Var:"[valid I'; (x,T) €Eset I'| = I' - Var x: T"
|+ _App: "[I’'FtH =T 't T = I'- Appt t2: T"
| +_Lam: "[atom x#I'; (x, T))#T'Ft:T,] = I' - Lam [x].t: Ty — 1



Freshness

@ Freshness is a concept automatically defined in
Nominal Isabelle; it corresponds roughly fo the
notion of "not-free-in".

lemma
fixes x::"name"
shows "atom x # Lam [x].t"
and "atom x # (t1, 12) = atom x # App t1 12"
and "atom x # Var y = atom x # y"
and "[atom x # t1; atom x # 2] = atom x # (11, 12)"
and "[atom x # I1; atom x # 12] => atom x # (11 @ 12)"
and "atom x #y =—> x # y"
by (simp_all add: lam.fresh fresh_append fresh_at_base)



Freshness

@ Freshness is a concept automatically defined in
Nominal Isabelle; it corresponds roughly fo the
notion of "not-free-in".

lemma ty_fresh:
fixes x::"name"
and T:"ty"
shows "atom x # T"
by (induct T rule: ty.induct)
(simp_all add: ty.fresh pure_fresh)



The Weakening Lemma

abbreviation

"sub_ty_ctx" i "ty_ctx = ty_ctx = bool" ("_LC _")
where

IIF1 EI’ZEVX.XESeTFl —>X€SCTF2"

lemma weakening:
fixes I'y I'::"(name X ty) list"
assumesa: "Iy Ht+: T
and b: "valid I'y"
and c "Iy ; r,"
shows "I'y - t: T"
usingabc
proof (induct arbitrary: I';)



Your Turn: Variable Case

lemma
fixes I'y I'yi"ty_ctx"
assumesa: "I’y Ht: T"
and b: "valid I',"
and c"r,cry,
shows "I's —1: T"
usingabc
proof (induct arbitrary: I';)
(t_Var I'y xT)
have al: "valid I'y" by fact
have a2: "(x,T) € set I'," by fact
have a3: "valid I'," by fact
have a4: "I, C I'," by fact

"I'; = Var x : T sorry



Our Proof for the Variable Case

lemma
fixes I'y I'yi"ty_ctx"
assumesa: "I’y Ht: T"
and b: "valid I',"
and c"r, CI'y"
shows "I's —1: T"

usingabc
proof (induct arbitrary: I';)
(t_Var I'; xT)
have "I'; C I'," by fact
moreover
have "valid I';" by fact
moreover

have "(x,T)€ set I'y" by fact
ultimately "I'y = Var x : T" by auto



Induction Principle for Typing

@ The induction principle that comes with the
typing definition is as follows:

VI xT. (x:T) € I' AvaldI' = PI' ()T

VIt ts 17 Ts.
PFtl(T1—>T2)/\PFt2T1 iPF(tltz)Tz

VF$tT1 Tz.
cH#IT NP ((x:Th):I)tT, = PI'(Ax.t) (11 —T3)

I'-t:T= PI'tT

[No‘re the quantifiers! ]




Proof Idea for the Lambda Cs.

cH# I ()l Ht:T
' X\x.t: T — T,

@ If INHt:T), thenVIs.valid I, AT In=I5+t:T,



Proof Idea for the Lambda Cs.

eH# I (x:T)aT'+t:T,
' X\x.t: T — T,

o If Fll_t:Tl then ‘v’Fz.validfz VAN FIEF2:>F2|_t:T2
Forall I, x, t, T} and T5:

@ We know:
VI3.valid I3 A (m:Tl)::FIE.Fg = I3 Ht:T1T}
xr # Fl
valid I
INC I

@ We have to show:
le—)\w.t:Tl—>T2



Proof Idea for the Lambda Cs.

eH# I (x:T)aT'+t:T,
' X\x.t: T — T,

o If Fll_t:Tl then ‘v’Fz.validfz VAN FIEF2:>F2|_t:T2
Forall I, x, t, T} and T5:

@ We know:
VI3.valid I3 A (m:Tl)::FIE.Fg = I3 Ht:T1T}
xr # Fl
valid I
INC I

@ We have to show:
le—)\w.t:Tl—>T2



Proof Idea for the Lambda Cs.

cH# I ()l Ht:T
' X\x.t: T — T,

o If Fll_t:Tl Then‘v’Fz.validfz /\FIEF2:>F2|_13:T2

Forall I, x, t, T} and T5: [F?, — (z:T) = I ]
@ We know: —
VFg.VG“ng/\(m:Tl)::Flgrg:>F3 Ft:T
x # I3
valid I
INC I

@ We have to show:
le—)\w.t:Tl—>T2



Your Turn: Lambda Case

lemma
fixes I'y I'y:i"ty_ctx"
assumesa:"I''H1: T"
and b: "valid I'y"
and c"ryCI,"
shows "'y —1:T"

usingab c

proof (induct arbitrary: I';)

('r_LOm X Fl T t Tz)

have ih: "AI';. [valid I's; (x, T{)#I'y CE I's] = I's - t: T," by fact
have a0: "atom x#1'\" by fact
have al: "valid I'," by fact

have a2: "I'; C I'," by fact
"I'; - Lam [x].t : Ty — T," sorry l



Strong Induction Principle
VIzT. (x:T) € I' AvalidI" = P I' () T
VI tl tg T1 T2 .

PIt, (T1—>T2) NPTty Ty
= PI (tit,) Ty
VI xt T1 T2 .
x# I N
P((x:Th):=:I)tT, = PI'(Ax.t) (1T —T3)
I'=t:T=PItT
@ Instead we are going to use the strong induction

principle and set up the induction so that the
binder “avoids" I5.




2nd Attempt

lemma
fixes I'y I'y:i"ty_ctx"
assumesa: "'t Ht:T"
and b: "valid I'y"
and ac"r,cry
shows"I'y = 1:T"

usingabc

proof (induct arbitrary: I';)

(T_Lam X Fl T1 T T2)

have ih: "AI';. [valid I's; (x, T{)#I'y C I's] = I's + t: T," by fact
have a0: "atom x#1I';" by fact
have al: "valid I';" by fact
have a2: "Iy C I'," by fact

“I'y = Lam [x].t: Ty — T," sorry



2nd Attempt

lemma
fixes I'y I'y:i"ty_ctx"
assumesa: "I’y H+: T
and b: "valid I'y"
and ac"r,cry
shows"I'y = 1:T"
usingabc
proof (nominal_induct avoiding: I'; rule: typing.strong_induct)
(T_Lam X Fl T1 T T2)
have vc: "atom x#1I'," by fact
have ih: "AL;. [valid I's; (x, T\)#, C I's]) = I's - t: T," by fact
have a0: "atom x#1"1" by fact
have al: "valid I'," by fact
have a2: "Iy C I'," by fact

"I'; = Lam [x].t: Ty — T," sorry



lemma weakening:
fixes I'y I'yi"ty_ctx"
assumesa: "I’y t: T"and b: "valid I'y" and ¢c: "I"; & I',"
shows"I's = 1: T"
usingab c
proof (nominal_induct avoiding: I'; rule: typing.strong_induct)
(T_Lam X Fl T1 T T2)
have vc: "atom x#1I'," by fact
have ih: "[valid ((x, T1)# ), (x, T)#T C(x, T )#T,)
= (x,T1)#I; - +:T," by fact
have "I'y C I'," by fact
then have "(x, T )#I'; C (x,T,)#I;" by simp
moreover
have "valid I';" by fact
then have "valid ((x,T1)#1I';)" using vc by auto
ultimately have "(x,T;)#I'y - 1 : T," using ih by simp
then "I'y = Lam [x].t © T;—T," using vc by auto
qed (auto)



How To Prove
False Using the
Variable Convention
(on Paper)



So Far So Good

@ A Faulty Lemma with the Variable Convention?

Variable Convention:

If M,,..., M, occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound
variables are chosen to be different from the free variables.

Barendregt in "The Lambda-Calculus: Its Syntax and Semantics”

Inductive Definitions: Rule Inductions:

1.) Assume the property for
the premises. Assume
the side-conditions.

2.) Show the property for
the conclusion.

prem, ...prem, scs
concl




Faulty Reasoning

@ Consider the two-place relation foo:

- te=t
T T tyty— 1t Ax.t — t
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Faulty Reasoning

@ Consider the two-place relation foo:

- t=t
T—T tity—>tity ot ¢

@ The lemma we going to prove:
Lett — t'. If y # t theny # t'.

@ Cases 1 and 2 are trivial:

o If y # x theny # x.
o Ify#tltgfheny#tltz.



Faulty Reasoning

@ Consider the two-place relation foo:

- t=t
T—T tity—>tity ot ¢

@ The lemma we going to prove:
Lett — t'. If y # t theny # t'.

@ Case 3:
o We know y # Ax.t. We have to show y # t'.
o The IH says: if y # t theny # t'.
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Variable Convention:

If M,,..., M, occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound vari-
ables are chosen to be different from the free variables.

In our case:
The free variables are y and t’; the bound one is .

By the variable convention we conclude that  # y.

Lett — t'. If y # t theny # t'.

@ Case 3:
o We know y # Ax.t. We have to show y # t'.
o The IH says: if y # t theny # t'.
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Variable Convention:

If M,,..., M, occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound vari-
ables are chosen to be different from the free variables.

In our case:

The free variables are y and t’; the bound one is .

By the variable convention we conclude that  # y.

yZfv(\z.t) <= yZfv(t)—{z} L yZfv(t)
@ Case 3. (\/

o We know y # Ax.t. We have to show y # t'.
o The IH says: if y # t theny # t'.
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Variable Convention:

If M,,..., M, occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound vari-
ables are chosen to be different from the free variables.

In our case:

The free variables are y and t’; the bound one is .

By the variable convention we conclude that  # y.

yZfv(\z.t) <= yfv(t)—{z} L4 yfv(t)
@ Case 3. (\/

o We know y # Ax.t. We have to show y # t'.

o The IH says: if y # t theny # t'.
o So we have y # t. Hence y # t’ by IH. Done!




Faulty Reasoning

@ Consider the two-place relation foo:

- t=t
T—T tity—>tity ot ¢

@ The lemma we going to prove:
Lett — t'. If y # t theny # t'.

@ Case 3:
o We know y # Ax.t. We have to show y # t'.

o The IH says: if y # t theny # t'.
o So we have y # t. Hence y # t’ by IH. Done!



VC-Compatibility

@ We introduced two conditions that make the VC
safe to use in rule inductions:

o the relation needs to be equivariant, and

e the binder is not allowed to occur in the
support of the conclusion (not free in the
conclusion)



VC-Compatibility

@ We introduced two conditions that make the VC
safe to use in rule inductions:

o the relation needs to be equivariant, and
e the binder is not allowed to occur in the

A relation R is equivariant iff

Vﬂ'tl...tn
Rt...t, :>R(7T°t1)(ﬂ'°tn)

This means the relation has to be invariant under
permutative renaming of variables.




VC-Compatibility

@ We introduced two conditions that make the VC
safe to use in rule inductions:

o the relation needs to be equivariant, and

e the binder is not allowed to occur in the
support of the conclusion (not free in the
conclusion)



Typing Judgements (2)

inductive
typing :: "ty_ctx = lam = ty = bool" ("_F _:_")
where
t_Var:"[valid I'; (x,T) €Eset I'l = I' - Var x: T"
|+ _App: "[I’'Ht: Ti—=To I'Et T = I'- Appt; t2: T"
| +_Lam: "[atom x#I; (x, T))# ' Ft:T,] = I' - Lam [x].t: Ty — T

equivariance typing
nominal_inductive typing
avoids t_Lam: "x"



rmy [ w h | 4 Vo NN
Subgoals
in 1. /\XI1 Tt Ts.
[atom x # I; (x, T1)-T' F 1 : T,] = {atom x} #* (I", Lam
[x]. 1, T — Tz)
2. ANX T Tyt Ty [atom x # I'; (x, T1)-I' = t: Ty] = finite
| .{cn‘om x}

| +_Lam: "[atom x#I'; (x, T))#T'Ft:T,] = I' - Lam [x].t: Ty — 1

equivariance typing
nominal_inductive typing
avoids t_Lam: "x"



rmy [ w h | 4 Vo NN
Subgoals
1 /\X r Tl T Tz
[atom x # I'; (x, T1)-T' - t: T,] = {atom x} #* (I", Lam
[X]. T, Tl — T2)
2. AXx T Tyt Ty Jatom x # I'; (x, T1)-I' - t: T,] = finite
B {afom x}

| +_Lam: "[atom x#I'; (x, T1)#I' Ft:T] = I' - Lam [x].t : T1 —

equivariance typing
nominal_inductive typing

avoids t_Lam: "x"
unfolding fresh s'rar'_def

by (simp_all add: fresh_Pair lam.fresh ty_fresh)



Capture-Avoiding
Substitution and the
Substitution Lemma



Capture-Avoiding Subst.

Lambda.thy contains a definition of capture-
avoiding substitution with the characteristic
equations:

"(Var x)[y ::= s] = (if x=y then s else (Var x))"

"(App 11 T2)ly = s]1= App (tily::=s]) (t2[y+:=s])"

"atom x # (y,s)
— (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"



Capture-Avoiding Subst.
@ Lambda.thy contains a definition of capture-

avoiding substitution with the characteristic
equations:

"(Var x)[y ::= s] = (if x=y then s else (Var x))"
"(App t1 t2)ly = s1= App (tily::=s]) (t2[y::=s])"

"atom x # (y,s)
— (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"

@ Despite its looks, this is a total function!



Substitution Lemma: If x Z y and = & fv(L), then
Mz := Nlly := L] = M|y := L][xz := Ny := L]
Proof: By induction on the structure of M.
@ Case 1: M is avariable.
Case 1.1. M = x. Then both sides equal N[y := L] since

T Z Y.
Case 1.2. M = y. Then both sides equal L, for x & fv(L)
implies L[z :=...| = L.

Case 1.3. M = z # x,y. Then both sides equal z.

@ Case 2: M = Az.M,. By the variable convention we may
assume that z Z x, y and z is not free in N, L.
(Az.My)[z:=N][y:=L] = Az.(M|z:=N][y:= L))

= Az.(M,|y:=L][x:= Ny:=L]))
= (Az.M,)[y:=L][xz:=Ny:=L]|.

@ Case 3: M = M, M,. The statement follows again from
the induction hypothesis. O
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Substitution Lemma: If x Z y and = & fv(L), then
Mz := Nlly := L] = M|y := L][xz := Ny := L]
Proof: By induction on the structure of M.
@ Case 1: M is avariable.
Case 1.1. M = x. Then both sides equal N[y := L] since

T Z Y.
Case 1.2. M = y. Then both sides equal L, for x & fv(L)
implies L[z :=...| = L.

Case 1.3. M = z # x,y. Then both sides equal z.

@ Case 2: M = Az.M,. By the variable convention we may
assume that z Z x, y and z is not free in N, L.
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= Az.(M,|y:=L][x:= Ny:=L]))
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@ Case 3: M = M, M,. The statement follows again from
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Substitution Lemma: If x Z y and = & fv(L), then
Mz := Nlly := L] = M|y := L][xz := Ny := L]

Proof: By induction on the structure of M.
® Case 1: V Remember only if y # x and = & fv(IV) then

Case 1.1. 2 (Ay.M)[x := N|] = Ay.(M][z := NJ)

Case 1.2. N (Az.M;)[x := Ny := L]
ir

Case 13.1 — bl 6= W) By 5= L) i_
. = Az.(M;[x := N]ly := LJ) <
* seoumeth, = A=(Mily = Lljw = Niy = I])

(Az.My)l: = (Az.(Mily := L]))[z := Ny := L])) > |
= (Az.M,)[y := L][xz := N[y := L]|.

-

@ Case 3: M = M, M,. The statement follows again from
the induction hypothesis. O



Substitution Lemma: If x Z y and = & fv(L), then
Mz := Nlly := L] = M|y := L][xz := Ny := L]
Proof: By induction on the structure of M.
@ Case 1: M is avariable.
Case 1.1. M = x. Then both sides equal N[y := L] since

T Z Y.
Case 1.2. M = y. Then both sides equal L, for x & fv(L)
implies L[z :=...| = L.

Case 1.3. M = z # x,y. Then both sides equal z.

@ Case 2: M = Az.M,. By the variable convention we may
assume that z Z x, y and z is not free in N, L.
(Az.My)[z:=N][y:=L] = Az.(M|z:=N][y:= L))

= Az.(M,|y:=L][x:= Ny:=L]))
= (Az.M,)[y:=L][xz:=Ny:=L]|.

@ Case 3: M = M, M,. The statement follows again from
the induction hypothesis. O



lemma substitution_lemma:
assumes a: "x # y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a proof (hominal_induct M avoiding: x y N L rule: lam.strong_induct)
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assumes a: "x # y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a proof (hominal_induct M avoiding: x y N L rule: lam.strong_induct)
(Var 2)
have al: "x#y" by fact
have a2: "atom x # L" by fact



lemma substitution_lemma:
assumes a: "x # y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a proof (hominal_induct M avoiding: x y N L rule: lam.strong_induct)
(Var 2)
have al: "x#y" by fact
have a2: "atom x # L" by fact
“Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = 2RHS")
proof -



lemma substitution_lemma:
assumes a: "x # y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a proof (hominal_induct M avoiding: x y N L rule: lam.strong_induct)
(Var 2)
have al: "x#y" by fact
have a2: "atom x # L" by fact
“Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = 2RHS")
proof -
{ cl: "z=x"

have "?LHS = 2RHS" using "(1)" "(2)" by simp }
moreover
{ C2: Ilz:yll IIZ#XII

have "?LHS = ?RHS" sorry }
moreover
{ C3: Ilz#xll "Z#y"

have "?LHS = ?RHS" sorry }
ultimately "?LHS = ?RHS" by blast
ged



lemma substitution_lemma:
assumes a: "x # y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a proof (hominal_induct M avoiding: x y N L rule: lam.strong_induct)
(Var 2)
have al: "x#y" by fact
have a2: "atom x # L" by fact
“Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = 2RHS")
proof -
{ cl: "z=x"
have "(1)": "2LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 al by simp
have "?LHS = ?2RHS" using "(1)" "(2)" by simp }
moreover
{ c2: "z=y" "z#£x"

have "?LHS = ?RHS" sorry }
moreover
{ C3: Ilz#xll "Z#y"

have "?LHS = ?RHS" sorry }
ultimately "?LHS = ?RHS" by blast
ged



lemma substitution_lemma: .
assumes a: "x # y" "atom x # L" thm forget: L J
shows "M[x::=N]ly::=L] = Mly::=L][x::=N[y:=L]J" atomx #t+— t[x:u=s]§+
using a proof (hominal_induct M avoiding: x y N L rule: lam.strong_induct)
(Var 2)
have al: "x#y" by fact
have a2: "atom x # L" by fact
“Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = 2RHS")
proof -
{ cl: "z=x"
have "(1)": "2LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 al by simp
have "?LHS = ?2RHS" using "(1)" "(2)" by simp }

moreover
{ c2: "Z:y“ “Z#X" ‘
have "?LHS = ?RHS" sorry }
moreover
{ C3: Ilz#xll "Z#y"
have "?LHS = ?RHS" sorry } .
ultimately "?LHS = ?RHS" by blast

ged



lemma substitution_lemma:

assumes a: "x # y" "atom x # L"

shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a proof (hominal_induct M avoiding: x y N L rule: lam.strong_induct)

(Lam b4 M1)

have ih: "[x#y; atom x#L] = M;[x::=N][y::=L] = Mq[y::=L][x::=N[y::=L]]" by fact
have "x#y" by fact

have "atom x#L" by fact



lemma substitution_lemma:

assumes a: "x # y" "atom x # L"

shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a proof (hominal_induct M avoiding: x y N L rule: lam.strong_induct)

(Lam z M;) -

have ih: "[x#y; atom x#L] = M;[x::=N][y::=L] = Mq[y::=L][x::=N[y::=L]]" by fact
have "x#y" by fact

have "atom x#L" by fact

have vc: "atom z#x" "atom z#y" "atom z#N" "atom z#L" by fact+



lemma substitution_lemma:

assumes a: "x # y" "atom x # L"

shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a proof (hominal_induct M avoiding: x y N L rule: lam.strong_induct)

(Lam b4 M1)

have ih: "[x#y; atom x#L] = M;[x::=N][y::=L] = Mq[y::=L][x::=N[y::=L]]" by fact
have "x#y" by fact

have "atom x#L" by fact

have vc: "atom z#x" "atom z#y" "atom z#N" "atom z#L" by fact+

then have "atom z#N[y::=L]" by (simp add: fresh_fact)



lemma substitution_lemma:
assumes a: "x # y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a proof (hominal_induct M avoiding: x y N L rule: lam.strong_induct)
(Lam b4 M1)
have ih: "[x#y; atom x#L] = M;[x::=N][y::=L] = Mq[y::=L][x::=N[y::=L]]" by fact
have "x#y" by fact
have "atom x#L" by fact
have vc: "atom z#x" "atom z#y" "atom z#N" "atom z#L" by fact+
then have "atom z#N[y::=L]" by (simp add: fresh_fact)
"(Lam [z].M1)[x::=N][y::=L]=(Lam [z].Mq)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")



lemma substitution_lemma:
assumes a: "x # y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using a proof (hominal_induct M avoiding: x y N L rule: lam.strong_induct)
(Lam b4 M1)
have ih: "[x#y; atom x#L] = M;[x::=N][y::=L] = Mq[y::=L][x::=N[y::=L]]" by fact
have "x#y" by fact
have "atom x#L" by fact
have vc: "atom z#x" "atom z#y" "atom z#N" "atom z#L" by fact+
then have "atom z#N[y::=L]" by (simp add: fresh_fact)
"(Lam [z].M1)[x::=N][y::=L]=(Lam [z].Mq)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -

have "?LHS = ..." sorry
also have "... = ?2RHS" sorry ‘
finally "2LHS = 2RHS" by simp

ged

next



Substitution Lemma: If x Z y and = & fv(L), then
Mz := Nlly := L] = M|y := L][xz := Ny := L]
Proof: By induction on the structure of M.
@ Case 1: M is avariable.
Case 1.1. M = x. Then both sides equal N[y := L] since

T Z Y.
Case 1.2. M = y. Then both sides equal L, for x & fv(L)
implies L[z :=...| = L.

Case 1.3. M = z # x,y. Then both sides equal z.

@ Case 2: M = Az.M,. By the variable convention we may
assume that z Z x, y and z is not free in N, L.
(Az.My)[z:=N][y:=L] = Az.(M|z:=N][y:= L))

= Az.(M,|y:=L][x:= Ny:=L]))
= (Az.M,)[y:=L][xz:=Ny:=L]|.

@ Case 3: M = M, M,. The statement follows again from
the induction hypothesis. O



Substitution Lemma

@ The strong structural induction principle for
lambda-terms allowed us to follow Barendregt's
proof quite closely. It also enables Isabelle to
find this proof automatically:

lemma substitution_lemma:
assumes asm: "x # y" "atom x#L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using asm
by (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
(auto simp add: fresh_fact forget)
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