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Quiz
Assuming that a and b are distinct variables,
is it possible to find λ-terms M1 to M7 that make
the following pairs α-equivalent?

λa.λb.(M1 b) and λb.λa.(aM1)

λa.λb.(M2 b) and λb.λa.(aM3)

λa.λb.(bM4) and λb.λa.(aM5)

λa.λb.(bM6) and λa.λa.(aM7)

If there is one solution for a pair, can you describe
all its solutions?
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Nominal Unification
Hitting a Sweet Spot

Christian Urban

initial spark from Roy Dyckhoff in November 2001
joint work with Andy Pitts and Jamie Gabbay
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One Motivation

Typing implemented in Prolog (from a textbook)

type (Gamma, var(X), T) :- member (X,T) Gamma.

type (Gamma, app(M, N), T’) :-
type (Gamma, M, arrow(T, T’)),
type (Gamma, N, T).

type (Gamma, lam(X, M), arrow(T, T’)) :-
type ((X, T)::Gamma, M, T’).

member X X::Tail.
member X Y::Tail :- member X Tail.
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..

The problem is that λx.λx.(x x)
will have the types

T → (T → S) → S and
(T → S) → T → S



Higher-Order Unification

State of the art at the time:
Lambda Prolog with full Higher-Order
Unification
(no mgus, undecidable, modulo αβ)

Higher-Order Pattern Unification
(has mgus, decidable, some restrictions, modulo
αβ0)
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Underlying Ideas
Unification (only) up to α

Swappings / Permutations
Variables (or holes)

λxs. (

.

ys)
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[b :=a]λa.b [b :=a]λc.b

= =

..(a b)·t def
= swap all occurrences of

b and a in t

Unlike for [b :=a]·(−), for (a b)·(−) we do have
if t =α t′ then π·t =α π·t′.
Variables (or holes)

λxs. (

.

ys)
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,
but then you need β0-reduction

(λx.t)y −→β0
t[x := y]
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Underlying Ideas
Unification (only) up to α

Swappings / Permutations
Variables (or holes)

λxs.

(

.

ys)

we will record the information about which
parameters a hole cannot depend on
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Terms

⟨⟩ Units

a Atoms

⟨t, t′⟩ Pairs

a.t Abstractions

F t Funct.

π·X Suspensions
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Atoms are constants (infinitely many of them)



Terms

⟨⟩ Units a Atoms

⟨t, t′⟩ Pairs a.t Abstractions

F t Funct.
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⌜λa.a⌝ 7→ fn a.a
constructions like fn X.X are not allowed



Terms

⟨⟩ Units a Atoms

⟨t, t′⟩ Pairs a.t Abstractions

F t Funct. π·X Suspensions
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X is a variable standing for a term
π is an explicit permutation (a1 b1) . . . (an bn), waiting to
be applied to the term that is substituted for X



Permutations

a permutation applied to a term

[]·c def
= c

(a b) ::π·c def
=


a if π·c = b

b if π·c = a

π·c otherwise

π·a.t def
= π·a.π·t

π·π′·X def
= (π@π′)·X
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Freshness Constraints
Recall λa. .

We therefore will identify

fn a.X ≈ fn b.(a b)·X
provided that ‘b is fresh for X — (b # X)’, i.e.,
does not occur freely in any ground term that
might be substituted for X.

If we know more about X , e.g., if we knew that
a # X and b # X , then we can replace
(a b)·X by X.
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Equivalence Judgements
Our equality is not just

∇ ⊢

t ≈ t′ α-equivalence

∇ ⊢

a # t freshness

where

∇ = {a1 # X1, . . . , an # Xn}

is a finite set of freshness assumptions.

{a # X, b # X} ⊢ fn a.X ≈ fn b.X
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Rules for Equivalence

Excerpt
(i.e. only the interesting rules)
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Rules for Equivalence

∇ ⊢ a ≈ a

∇ ⊢ t ≈ t′

∇ ⊢ a.t ≈ a.t′

a ̸= b ∇ ⊢ t ≈ (a b)·t′ ∇ ⊢ a # t′

∇ ⊢ a.t ≈ b.t′
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Rules for Equivalence

(a # X) ∈ ∇
for all a with π·a ̸= π′·a

∇ ⊢ π·X ≈ π′·X

for example

{a #X, c #X} ⊢ (a c)(a b)·X ≈ (b c)·X

because (a c)(a b): a 7→ b (b c): a 7→ a
b 7→ c b 7→ c
c 7→ a c 7→ b

disagree at a and c.
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Rules for Freshness

Excerpt
(i.e. only the interesting rules)
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Rules for Freshness

a ̸= b
∇ ⊢ a # b

∇ ⊢ a # a.t
a ̸= b ∇ ⊢ a # t

∇ ⊢ a # b.t

(π−1·a # X) ∈ ∇
∇ ⊢ a # π·X
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≈ is an Equivalence

Theorem: ≈ is an equivalence relation.

(Reflexivity) ∇ ⊢ t ≈ t

(Symmetry) if ∇ ⊢ t1 ≈ t2 then ∇ ⊢ t2 ≈ t1

(Transitivity) if ∇ ⊢ t1 ≈ t2 and ∇ ⊢ t2 ≈ t3
then ∇ ⊢ t1 ≈ t3
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≈ is an Equivalence

Theorem: ≈ is an equivalence relation.

∇ ⊢ t ≈ t′ then ∇ ⊢ π·t ≈ π·t′
∇ ⊢ a # t then ∇ ⊢ π·a # π·t

∇ ⊢ t ≈ π·t′ then ∇ ⊢ (π−1)·t ≈ t′

∇ ⊢ a # π·t then ∇ ⊢ (π−1)·a # t

∇ ⊢ a # t and ∇ ⊢ t ≈ t′ then ∇ ⊢ a # t′
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Comparison =α

Traditionally =α is defined as

least congruence which identifies a.t with
b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences of
a by b in t.
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For ground terms:

Theorem: t =α t′ iff ∅ ⊢ t ≈ t′

a ̸∈ FA(t) iff ∅ ⊢ a # t



Comparison =α

Traditionally =α is defined as

least congruence which identifies a.t with
b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences of
a by b in t.
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In general =α and ≈ are distinct!

a.X =α b.X but not
∅ ⊢ a.X ≈ b.X (a ̸= b)



Comparison =α

Traditionally =α is defined as

least congruence which identifies a.t with
b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences of
a by b in t.
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..

That is a crucial point: if we had

∅ ⊢ a.X ≈ b.X ,
then applying [X := a], [X := b], . . .
give two terms that are not α-equivalent.

The freshness constraints a # X and b # X
rule out the problematic substitutions.
Therefore

{a # X, b # X} ⊢ a.X ≈ b.X

does hold.



Substitution
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{
π · σ(X) if σ(X) ̸= X

π·X otherwise
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Substitution
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{
π · σ(X) if σ(X) ̸= X

π·X otherwise

for example
⇒ a.(a b)·X [X := ⟨b, Y ⟩]

⇒ a.(a b)·X[X := ⟨b, Y ⟩]
⇒ a.(a b)·⟨b, Y ⟩
⇒ a.⟨a, (a b)·Y ⟩
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Substitution
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=

{
π · σ(X) if σ(X) ̸= X

π·X otherwise

if ∇ ⊢ t ≈ t′ and ..∇′ ⊢ σ(∇)

then ∇′ ⊢ σ(t) ≈ σ(t′)
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..

this means
∇′ ⊢ a # σ(X)

holds for all
(a # X) ∈ ∇
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Substitution
σ(a.t)

def
= a.σ(t)

σ(π·X)
def
=
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π·X otherwise
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σ(π·t) = π·σ(t)
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Equational Problems
An equational problem

t ≈? t′

is solved by

a substitution σ (terms for variables)

and a set of freshness assumptions ∇

so that ∇ ⊢ σ(t) ≈ σ(t′).
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Unifying equations may entail solving freshness
problems.

E.g. assuming that a ̸= a′, then

a.t ≈? a′.t′

can only be solved if

t ≈? (a a′)·t′ and a #? t′

can be solved.
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Freshness Problems
A freshness problem

a #? t

is solved by

a substitution σ

and a set of freshness assumptions ∇

so that ∇ ⊢ a # σ(t).
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Existence of MGUs
Theorem: There is an algorithm which, given a
nominal unification problem P , decides whether
or not it has a solution (σ,∇), and returns a
most general one if it does.
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Theorem: There is an algorithm which, given a
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or not it has a solution (σ,∇), and returns a
most general one if it does.
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..
most general:
straightforward definition
“iff there exists a τ such that …”



Existence of MGUs
Theorem: There is an algorithm which, given a
nominal unification problem P , decides whether
or not it has a solution (σ,∇), and returns a
most general one if it does.

Proof: one can reduce all the equations to ‘solved
form’ first (creating a substitution), and then solve
the freshness problems (easy).
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Remember the Quiz?
Assuming that a and b are distinct variables,
is it possible to find λ-terms M1 to M7 that make
the following pairs α-equivalent?

λa.λb.(M1 b) and λb.λa.(aM1)

λa.λb.(M2 b) and λb.λa.(aM3)

λa.λb.(bM4) and λb.λa.(aM5)

λa.λb.(bM6) and λa.λa.(aM7)

If there is one solution for a pair, can you describe
all its solutions?
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Answers to the Quiz
λa.λb.(M1 b) and λb.λa.(aM1)

ε=⇒
ε=⇒
ε=⇒

[M1:=b]=⇒

=⇒
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..λa.λb.(M1 b) =α λb.λa.(aM1) has no solution



Answers to the Quiz
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..

λa.λb.(bM6) =α λa.λa.(aM7)

we can take M7 to be any λ-term that
does not contain free occurrences of b,
so long as we take M6 to be the result
of swapping all occurrences of b and a
throughout M7



Properties
An interesting feature of nominal unification is
that it does not need to create new atoms.

{a.t ≈? b.t′} ∪ P
ε=⇒ {t ≈? (a b)·t′, a #? t′} ∪ P

The alternative rule
{a.t ≈? b.t′} ∪ P

ε=⇒
{(a c)·t ≈? (b c)·t′, c #? t, c #? t′} ∪ P

leads to a more complicated notion of mgu.
{a.X ≈? b.Y } =⇒ ({a # Y, c # Y }, [X := (a c)(b c)·Y ])
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Is it Useful?
Yes. αProlog by James Cheney (main developer)

type (Gamma, var(X), T) :- member (X,T) Gamma.

type (Gamma, app(M, N), T’) :-
type (Gamma, M, arrow(T, T’)),
type (Gamma, N, T).

type (Gamma, lam(x.M), arrow(T, T’)) / x # Gamma :-
type ((x, T)::Gamma, M, T’).

member X X::Tail.
member X Y::Tail :- member X Tail.
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..

One problem: If we ask whether

?- type ([(x, T’)], lam(x.Var(x)), T)

is typable, we expect an answer for T.

Solution: Before back-chaining freshen all
variables and atoms in a program (clause).
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Equivariant Unification
James Cheney proposed

t ≈? t′
∇,σ,π=⇒ ∇ ⊢ σ(t) ≈ π·σ(t′)

But he also showed this problem is undecidable
in general. :(
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Taking Atoms as Variables
Instead of a.X , have A.X.

Unfortunately this breaks the mgu-property:

a.Z ≈? X.Y.v(a)

can be solved by

[X := a, Z := Y.v(a)] and
[Y := a, Z := Y.v(Y )]
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HOPU vs. NOMU

James Cheney showed

HOPU ⇒ NOMU

Jordi Levy and Mateu Villaret established

HOPU ⇐ NOMU

The translations ‘explode’ the problems
quadratically.
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From: Zhenyu Qian <zhqian@microsoft.com>
To: Christian Urban <urbanc@in.tum.de>
Subject: RE: Linear Higher-Order Pattern Unification
Date: Mon, 14 Apr 2008 09:56:47 +0800

Hi Christian,

Thanks for your interests and asking. I know that that
paper is complex. As I told Tobias when we met last time,
I have raised the question to myself many times whether
the proof could have some flaws, and so making it through
a theorem prover would definitely bring piece to my mind
(no matter what the result would be). The only problem for
me is the time.
…
Thanks/Zhenyu
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Complexity
Christiopher Calves and Maribel Fernandez
showed first that it is polynomial and then also
quadratic
Jordi Levy and Mateu Villaret showed that it is
quadratic by a translation into a subset of
NOMU and using ideas from Martelli/Montenari.
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Conclusion
Nominal Unification is a completely first-order
language, but implements unification modulo α.
(verification…Ramana Kumar and Michael
Norrish)

NOMU has been applied in term-rewriting and
logic programming. (Maribel Fernandez et al has
a KB-completion procedure.) I hope it will also
be used in typing systems.
NOMU and HOPU are ‘equivalent’ (it took a
long time and considerable research to find this
out).
The question about complexity is still an ongoing
story.
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Thank you very much!
Questions?
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Most General Unifiers
Definition: For a unification problem P , a solution
(σ1,∇1) is more general than another solution
(σ2,∇2), iff there exists a substitution τ with

∇2 ⊢ τ (∇1)
∇2 ⊢ σ2 ≈ τ ◦ σ1
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∇2 ⊢ a # σ(X) holds for all (a # X) ∈ ∇1
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∇2 ⊢ σ2(X) ≈ σ(σ1(X)) holds for all
X ∈ dom(σ2) ∪ dom(σ ◦ σ1)


