
Tue Sep 20 11:47:46 BST 2005 ... $Id: notes3-tex.ott,v 1.2 2005/10/23 11:46:28 pes20 Exp $A Binding BestiaryThis note ollets a variety of binding forms found in the wild, together with a few arti�ial examples.There seems to be no obvious upper bound for the desirable expressiveness of a notion of binding algebra {it is always possible to invent a more waky example { so our fous here is on exploring the limits of whatpeople atually want to use. Any additions would be very welome!One might use these to understand and ompare proposals for binding syntax { to see how they would be dealtwith in the various obvious andidates (Twelf/HOAS, De Bruijn/Coq, Nominal datatypes/Isabelle-HOL,...),and to assess the level of "enoding noise" involved.For most of them they are desribed here using the metalanguage proessed by the ott prototype. Examplesagged [*℄ annot be expressed in that as it stands.We think we need to be able to express 1{19, perhaps 20, and are not onerned with 21{22.First, a series of ML-style let binders, of inreasing faniness. Weirder things follow afterwards.1) Single binders - simple lambda alulussort termvarvar X :: termvarexp ::= Xj � X : exp bind X in expj exp exp0Examples: x � x : x y and � x : x � x : � y : x y2) Pattern binders - lambda alulus with pairs and pair patternssort termvarvar X :: termvarexp ::= Xj � X : exp bind X in expj exp exp0j ( exp ; exp0 )j let pat = exp in exp0 bind binders(pat) in exp0pat ::= X binders = Xj binders = fgj ( pat ; pat 0 ) binders = binders(pat) [ binders(pat 0)names(binders(pat))# names(binders(pat 0))Example: let ( x ; y ) = z in x y with its pat subterm ( x ; y )Here we use an auxiliary `binders' to ollet the binding ourrenes of a pattern (`binders' is not a keyword,and some examples need more than one auxiliary.).The names(binders(pat)) denotes the set of names at those ourrenes in pat.1



There is a potential onit between multiple ourrenes of the same identi�er in a pattern. Informally, weusually impose a ondition that the identi�ers are all distint. Whether that is built into the de�nition ofabstrat syntax up to alpha varies (it need not be involved in the de�nition of alpha equivalene - instead itjust de�nes well-formedness prediates, on both raw and quotiented terms).3) Multiple bindings in a single prodution - funtion let with an expliit argumentsort termvarvar X :: termvarexp ::= Xj � X : exp bind X in expj exp exp0j ( exp ; exp0 )j let X pat = exp in exp0 bind binders(pat) in expbind X in exp0names(X )# names(binders(pat))pat ::= X binders = Xj binders = fgj ( pat ; pat 0 ) binders = binders(pat) [ binders(pat 0)names(binders(pat))# names(binders(pat 0))Examples: � x : let f ( x ; y ) = x in f ( x ; y ) and � x : � y : y x.Here (not muh of a di� from the previous one) a single prodution has two independent bind lauses, bindingdi�erent binders in di�erent subterms.4) List forms in patterns - funtion let with expliit arguments, and tuple patterns [*℄exp ::= ... | let X pat1 .. patn = exp in exp'or pat ::= ... | (pat1,..,patn) n>=0Typially one would formalise with new syntati ategories for the list forms, but .. forms ould be supportedmore diretly (f the EBNF examples later).5) Reursive binders - single letresort termvarvar X :: termvarexp ::= Xj ( exp ; exp0 )j letre X = exp in exp0 bind X in expbind X in exp0Here the sope of a binder is two distint subterms.Example: letre X = ( X ; Y ) in ( X ; Y )6) Reursive binders - single letre with expliit argument
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sort termvarvar X :: termvarexp ::= Xj ( exp ; exp0 )j letre X pat = exp in exp0 bind X in expbind X in exp0bind b(pat) in expnames(X )# names(b(pat))pat ::= X b = Xj ( pat ; pat 0 ) b = b(pat) [ b(pat 0)names(b(pat))# names(b(pat 0))Example: letre f ( x ; y ) = ( f ; ( a ; ( x ; y ) ) ) in ( f ; ( b ; ( x ; y ) ) )Here there is a potential onit between the X and pat binders, whih ould resolve - as here - by requiringthem to be distint. It's perhaps more intuitive to have the pat sope shadow the X sope in exp if patontains any Xs, by introduing an intermediate syntati ategory for the X pat = exp form (as below).7) Multiple reursive binders - multiple letresort termvarvar X :: termvarexp ::= Xj ()j ( exp ; exp0 )j letre lrbs in exp bind b(lrbs) in lrbsbind b(lrbs) in expdistintnames(b(lrbs))lrb ::= X = exp b = Xlrbs ::= lrb b = b(lrb)j lrb and lrbs b = b(lrb) [ b(lrbs)Example: letre f = ( g ; ( f ; x ) ) and g = ( g ; ( f ; x ) ) in ( f ; g ) with its subtermf = ( g ; ( f ; x ) )Just like (5), though the Xs on the left of a lrbs should usually all be distint.Note that the "bind b(lrbs) in lrbs" binds in all parts of the lrbs; there's nothing saying "bind only in theright-hand sides". That might seem strange at �rst sight, but we think it's not a problem. In fat, oneyou've quotiented by alpha, the binding ourrene has no speial status.8) Multiple reursive binders - multiple letre with multiple lauses for eah funtion (prompted by JamesCheney's MERLIN talk)For example something like this:let re f ((),y) = g (y,y,()) 3



| f (y,z) = g (y,(),z)and g ((),y,z) = f (y,z)| g (x,y,z) = f ((),())in ...where eah blok de�nes a funtion (f and g), with potentially many lauses, but eah funtion is de�ned byat most one blok, and eah blok onsists only of lauses for that funtion.sort termvarvar X :: termvarexp ::= Xj ()j ( exp ; exp0 )j ( exp )j exp exp0j let re lrbs in exp bind b(lrbs) in lrbsbind b(lrbs) in expfnlause ::= X pat = exp b = Xbind bpat(pat) in expnames(X )# names(bpat(pat))fnlauses ::= fnlause b = b(fnlause)bheads = b(fnlause)j fnlause jj fnlauses b = b(fnlause) [ b(fnlauses)bheads = b(fnlause)names(b(fnlause)) = names(b(fnlauses))lrb ::= fnlauses b = b(fnlauses)bheads = bheads(fnlauses)lrbs ::= lrb b = b(lrb)bheads = bheads(lrb)j lrb and lrbs b = b(lrb) [ b(lrbs)bheads = bheads(lrb) [ bheads(lrbs)names(bheads(lrb))# names(bheads(lrbs))pat ::= X bpat = Xj () bpat = fgj ( pat ; pat 0 ) bpat = bpat(pat) [ bpat(pat 0)Here: b ollets the reursive binders - all ourrenes of f,g et bheads ollets the �rst of eah of these -the �rst f, the �rst g, et - to state the (*) distintness ondition. This is not used to de�ne binding. bpatollets the binders of a patternFor example let re f x = g ( f x ) jj f ( a ; b ) = g ( f ( a ; x ) ) and g y = g ( f x ) in ( f ; g ), with itssubterm f x = g ( f x ).At present this doesn't exlude 4



let re x () = () and y x = x in ( x ; y )and neither does OCaml 3.07+2, but neither identify the x's: - : (unit -> unit) * ('a -> 'a) = (<fun>, <fun>).Depending on the exat de�nition of alpha one might have all the x's above alpha-vary together, whihwould be wrong. Our de�nition of alpha gives the intended binding, beause bpat is not propagated outsidethe fnlause prodution.If we did want to impose distintness, how would we say it? In letre lrbs in exp we have, for all pat ourringin lrbs,names(b(lrbs)) interset names(bpat(pat))Add set-of-sets of ourrenes to the auxiliaries?9) Let sequene, with eah binding in the next [*?℄sort termvarvar X :: termvarexp ::= Xj ()j 0j 1j 2j 3j exp + exp0j let lets in exp bind b(lets) in expdistintnames(b(lets))lets ::= alet b = b(alet)j alet and lets b = b(alet) [ b(lets)bind b(alet) in letsalet ::= X = exp b = XFor example: let x = y and y = x in x + yNote that here it would be nie not to require distintness, eg to admitlet x=0 and x=1+x and x=2+x in xYou might regard this as syntati sugar for iterated single lets, but suppose you wanted to express it diretly,with a grammar
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sort termvarvar X :: termvarexp ::= Xj ()j 0j 1j 2j 3j exp + exp0j let lets in exp bind b(lets) in explets ::= alet b = b(alet)j alet and lets b = b(alet) [ b(lets)bind b(alet) in letsalet ::= X = exp b = XAt present the standard semantis doesn't support this, identifying all the x's inlet x = 0 + x and x = 1 + x and x = 2 + x and x = 3 + x in 0and in its lets subterm x = 0 + x and x = 1 + x and x = 2 + x and x = 3 + xIt's possible that the de�nition ould be benignly hanged to not do this. With the variant__x_semantisswith the x's in the lets subterm are all unequated (exept the last two, whih is an artifat of the fat thatthe grammar lause for lets ::= alet does not have an annotation (+ bind b(alet) in nothing +) ). However,in the full term they are all identi�ed again - by exatly the mehanism that means that or-patterns andjoin patterns work orretly.10) Dependent reord patternsFor onreteness, this is loosely based on the Pit 4.1 grammar. (here we use multiple sorts of identi�ers,and do not have <empty> produtions).
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sort typevarsort termvarsort LABELvar X :: typevarvar x :: termvarvar Label :: LABELPro ::= xj [ X ; Pro ℄j ( Pro ; Pro0 )j let De in Pro bind b1(De) in ProDe ::= val Pat = Val bind b1(Pat) in Valb1 = b1(Pat)Pat ::= x : Type b1 = xj [ ℄ b1 = fgj [ Pats ℄ b1 = b1(Pats)Pats ::= Label = FieldPat b1 = b1(FieldPat )j Label = FieldPat Pats b1 = b1(FieldPat ) [ b1(Pats)bind b2(FieldPat) in Patsnames(b1(FieldPat))# names(b1(Pats))FieldPat ::= Pat b1 = b1(Pat)b2 = fgj # X < Type b1 = Xb2 = XType ::= intj unitj topj Type � Type 0j XVal ::= ()j xb1 ollets all the binders of a omplex patternb2 ollets just the binders that bind to the right of a partiular (type) �eld(several b1 and b2 de�nition lauses might be omitted if the default-union rule is used, though we wouldthen want to give the types of b1:Pat,Pats,FieldPat and b2:FieldPat expliitly somewhere)For example, onsiderlet val [ l1 = # X < top l2 = x : X ℄ = w in [ X ; ( x ; y ) ℄and its De subterm 7



val [ l1 = # X < top l2 = x : X ℄ = wand the Deval [ l1 = # X < top l2 = [ l2a = x : X l2b = # Y < top ℄ l3 = y : X � Y ℄ = wwhere the Y in l3 is free.11) OCaml or-patterns. From the manual:The pattern pattern1 | pattern2 represents the logial \or" of the two patterns pattern1 and pattern2.A value mathes pattern1 | pattern2 either if it mathes pattern1 or if it mathes pattern2. The twosub-patterns pattern1 and pattern2 must bind exatly the same identi�ers to values having the same types.Mathing is performed from left to right. More preisely, in ase some value v mathes pattern1 | pattern2,the bindings performed are those of pattern1 when v mathes pattern1. Otherwise, value v mathes pattern2whose bindings are performed.For our binding spei�ations to apture this we might add equality onstraints on name sets, egpattern ::= ...| (pattern1 | pattern2) b = b(pattern1) union b(pattern2)names(b(pattern1)) = names(b(pattern2))Note that in the onstraint the names(b(pattern1)) and names(b(pattern2)) denote the sets of identi�ers,not the underlying sets of ourrenes of identi�ers.In the b = b(pattern1) union b(pattern2) lause we mean the union of the sets of ourrenes, though (asusual), to ensure they alpha onvert together. For example,let f ((None,Some x)|(Some x,None)) = x in f (None,Some 2);;=alphalet f ((None,Some y)|(Some y,None)) = y in f (None,Some 2);;Think this is ok for deeply nested or and non-or patterns, eg:sort termvarvar x :: termvarexp ::= xj ( exp ; exp0 )j let pat = exp in exp0 bind b(pat) in exp0pat ::= ( pat ; pat 0 ) b = b(pat) [ b(pat 0)names(b(pat))# names(b(pat 0))j ( pat jj pat 0 ) b = b(pat) [ b(pat 0)names(b(pat)) = names(b(pat 0))j Some x b = xj None b = fglet ( ( None ; Some x ) jj ( Some x ; None ) ) = w in ( x ; x )12) Join alulusJoin alulus de�nitions have several interesting aspets. Here is a raw syntax extrated from the JoCamlmanual of January 8, 2001, with binding spe made up by PS.
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sort namesvar name :: namesproess ::= delaration in proess bind b(delaration) in proessj 0j name expressionj proess jj proess 0delaration ::= let def automata de�nition b = b(automata de�nition)bind b(automata de�nition) in automata de�nitionautomata de�nition ::= automaton b = b(automaton)j automaton and automata de�nition b = b(automaton) [ b(automata de�nition)names(b(automaton))# names(b(automata de�nition))automaton ::= join pattern = proess b = b(join pattern)bind b(join pattern) in proessbind b2(join pattern) in proessj join pattern = proess or automaton b = b(join pattern) [ b(automaton)bind b2(join pattern) in proessjoin pattern ::= hannel del b = b(hannel del)b2 = b2(hannel del)j hannel del jj join pattern b = b(hannel del) [ b(join pattern)b2 = b2(hannel del) [ b2(join pattern)names(b2(hannel del))# names(b2(join pattern))hannel del ::= name OCaml pattern b = nameb2 = bindings(OCaml pattern)expression ::= namej ( expression ; expression 0 )OCaml pattern ::= name bindings = namej ( name ) bindings = namej () bindings = fgj ( OCaml pattern ; OCaml pattern 0 ) bindings = bindings(OCaml pattern) [ bindings(OCaml pattern 0)names(bindings(OCaml pattern))# names(bindings(OCaml pattern 0))Note:- it would be rather nier to give the raw grammar in an extended BNF (as the JoCaml de�nition does),with optional lauses in [..℄ The binding spei�ation language would need to follow suit.- the di�erent or-lauses of an automaton and |-lauses of a join-pattern do not neessarily have distintbinders. For example, 9



let def x () jj x () = a ( x ; y ) or x () jj y () = b ( x ; y ) in  ( x ; ( y ; z ) )with two is just �ne, binding x and y in P, Q, and R. This is alpha equivalent tolet def x 0 () jj x 0 () = a ( x 0 ; y 0 ) or x 0 () jj y 0 () = b ( x 0 ; y 0 ) in  ( x 0 ; ( y 0 ; z ) )but not tolet def x 0 () jj x 0 () = a ( x 0 ; y 0 ) or x 00 () jj y 0 () = b ( x 00 ; y 0 ) in  ( x 0 ; ( y 0 ; z ) )- the identi�ers within the olletion of OCaml-patterns in a join pattern, on the other hand, presumablyshould all be distint, and should be distint from all the names. For example,let def (x) | d(x) = P in Randlet def x(x) = P in Rshould not be allowed, whereaslet def  ( x ) jj d ( y ) = p (  ; ( d ; ( x ; y ) ) ) or  ( x ) = q (  ; ( d ; x ) ) in r (  ; d )should.13) Multiple binding sorts (and the POPLmark example)In languages with multiple name sorts, eg of type and term names, we want to ensure that a binder of onesort does not bind ourrenes of another. For example, we might writelet f = Lambda X:Type => lambda ((x:X),(f:X->X)) => f x in ...but let f = Lambda x:Type => lambda ((x:x),(f:x->x)) => f x in ...should either be forbidden or it should be understood that the x type binder binds only the ourrenes ofx in type positions.
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The Fsub-with-reords example illustrates thissort typevarsort termvarsort labelvar X :: typevarvar x :: termvarvar l :: labelT ::= Xj Topj T ! T 0j 8 X <: T : T 0 bind X in T 0j f gj f T rebody gT rebody ::= l : Tj l : T ; T rebodyt ::= xj � x : T : t bind x in tj t t 0j � X <: T : t bind X in tj t [ T ℄j f gj f t rebody gj t : lj let p = t in t 0 bind bo(p) in t 0t rebody ::= l = tj l = t ; t rebodyp ::= x : T bo = xj f g bo = fgj f p rebody g bo = bo(p rebody)p rebody ::= l = p bo = bo(p)j l = p ; p rebody bo = bo(p) [ bo(p rebody)G ::= empty dom = fgj G ; X <: T dom = dom(G) [Xnames(dom(G))# names(X )j G ; x : T dom = dom(G) [ xnames(dom(G))# names(x)J ::= G ` T <: T 0j G ` t : Tj t �! t 0Gb ::= empty dom = fgj Gb ; X <: T dom = dom(Gb) [Xbind dom(Gb) in Tnames(dom(Gb))# names(X )j Gb ; x : T dom = dom(Gb) [ xbind dom(Gb) in Tnames(dom(Gb))# names(x)Jb ::= Gb ` T <: T 0 bind dom(Gb) in Tbind dom(Gb) in T 0j Gb ` t : T bind dom(Gb) in tbind dom(Gb) in Tj t �! t 0
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Here we have three sorts of names (but no lexial distintion between them); bo(pattern) only ollets theterm names of a pattern; and in Lambda X<:T.term the X binds throughout the term, inluding in any typesin patterns it may ontain. Potential monsters suh as� y <: Top : let x : X = y in x(with the y binding and bound) are exluded only by the sort distintion, whih ensures that the two y'sare di�erent.We ould add another auxiliary and onditions to ensure that the labels in a reord are distint.One ould have binding spes that make expliit use of the sorts (as the new Fresh does), eg...| let pattern = term in term' bind termvar(pattern) in term'If you have the mahinery for de�ning arbitrary name-ourrene auxiliaries (suh as the bo here) it's notlear that this is useful, though. But having multiple sorts is - partiularly when you ome to onrete terms.When we say "bind MSE in NN" that really means "bind all ourrenes of identi�ers in positions of theorresponding sort (as in MSE) in NN".For judgements, one might have the domain of a type environment G binding in the remainder of thejudgement (as in Jbinding) or not (as in J). Note that we are not restriting auxiliaries (eg dom(..) ) to besets of ourrenes of variables of the same sort. Example::J empty ; X <: Top ; Y <: X ! X ; x : X ; y : Y ` y x : X:Jb empty ; X <: Top ; Y <: X ! X ; x : X ; y : Y ` y x : XIn the latter ase the Gb has a non-trivial o::Gb empty ; X <: Top ; Y <: X ! X ; x : X ; y : Y14) Soping without bindingLabels, ML onstrutor names, and so on. Various lasses of identi�ers have sopes, and are subjet todistintness onditions, but do not alpha-vary.Whether this is something one wants to address in the abstrat syntax is unlear, but the distintnessonditions we use elsewhere perhaps would suÆe. (Though if you introdue ourrene auxiliaries just forthat, that are not identifying binders, the de�nition of alpha equivalene should not pay attention to them.)15) Forbidding shadowing [?℄Java loal delarations are not permitted if they would shadow. This is maybe best treated as a distintnessondition, but with or without binding?16) Store [*, but should℄store ::= loation -->_{finite,partial} valueonfig ::= store; expr dom(store) binds in storedom(store) binds in exprThe binding here is just like letres - the only interesting thing is that the syntax is not free, but either:- with �nite partial funtion spaes and dom() provided as primitive, or - subjet to assoiative, ommutative,idempoteny equations and with a ondition saying eah loation ours at most one on the left.In Aute we had on�gurations with both a store typing and a store, together with running proesses.Really, the store typing and store should simultaneously bind (the identi�ers in their domains, whih shouldbe idential) in the store range and the proesses. (In the atual de�nition we had neither bind, as thatseemed a bit baroque.)17) Internal/external names in module systems 12



ML-style module system semantis often use both `external' names, whih don't alpha-vary, and `internal'names, whih do. For example, inmodule M = struttype tt_t = intval xx_x : t = 3endlet y = M.xxthe tt and xx are external names, used in `dot notation' projetions in the sope of the de�nition of M,whereas the t and x are binders, binding in the suÆx of the struture.Here the t and x are just onventional binders, and this lies in the notes1 de�nition. One an also have aombined form, in two avours, as in "Names with auxiliary data".18) Binding spes in grammars of ontexts(eg the lambda-r example)let x=e in _ . e'Generally our ontexts are onrete gadgets, at least on the path to the hole, but one ould do thingsdi�erently.19) Type environments and inferene rulesNothing very new here, in fat, but there are several hoies as to what binding you have, and very di�erentenodings in di�erent provers.Type envs an bind internally and in the other parts of judgements or not - matter of taste; one should alloweither. This is shown in the POPLmark example above.Type envs an be either on the left or the right - a stylisti hoie only:E ::= empty| X,E X bind in E| x:T,Eor (on the right)E ::= empty b={}| E,X b=b(E) union X| E,x:T b=b(E) b(E) bind in T(and sometimes , is assoiative).Have to do a type formation judgement - depending on the hoies above, either:J ::= E |- T Type b(E) bind in T| E |- okor J ::= E |- T Type| E |- okE |- okE |- T Type E |- ok----------- -------------- --------------empty |- ok E,x:T ok E,X okQuestion: where do we impose distintness of names in an E. We ould say13



names(b(E)) interset names(X)) = {}names(b(E)) interset names(x)) = {}in the two produtions of the E grammar, or we ould saydistint(names(b(E))in one or both produtions of the J grammar, or we ould sayx notin dom(E)X notin dom(E)in the ok-ness typing rules, or we ould have built in that to the de�nition of , (in whih ase it's not amatter for us, it's just something the proof assistant knows about).Note that we might be using distint(names(...)) for non-binders, eg as here with the "E don't bind" hoie.20) Names with auxiliary data [*, not lear whether or not this should be supported℄(from Mihael Norrish) HOL and Isabelle implement types of terms where the variables are stored with theirtypes. Thus\ (x:num). (x:num) + f (x:bool)is a valid term. The (x:bool) is not bound.In some sense, the ombination of "x" and "num" is the binding unit, but when you alpha onvert, you areonly given liene to hange the "x", not the type. The above is thus alpha-equal to\ (y:num). (y:num) + f (x:bool)Similar binding was used in the Aute de�nition for module external/internal name pairs. Module nameswere of the form MM_M where MM is an external name (non binding) and M is an internal (subjet to binding,but only for ourrenes assoiated with the same external name). Keeping both parts was needed to supportrebinding. As far as I reall the alternative approah, of having the M be a simple binder, was tehniallysuÆient but seemed less intuitive.Perhaps we should generalise sorting to support this, allowing arbitrary term struture in sorts - though ifwe allow names (or, worse, names and binding) in sorts things would be more omplex.Examples whih we don't think we need to express21) First-math patterns [*℄ [not something we want to do℄Oasionally one has patterns in whih the �rst ourrene of an x is a binding ourrene and later our-renes are equality-patterns. This ropped up in a omposite-event language (Rihard Hayton, Cambridge).Stephanie Weirih mentioned something in Perl?? Olin Shivers ICFP talk had binding dependent on ontrolow.When things get this wierd, maybe one would just be using an environment semantis in any ase, and sonot need syntax up to alpha.22) Brian's triplet [not a natural example℄Overlapping sopes that are not inluded in eah other, eg
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sort termvarvar X Y Z :: termvarP ::= WeirdBind X ; Y in ( P ; P 0 ; P 00 ) bind X in Pbind X in P 0bind Y in P 0bind Y in P 00j Xj ( P ; P 0 )WeirdBind X ; Y in ( ( X ; Y ) ; ( X ; Y ) ; ( X ; Y ) )We don't know a natural example like this (is there one?), but it an be spei�ed in this metalanguage.

15


