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Binding in Old Nominal

o the old Nominal Isabelle provided a reasoning
infrastructure for single binders

Lam [a}.(Var a)

for example
a# Lam [al. t
Lam {al. (Var a) = Lam {b}. (Var b)
Barendregt-style reasoning about bound variables
(variable convention can lead to faulty reasoning)
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ACM Transactions on
Computational Logic,

Frank Pfenning 2 1
(CMU (CMU) 005, ~31pp

relied on their proof in a
security critical

Andrew Appel application
(Princeton,

(I also found an error in my Ph.D.-thesis about cut-
elimination examined by Henk Barendregt and Andy Pitts.)



Binding in Old Nominal

e but representing
‘v’{al, co ey an}. T

with single binders and reasoning about it was a
major pain; take my word for it!
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New Types in HOL

areq.
terms

isomorphism

V)
S

(N
7

non-empty
subset

existing
type

(sets of raw terms)

define a-equivalence
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Binding Sets of Names

e binding sets of names has some interesting
properties:

Hz, 9}z =y =a V{y,z}.y— =
V{z,y}.x >y #. V{z}.z—> =z
V{z}.x >y =, V{z,z}.z—y

provided z is fresh for the type

* x,y, z are assumed to be distinct



Binding Sets of Names

° l};if; For type-schemes the order of bound

names does not matter, and
a-equivalence is preserved under
vacuous binders.

V{Z,yf. T — Y ZEa Vizf.Z2 — 2 ’

V{z}.x >y =, V{z,z}.z—y
provided z is fresh for the type

* x,y, z are assumed to be distinct
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Other Binding Modes

e alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x =3 and y =2 in x — y end
Faolety=2and x =3 and z = loop in  — y end



Even Another Binding Mode

@ sometimes one wants to abstract more than one
name, but the order does matter

let (x,y) = (3,2) inx — y end
o let (y,x) = (3,2) in x — y end



Three Binding Modes

o the order does not matter and alpha-equivelence
is preserved under vacuous binders (restriction)

o the order does not matter, but the cardinality of
the binders must be the same (abstraction)

e the order does matter (iterated single binders)



Three Binding Modes

o the order does not matter and alpha-equivelence
is preserved under vacuous binders (restriction)

o the order does not matter, but the cardinality of
the binders must be the same (abstraction)

e the order does matter (iterated single binders)

bind (set+) bind (set) bind
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Specification of Binding

nominal_datatype trm =
Var name
| App trm trm
| Lam x::name t::trm  bind x in t
| Let as::assns t::trm  bind bn(as) in t
and assns =
ANil
| ACons name trm assns
binder bn where
bn(ANil = {}
| bn(ACons a t as) = [a} @ bn(as)



Alpha-Equivalence

o lets first look at pairs

(as,x)

as is a set of names...the binders

x is the body (might be a tuple)

Rt 1s where the cardinality of the
binders has to be the same
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Alpha-Equivalence

o lets first look at pairs
(as, ) ~jisc (bs, y)

“ Ir. fv(x) — as = fv(y) — bs
A tv(x) —as #* =
N (mex) =y
N meas = bs

* as and bs are lists of names



Alpha-Equivalence

o lets first look at pairs
(as, ) = . (bs, y)

“ Ir. fv(x) — as = fv(y) — bs
A fv(x) —as #* =
N (mex) =y
11K HhidK H bE
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Examples

o lets look at type-schemes:
(as’ m) ~ set (bs, y)

() — {}
fV(Tl — TQ) = fV(Tl) U fV(TQ)

set+: set: list:
3w. fv(x) — as = fv(y) — bs| 3w. fv(x) — as = fv(y) — bs| 3. fv(x) — as = fv(y) — bs
A fv(z) —as #* = A fv(z) —as #* = A fv(z) — as #* m
NT-xT=1y NT-xT=1y NT-x=1y
A 7 -as = bs AN T -as = bs




Examples
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~ ~
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([cc,y],a: — y) ~? ([.’I), y]7y — $)

~o ~ .
QO ety ~sets ?ehst
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Examples

({:13}, w) ~? ({wa y}a w)

(*} zset_,_, %set, %list

set+: set: list:
3w. fv(x) — as = fv(y) — bs| 3w, fv(x) — as = fv(y) — bs| 3. fv(x) — as = fv(y) — bs
A fv(z) —as #* = A fv(z) —as #* = A fv(z) —as #* m
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A 7 -as = bs AN 7 -as = bs




Examples

( )
e a-equivalences coincide when a
single name is abstracted

o ~. | @ in that case they are equivalent to
“old-fashioned” definitions of a

" 7
set+: set: list:
3w. fv(x) — as = fv(y) — bs| 3w, fv(x) — as = fv(y) — bs| 3. fv(x) — as = fv(y) — bs
A fv(z) —as #* = A fv(z) —as #* = A fv(z) —as #* m
NT-xT=1y NT-xT=1y NT-xT=1y

A 7 -as = bs AN 7 -as = bs




Our Specifications

nominal_datatype trm =
Var name
| App trm trm
| Lam x::name t::trm  bind x in t
| Let as::assns t::trm  bind bn(as) in t
and assns =
ANil
| ACons name trm assns
binder bn where
bn(ANil = ||
| bn(ACons a t as) = [a] @ bn(as)



Binder Clauses

e We need to have a ‘clear scope’ for a bound
variable, and bound variables should not be free
and bound at the same time.

shallow binders
Lam x::name t:trm bind x in t
All xs::name set T::ty bind xsin T
Foo x::name t:trm to::trm bind x in ty, bind x in ty
Bar x::name t;::trm toi:trm bind xin t; t



Binder Clauses

e We need to have a ‘clear scope’ for a bound
variable, and bound variables should not be free

and bound at the same time.

deep binders
Let as::assns t::trm  bind bn(as) in t

Foo as::assns ty::trm to::trm
bind bn(as) in t{, bind bn(as) in t,

X Bar as::assns ty::trm to::trm
bind bn;(as) in t;, bind bns(as) in t;



Binder Clauses

e We need to have a ‘clear scope’ for a bound
variable, and bound variables should not be free
and bound at the same time.

deep recursive binders
Let_rec as::assns t::trm  bind bn(as) in t as

XFoo_rec as::assns ty:trm to::trm
bind bn(as) in t; as, bind bn(as) in t,
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Our Work

o defined fvand o
o built quotient / new type

new | eq. o derived a reasoning infrastructure
YPE | erms . L.
(#, distinctness, injectivity,
cases,...)

e derive a stronger cases lemma

e from this, a stronger induction
principle (Barendregt variable
convention built in)

Foo Axz.Ay.t) Au.\v.s)



Part I: Conclusion

o the user does not see anything of the raw level

Lam a (Var a) = Lam b (Var b)



Part I: Conclusion

o the user does not see anything of the raw level

e http://isabelle.in.tum.de/nominal/
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(starting from a-equal terms).

e on paper this looks easy
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Part I1: a3-Equal Terms

e we have implemented a quotient package for
Isabelle;

e can now introduce the type of a3-equal terms
(starting from a-equal terms).

e on paper this looks easy

T Nosy 7 supp(z) = supp(y)
#  size(x) = size(y)

Andy: supplz],_, = [ |{supp(¥) | ¥ ~ap =}



x [y = s
t1t2 [’y = 8]
Azx.t [y = s]

def

if x = y then s else ©

tily = s| to]y := s]

Azx. tly = s
provided x # (y, s)
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in Theorem Provers

e.g. Isabelle, Coq, HOL4, ...

e automata = graphs, matrices, functions
e combining automata/graphs

=
disjoint union:

A A, = {(Le) |z e A} U{(2,9)]y € A}




Part III: Regular Languages

in Theorem Provers

e.g. Isabelle, Coq, HOL4, ...
e automata = graphs, matrices, functions

Problems with definition for regularity:

is_regular(A) £ IAM. is_dfa(M) A L(M) = A

A A, = {(Le) |z e A} U{(2,9)]y € A}
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Part III: Regular Languages

in Theorem Provers

e.g. Isabelle, Coq, HOL4, ...

e automata = graphs, matrices, functions
e combining automata/graphs

@@ =

A solution: use nats = state nodes

You have to rename states!



Formal language theory...

in Theorem Provers

e.g. Isabelle, Coq, HOL4, ...

e Kozen’s “paper” proof of Myhill-Nerode:
requires absence of inaccessible states

is_regular(A) £ IM. is_dfa(M) A L(M) = A
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A language A is regular, provided there exists a
regular expression that matches all strings of A.
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Definition:

A language A is regular, provided there exists a
regular expression that matches all strings of A.

...and forget about automata

Infrastructure for free. But do we lose anything?
e pumping lemma
e closure under complementation

@ re i ching (=Brozowski’64, Owens et al ’09)

@ most textbooks are about automata



The Myhill-Nerode
Theorem

e provides necessary and sufficient conditions
for a language being regular

(pumping lemma only necessary)

e key is the equivalence relation:

acszd:d‘v’z.:n@zGA@y@zeA



The Myhill-Nerode
Theorem

set of all

strings

o finite (UNIV /| =4) < A isregular



The Myhill-Nerode
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The Myhill-Nerode

1) finite = regular

finite (UNIV /| =4) = 3r. A = L(r)

— 2.) regular => finite

— finite (UNIV /| =)

Theorem

Two directions:

N

An d

qufvalence class

INVI

(4

| 1]

re




Transitions between Eq-Clas

oy
N /|

S
I3
Ny
=2
IE:
o
o
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L




The Other Direction

One has to prove '

finite(UNTV /| =)

by induction on . Not trivial, but after a bit of
thinking, one can find a refined relation:

(m]N KPR
NP

UNIV UNIV// =r»  UNIV//R



Derivatives of RExps

e introduced by Brozowski ’64
e aregular expressions after a character has been

arsed
ercJd

der c []
dercd

der c (r; + 79)
der c (r*)

der c (ry - 79)

def

< o

def
def
def
def

def

%)
if c = d then [} else @

= (der ¢ ) + (der ¢ 79)

(dercr)-r*

if nullable r;
then (der ¢ 1) « 75 + (der ¢ 75)
else (der c 7)) - 75



Derivatives of RExps

e introduced by Brozowski ’64
e aregular expressions after a character has been

parsed ® partial derivatives

pder ¢ & ={ o by Antimirov o5

pder c {} =

pder cd © if ¢ = d then {[1} else {}
der ¢ (r; + 7o) ¥ (pder ¢ 7)) U (der ¢ 7v)

% P

pder ¢ (%) “ (pdercr) - r*

pder c (ry - 79) & if nullable 7,

then (pder ¢ 1) - 7 U (pder ¢ 75)
else (pder c ry) - 9
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o pders x r = pders y r refines T () Y
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Partial Derivatives

° Eders x r = pders y r refines © ~p() Y

' Antimirov 95

o finite(UNIV //R)

o Therefore finite(UNIV // =) Qed.
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o finite (UNIV // =4) < A isregular

e regular languages are closed under
complementation; this is now easy

UNIV/ ~4 = UNIV/| ~4
e non-regularity (a”b"™)

If there exists a sufficiently large set B
(for example infinitely large), such that

Ve,y €E B.x #Zy = x %4 y.

then A is not regular. B L, a"
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What Have We Achieved?
o finite (UNIV // =4) < A isregular

e regular languages are closed under
complementation; this is now easy

UNIV/ ~4 = UNIV/| ~4
e non-regularity (a”b"™)

o take any language; build the language of
substrings
then this language is regular (a™b" = a*b*)



Thank you!

Questions?



Examples

({a,b},a — b) =, ({a,b},a — b)
({a,b},a — b) = ({a,b},b — a)

({a, b}, (a — b,a — b))
#a ({a,b}, (@ = b,b — a))



Examples

({a,b},a — b) =, ({a,b},a — b)
({a,b},a — b) =, ({a,b},b — a)

({a, b}, (a — b,a — b))
#a ({a,b}, (@ = b,b — a))

1.) bind (set) as in 71, bind (set) as in T

2.) bind (set) asin 7 T



