
Nanjing, 31. August 2010 – p. 1/32

Error-Free Programming
with Theorem Provers

Christian Urban

Technical University of Munich, Germany

in Nanjing on the kind invitation of
Professor Xingyuan Zhang and his group

Nanjing, 31. August 2010 – p. 1/32

My Background

researcher in Theoretical Computer Science

programmer on a software system with 800 kloc
(though I am responsible only for 35 kloc)

Nanjing, 31. August 2010 – p. 2/32

My Background

researcher in Theoretical Computer Science

programmer on a software system with 800 kloc
(though I am responsible only for 35 kloc)

Nanjing, 31. August 2010 – p. 2/32

..A theorem prover
called Isabelle.

My Background

researcher in Theoretical Computer Science

programmer on a software system with 800 kloc
(though I am responsible only for 35 kloc)

Nanjing, 31. August 2010 – p. 2/32

..A theorem prover
called Isabelle. ..

Like every other
code, this code is
very hard to get
correct.

Regular Expressions
An example many (should) know about:
Regular Expressions:

Nanjing, 31. August 2010 – p. 3/32

Regular Expressions
An example many (should) know about:
Regular Expressions:

[] | c | r1|r2 | r1·r2 | r∗

Nanjing, 31. August 2010 – p. 3/32

(a·b)∗ 7→ {[], ab, abab, ababab, …}
x·(0 | 1 | 2 …8 | 9)∗ 7→ {x, x0, x1, …, x00, …, x123, …}

Regular Expressions
An example many (should) know about:
Regular Expressions:

r ::= NULL (matches no string)
| EMPTY (matches the empty string, [])
| CHR c (matches the character c)
| ALT r1 r2 (alternative, r1| r2)
| SEQ r1 r2 (sequential, r1· r2)
| STAR r (repeat, r∗)

Nanjing, 31. August 2010 – p. 3/32

(a·b)∗ 7→ {[], ab, abab, ababab, …}
x·(0 | 1 | 2 …8 | 9)∗ 7→ {x, x0, x1, …, x00, …, x123, …}

RegExp Matcher

Let’s implement a regular expression matcher:

..

Regular
Expression

Matcher.

regular
expression

.string .

true, false

Nanjing, 31. August 2010 – p. 4/32

RegExp Matcher
input: a list of RegExps and a string output: true or
false

we start the program with
matches r s = match [r] s

Nanjing, 31. August 2010 – p. 5/32

RegExp Matcher
input: a list of RegExps and a string output: true or
false
match [] [] = true
match [] _ = false
match (NULL::rs) s = false
match (EMPTY::rs) s = match rs s
match (CHR c::rs) (c::s) = match rs s
match (CHR c::rs) _ = false
match (ALT r1 r2::rs) s = match (r1::rs) s

orelse match (r2::rs) s
match (SEQ r1 r2::rs) s = match (r1::r2::rs) s
match (STAR r::rs) s = match rs s

orelse match (r::STAR r::rs) s

we start the program with
matches r s = match [r] s

Nanjing, 31. August 2010 – p. 5/32

RegExp Matcher
input: a list of RegExps and a string output: true or
false
match [] [] = true
match [] _ = false
match (NULL::rs) s = false
match (EMPTY::rs) s = match rs s
match (CHR c::rs) (c::s) = match rs s
match (CHR c::rs) _ = false
match (ALT r1 r2::rs) s = match (r1::rs) s

orelse match (r2::rs) s
match (SEQ r1 r2::rs) s = match (r1::r2::rs) s
match (STAR r::rs) s = match rs s

orelse match (r::STAR r::rs) s

we start the program with
matches r s = match [r] s

Nanjing, 31. August 2010 – p. 5/32

Program in Scala
sealed abstract class Rexp
sealed case class Null extends Rexp
sealed case class Empty extends Rexp
sealed case class Chr(c: Char) extends Rexp
sealed case class Alt(r1 : Rexp, r2 : Rexp) extends Rexp
sealed case class Seq(r1 : Rexp, r2 : Rexp) extends Rexp
sealed case class Star(r : Rexp) extends Rexp

def match1 (rs : List[Rexp], s : List[Char]) : Boolean = rs match {
case Nil ⇒ if (s == Nil) true else false
case (Null()::rs) ⇒ false
case (Empty()::rs) ⇒ match1 (rs, s)
case (Chr(c)::rs) ⇒ s match

{ case Nil ⇒ false
case (d::s) ⇒ if (c==d) match1 (rs,s) else false }

case (Alt (r1, r2)::rs) ⇒ match1 (r1::rs, s) || match1 (r2::rs, s)
case (Seq (r1, r2)::rs) ⇒ match1 (r1::r2::rs, s)
case (Star (r)::rs) ⇒ match1 (r::rs, s) || match1 (r::Star (r)::rs, s)

}
Nanjing, 31. August 2010 – p. 6/32

Testing
Every good programmer should do thourough tests:

matches (a·b)∗ [] 7→ true
matches (a·b)∗ ab 7→ true
matches (a·b)∗ aba 7→ false
matches (a·b)∗ abab 7→ true
matches (a·b)∗ abaa 7→ false

matches x·(0|1)∗ x 7→ true
matches x·(0|1)∗ x0 7→ true
matches x·(0|1)∗ x3 7→ false

looks OK …let’s ship it to customers

Nanjing, 31. August 2010 – p. 7/32

Testing
Every good programmer should do thourough tests:

matches (a·b)∗ [] 7→ true
matches (a·b)∗ ab 7→ true
matches (a·b)∗ aba 7→ false
matches (a·b)∗ abab 7→ true
matches (a·b)∗ abaa 7→ false
matches x·(0|1)∗ x 7→ true
matches x·(0|1)∗ x0 7→ true
matches x·(0|1)∗ x3 7→ false

looks OK …let’s ship it to customers

Nanjing, 31. August 2010 – p. 7/32

Testing
Every good programmer should do thourough tests:

matches (a·b)∗ [] 7→ true
matches (a·b)∗ ab 7→ true
matches (a·b)∗ aba 7→ false
matches (a·b)∗ abab 7→ true
matches (a·b)∗ abaa 7→ false
matches x·(0|1)∗ x 7→ true
matches x·(0|1)∗ x0 7→ true
matches x·(0|1)∗ x3 7→ false

looks OK …let’s ship it to customers

Nanjing, 31. August 2010 – p. 7/32

Testing
While testing is an important part in the process
of programming development

we can only test a finite amount of examples

“Testing can only show the presence of errors,
never their absence” (Edsger W. Dijkstra)

In a theorem prover we can establish properties
that apply to all input and all output.
For example we can establish that the matcher
terminates on all input.

Nanjing, 31. August 2010 – p. 8/32

Testing
While testing is an important part in the process
of programming development
we can only test a finite amount of examples

“Testing can only show the presence of errors,
never their absence” (Edsger W. Dijkstra)

In a theorem prover we can establish properties
that apply to all input and all output.
For example we can establish that the matcher
terminates on all input.

Nanjing, 31. August 2010 – p. 8/32

Testing
While testing is an important part in the process
of programming development
we can only test a finite amount of examples

“Testing can only show the presence of errors,
never their absence” (Edsger W. Dijkstra)

In a theorem prover we can establish properties
that apply to all input and all output.
For example we can establish that the matcher
terminates on all input.

Nanjing, 31. August 2010 – p. 8/32

Testing
While testing is an important part in the process
of programming development
we can only test a finite amount of examples

“Testing can only show the presence of errors,
never their absence” (Edsger W. Dijkstra)

In a theorem prover we can establish properties
that apply to all input and all output.

For example we can establish that the matcher
terminates on all input.

Nanjing, 31. August 2010 – p. 8/32

Testing
While testing is an important part in the process
of programming development
we can only test a finite amount of examples

“Testing can only show the presence of errors,
never their absence” (Edsger W. Dijkstra)

In a theorem prover we can establish properties
that apply to all input and all output.
For example we can establish that the matcher
terminates on all input.

Nanjing, 31. August 2010 – p. 8/32

RegExp Matcher
We need to find a measure that gets smaller in each recursive
call.

match [] [] = true
match [] _ = false
match (NULL::rs) s = false
match (EMPTY::rs) s = match rs s
match (CHR c::rs) (c::s) = match rs s
match (CHR c::rs) _ = false
match (ALT r1 r2::rs) s = match (r1::rs) s

orelse match (r2::rs) s
match (SEQ r1 r2::rs) s = match (r1::r2::rs) s
match (STAR r::rs) s = match rs s

orelse match (r::STAR r::rs) s

Nanjing, 31. August 2010 – p. 9/32

..needs to get smaller

RegExp Matcher
We need to find a measure that gets smaller in each recursive
call.

match [] [] = true
match [] _ = false
match (NULL::rs) s = false
match (EMPTY::rs) s = match rs s
match (CHR c::rs) (c::s) = match rs s
match (CHR c::rs) _ = false
match (ALT r1 r2::rs) s = match (r1::rs) s

orelse match (r2::rs) s
match (SEQ r1 r2::rs) s = match (r1::r2::rs) s
match (STAR r::rs) s = match rs s

orelse match (r::STAR r::rs) s

Nanjing, 31. August 2010 – p. 9/32

..needs to get smaller

RegExp Matcher
We need to find a measure that gets smaller in each recursive
call.

match [] [] = true
match [] _ = false
match (NULL::rs) s = false
match (EMPTY::rs) s = match rs s
match (CHR c::rs) (c::s) = match rs s
match (CHR c::rs) _ = false
match (ALT r1 r2::rs) s = match (r1::rs) s

orelse match (r2::rs) s
match (SEQ r1 r2::rs) s = match (r1::r2::rs) s
match (STAR r::rs) s = match rs s

orelse match (r::STAR r::rs) s

Nanjing, 31. August 2010 – p. 9/32

..needs to get smaller

RegExp Matcher
We need to find a measure that gets smaller in each recursive
call.

match [] [] = true
match [] _ = false
match (NULL::rs) s = false
match (EMPTY::rs) s = match rs s
match (CHR c::rs) (c::s) = match rs s
match (CHR c::rs) _ = false
match (ALT r1 r2::rs) s = match (r1::rs) s

orelse match (r2::rs) s
match (SEQ r1 r2::rs) s = match (r1::r2::rs) s
match (STAR r::rs) s = match rs s

orelse match (r::STAR r::rs) s

Nanjing, 31. August 2010 – p. 9/32

..needs to get smaller

RegExp Matcher
We need to find a measure that gets smaller in each recursive
call.

match [] [] = true
match [] _ = false
match (NULL::rs) s = false
match (EMPTY::rs) s = match rs s
match (CHR c::rs) (c::s) = match rs s
match (CHR c::rs) _ = false
match (ALT r1 r2::rs) s = match (r1::rs) s

orelse match (r2::rs) s
match (SEQ r1 r2::rs) s = match (r1::r2::rs) s
match (STAR r::rs) s = match rs s

orelse match (r::STAR r::rs) s

Nanjing, 31. August 2010 – p. 9/32

..needs to get smaller

RegExp Matcher
We need to find a measure that gets smaller in each recursive
call.

match [] [] = true
match [] _ = false
match (NULL::rs) s = false
match (EMPTY::rs) s = match rs s
match (CHR c::rs) (c::s) = match rs s
match (CHR c::rs) _ = false
match (ALT r1 r2::rs) s = match (r1::rs) s

orelse match (r2::rs) s
match (SEQ r1 r2::rs) s = match (r1::r2::rs) s
match (STAR r::rs) s = match rs s

orelse match (r::STAR r::rs) s

Nanjing, 31. August 2010 – p. 9/32

..needs to get smaller

RegExp Matcher
We need to find a measure that gets smaller in each recursive
call.

match [] [] = true
match [] _ = false
match (NULL::rs) s = false
match (EMPTY::rs) s = match rs s
match (CHR c::rs) (c::s) = match rs s
match (CHR c::rs) _ = false
match (ALT r1 r2::rs) s = match (r1::rs) s

orelse match (r2::rs) s
match (SEQ r1 r2::rs) s = match (r1::r2::rs) s
match (STAR r::rs) s = match rs s

orelse match (r::STAR r::rs) s

Nanjing, 31. August 2010 – p. 9/32

..needs to get smaller

Bug Hunting
Several hours later…

matches (STAR (EMPTY)) s 7→ loops

matches (STAR (EMPTY | …)) s 7→ loops

…
match (EMPTY::rs) s = match rs s
…
match (STAR r::rs) s = match rs s

orelse match (r::STAR r::rs) s

Nanjing, 31. August 2010 – p. 10/32

Bug Hunting

matches (STAR (EMPTY)) s 7→ loops

matches (STAR (EMPTY | …)) s 7→ loops

…
match (EMPTY::rs) s = match rs s
…
match (STAR r::rs) s = match rs s

orelse match (r::STAR r::rs) s

Nanjing, 31. August 2010 – p. 10/32

Bug Hunting

matches (STAR (EMPTY)) s 7→ loops

matches (STAR (EMPTY | …)) s 7→ loops

…
match (EMPTY::rs) s = match rs s
…
match (STAR r::rs) s = match rs s

orelse match (r::STAR r::rs) s

Nanjing, 31. August 2010 – p. 10/32

Bug Hunting

matches (STAR (EMPTY)) s 7→ loops
matches (STAR (EMPTY | …)) s 7→ loops

…
match (EMPTY::rs) s = match rs s
…
match (STAR r::rs) s = match rs s

orelse match (r::STAR r::rs) s

Nanjing, 31. August 2010 – p. 10/32

RegExp Matcher

match [] [] = true
match [] _ = false
match (NULL::rs) s = false
match (EMPTY::rs) s = match rs s
match (CHR c::rs) (c::s) = match rs s
match (CHR c::rs) _ = false
match (ALT r1 r2::rs) s = match (r1::rs) s

orelse match (r2::rs) s
match (SEQ r1 r2::rs) s = match (r1::r2::rs) s
match (STAR r::rs) s = match rs s

orelse match (r::STAR r::rs) s

Nanjing, 31. August 2010 – p. 11/32

Second Attempt
Can a regular expression match the empty string?

nullable (NULL) = false
nullable (EMPTY) = true
nullable (CHR c) = false
nullable (ALT r1 r2) = (nullable r1) orelse (nullable r2)
nullable (SEQ r1 r2) = (nullable r1) andalso (nullable r2)
nullable (STAR r) = true

Nanjing, 31. August 2010 – p. 12/32

Second Attempt
Can a regular expression match the empty string?

nullable (NULL) = false
nullable (EMPTY) = true
nullable (CHR c) = false
nullable (ALT r1 r2) = (nullable r1) orelse (nullable r2)
nullable (SEQ r1 r2) = (nullable r1) andalso (nullable r2)
nullable (STAR r) = true

Nanjing, 31. August 2010 – p. 12/32

RegExp Matcher 2
If r matches c::s, which regular expression can
match the string s?

der c (NULL) = NULL
der c (EMPTY) = NULL
der c (CHR d) = if c=d then EMPTY else NULL
der c (ALT r1 r2) = ALT (der c r1) (der c r2)
der c (SEQ r1 r2) = ALT (SEQ (der c r1) r2)

(if nullable r1 then der c r2 else NULL)
der c (STAR r) = SEQ (der c r) (STAR r)

derivative r [] = r
derivative r (c::s) = derivative (der c r) s

we call the program with
matches r s = nullable (derivative r s)

Nanjing, 31. August 2010 – p. 13/32

RegExp Matcher 2
If r matches c::s, which regular expression can
match the string s?

der c (NULL) = NULL
der c (EMPTY) = NULL
der c (CHR d) = if c=d then EMPTY else NULL
der c (ALT r1 r2) = ALT (der c r1) (der c r2)
der c (SEQ r1 r2) = ALT (SEQ (der c r1) r2)

(if nullable r1 then der c r2 else NULL)
der c (STAR r) = SEQ (der c r) (STAR r)
derivative r [] = r
derivative r (c::s) = derivative (der c r) s

we call the program with
matches r s = nullable (derivative r s)

Nanjing, 31. August 2010 – p. 13/32

RegExp Matcher 2
If r matches c::s, which regular expression can
match the string s?

der c (NULL) = NULL
der c (EMPTY) = NULL
der c (CHR d) = if c=d then EMPTY else NULL
der c (ALT r1 r2) = ALT (der c r1) (der c r2)
der c (SEQ r1 r2) = ALT (SEQ (der c r1) r2)

(if nullable r1 then der c r2 else NULL)
der c (STAR r) = SEQ (der c r) (STAR r)
derivative r [] = r
derivative r (c::s) = derivative (der c r) s

we call the program with
matches r s = nullable (derivative r s)

Nanjing, 31. August 2010 – p. 13/32

But Now What?

?
Nanjing, 31. August 2010 – p. 14/32

Testing

matches []∗ [] 7→ true
matches ([]|a)∗ a 7→ true
matches (a·b)∗ [] 7→ true
matches (a·b)∗ ab 7→ true
matches (a·b)∗ aba 7→ false
matches (a·b)∗ abab 7→ true
matches (a·b)∗ abaa 7→ false
matches x·(0|1)∗ x 7→ true
matches x·(0|1)∗ x0 7→ true
matches x·(0|1)∗ x3 7→ false

Nanjing, 31. August 2010 – p. 15/32

Specification
We have to specify what it means for a regular
expression to match a string.

Nanjing, 31. August 2010 – p. 16/32

Specification
We have to specify what it means for a regular
expression to match a string.

(a·b)∗
7→ {[], ab, abab, ababab, …}

x·(0 | 1 | 2 …8 | 9)∗
7→ {x, x0, x1, …, x00, …, x123, …}

Nanjing, 31. August 2010 – p. 16/32

Specification
We have to specify what it means for a regular
expression to match a string.

L (NULL) def
= {}

L (EMPTY) def
= {[]}

L (CHR c) def
= {c}

L (ALT r1 r2)
def
=

L (r1) ∪ L (r2)

L (SEQ r1 r2)
def
=

L (r1) ; L (r2)

L (STAR r) def
=

(L (r))⋆

Nanjing, 31. August 2010 – p. 16/32

Specification
We have to specify what it means for a regular
expression to match a string.

L (NULL) def
= {}

L (EMPTY) def
= {[]}

L (CHR c) def
= {c}

L (ALT r1 r2)
def
= L (r1) ∪ L (r2)

L (SEQ r1 r2)
def
=

L (r1) ; L (r2)

L (STAR r) def
=

(L (r))⋆

Nanjing, 31. August 2010 – p. 16/32

Specification
We have to specify what it means for a regular
expression to match a string.

L (NULL) def
= {}

L (EMPTY) def
= {[]}

L (CHR c) def
= {c}

L (ALT r1 r2)
def
= L (r1) ∪ L (r2)

L (SEQ r1 r2)
def
=

L (r1) ; L (r2)

L (STAR r) def
=

(L (r))⋆

Nanjing, 31. August 2010 – p. 16/32

S1 ; S2
def
= { s1@s2 | s1∈S1 ∧ s2∈S2 }

Specification
We have to specify what it means for a regular
expression to match a string.

L (NULL) def
= {}

L (EMPTY) def
= {[]}

L (CHR c) def
= {c}

L (ALT r1 r2)
def
= L (r1) ∪ L (r2)

L (SEQ r1 r2)
def
= L (r1) ; L (r2)

L (STAR r) def
=

(L (r))⋆

Nanjing, 31. August 2010 – p. 16/32

S1 ; S2
def
= { s1@s2 | s1∈S1 ∧ s2∈S2 }

Specification
We have to specify what it means for a regular
expression to match a string.

L (NULL) def
= {}

L (EMPTY) def
= {[]}

L (CHR c) def
= {c}

L (ALT r1 r2)
def
= L (r1) ∪ L (r2)

L (SEQ r1 r2)
def
= L (r1) ; L (r2)

L (STAR r) def
=

(L (r))⋆

Nanjing, 31. August 2010 – p. 16/32

[] ∈ S⋆
s1 ∈ S s2 ∈ S⋆

s1@s2 ∈ S⋆

Specification
We have to specify what it means for a regular
expression to match a string.

L (NULL) def
= {}

L (EMPTY) def
= {[]}

L (CHR c) def
= {c}

L (ALT r1 r2)
def
= L (r1) ∪ L (r2)

L (SEQ r1 r2)
def
= L (r1) ; L (r2)

L (STAR r) def
= (L (r))⋆

Nanjing, 31. August 2010 – p. 16/32

[] ∈ S⋆
s1 ∈ S s2 ∈ S⋆

s1@s2 ∈ S⋆

Is the Matcher
Error-Free?

We expect that

matches r s = true =⇒ s ∈ L (r)
matches r s = false =⇒ s /∈ L (r)

By induction, we can prove these properties.

Lemmas: nullable (r) ⇐⇒ [] ∈ L (r)
s ∈ L (der c r) ⇐⇒ (c::s) ∈ L (r)

Nanjing, 31. August 2010 – p. 17/32

Is the Matcher
Error-Free?

We expect that

matches r s = true ⇐= s ∈ L (r)
matches r s = false ⇐= s /∈ L (r)

By induction, we can prove these properties.

Lemmas: nullable (r) ⇐⇒ [] ∈ L (r)
s ∈ L (der c r) ⇐⇒ (c::s) ∈ L (r)

Nanjing, 31. August 2010 – p. 17/32

Is the Matcher
Error-Free?

We expect that

matches r s = true ⇐⇒ s ∈ L (r)
matches r s = false ⇐⇒ s /∈ L (r)

By induction, we can prove these properties.

Lemmas: nullable (r) ⇐⇒ [] ∈ L (r)
s ∈ L (der c r) ⇐⇒ (c::s) ∈ L (r)

Nanjing, 31. August 2010 – p. 17/32

Is the Matcher
Error-Free?

We expect that

matches r s = true ⇐⇒ s ∈ L (r)
matches r s = false ⇐⇒ s /∈ L (r)

By induction, we can prove these properties.

Lemmas: nullable (r) ⇐⇒ [] ∈ L (r)
s ∈ L (der c r) ⇐⇒ (c::s) ∈ L (r)

Nanjing, 31. August 2010 – p. 17/32

∀r s.

nullable (NULL) = false
nullable (EMPTY) = true
nullable (CHR c) = false
nullable (ALT r1 r2) = (nullable r1) orelse (nullable r2)
nullable (SEQ r1 r2) = (nullable r1) andalso (nullable r2)
nullable (STAR r) = true

der c (NULL) = NULL
der c (EMPTY) = NULL
der c (CHR d) = if c=d then EMPTY else NULL
der c (ALT r1 r2) = ALT (der c r1) (der c r2)
der c (SEQ r1 r2) = ALT (SEQ (der c r1) r2)

(if nullable r1 then der c r2 else NULL)
der c (STAR r) = SEQ (der c r) (STAR r)
derivative r [] = r
derivative r (c::s) = derivative (der c r) s
matches r s = nullable (derivative r s)

Nanjing, 31. August 2010 – p. 18/32

nullable (NULL) = false
nullable (EMPTY) = true
nullable (CHR c) = false
nullable (ALT r1 r2) = (nullable r1) orelse (nullable r2)
nullable (SEQ r1 r2) = (nullable r1) andalso (nullable r2)
nullable (STAR r) = true

der c (NULL) = NULL
der c (EMPTY) = NULL
der c (CHR d) = if c=d then EMPTY else NULL
der c (ALT r1 r2) = ALT (der c r1) (der c r2)
der c (SEQ r1 r2) = ALT (SEQ (der c r1) r2)

(if nullable r1 then der c r2 else NULL)
der c (STAR r) = SEQ (der c r) (STAR r)
derivative r [] = r
derivative r (c::s) = derivative (der c r) s
matches r s = nullable (derivative r s)

Nanjing, 31. August 2010 – p. 18/32

Interlude: TCB

The Trusted Code Base (TCB) is the code that
can make your program behave in unintended
ways (i.e. cause bugs).

Typically the TCB includes: CPUs, operating
systems, C-libraries, device drivers, (J)VMs…

It also includes the compiler.

Nanjing, 31. August 2010 – p. 19/32

Interlude: TCB

The Trusted Code Base (TCB) is the code that
can make your program behave in unintended
ways (i.e. cause bugs).

Typically the TCB includes: CPUs, operating
systems, C-libraries, device drivers, (J)VMs…

It also includes the compiler.

Nanjing, 31. August 2010 – p. 19/32

Hacking Compilers

Ken Thompson
Turing Award, 1983

... Ken Thompson showed how to hide
a Trojan Horse in a compiler without
leaving any traces in the source code.

... No amount of source level verifi-
cation will protect you from such
Thompson-hacks.

... Therefore in safety-critical systems it
is important to rely on only a very
small TCB.

Nanjing, 31. August 2010 – p. 20/32

Hacking Compilers

Ken Thompson
Turing Award, 1983

... Ken Thompson showed how to hide
a Trojan Horse in a compiler without
leaving any traces in the source code.

... No amount of source level verifi-
cation will protect you from such
Thompson-hacks.

... Therefore in safety-critical systems it
is important to rely on only a very
small TCB.

Nanjing, 31. August 2010 – p. 20/32

..

1) Assume you ship the compiler as
binary and also with sources.

2) Make the compiler aware when it
compiles itself.

3) Add the Trojan horse.
4) Compile.
5) Delete Trojan horse from the sources

of the compiler.
6) Go on holiday for the rest of your

life. ;o)

Hacking Compilers

Ken Thompson
Turing Award, 1983

... Ken Thompson showed how to hide
a Trojan Horse in a compiler without
leaving any traces in the source code.

... No amount of source level verifi-
cation will protect you from such
Thompson-hacks.

... Therefore in safety-critical systems it
is important to rely on only a very
small TCB.

Nanjing, 31. August 2010 – p. 20/32

An Example: Small TCB for
A Critical Infrastructure

Andrew Appel
(Princeton)

TCB of the checker is ∼2700 lines of code (1865 loc of
LF definitions; 803 loc in C including 2 library functions)
167 loc in C implement a type-checker

Nanjing, 31. August 2010 – p. 21/32

.
Proof-Carrying Code..

........

user needs
to run

untrusted
code

.

code
developer/

web
server/
Apple
Store

.

proof-
checker

.

code

.

LF proof

.

certificate

.

Highly
Dangerous!

An Example: Small TCB for
A Critical Infrastructure

Andrew Appel
(Princeton)

TCB of the checker is ∼2700 lines of code (1865 loc of
LF definitions; 803 loc in C including 2 library functions)
167 loc in C implement a type-checker

Nanjing, 31. August 2010 – p. 21/32

.
Proof-Carrying Code..

........

user needs
to run

untrusted
code

.

code
developer/

web
server/
Apple
Store

.

proof-
checker

.

code

.

LF proof

.

certificate

.

Highly
Dangerous!

An Example: Small TCB for
A Critical Infrastructure

Andrew Appel
(Princeton)

TCB of the checker is ∼2700 lines of code (1865 loc of
LF definitions; 803 loc in C including 2 library functions)
167 loc in C implement a type-checker

Nanjing, 31. August 2010 – p. 21/32

.
Proof-Carrying Code..

........

user needs
to run

untrusted
code

.

code
developer/

web
server/
Apple
Store

.

proof-
checker

.

code

.

LF proof

.

certificate

.

Highly
Dangerous!

An Example: Small TCB for
A Critical Infrastructure

Andrew Appel
(Princeton)

TCB of the checker is ∼2700 lines of code (1865 loc of
LF definitions; 803 loc in C including 2 library functions)

167 loc in C implement a type-checker

Nanjing, 31. August 2010 – p. 21/32

.
Proof-Carrying Code..

........

user needs
to run

untrusted
code

.

code
developer/

web
server/
Apple
Store

.

proof-
checker

.

code

.

LF proof

.

certificate

.

Highly
Dangerous!

An Example: Small TCB for
A Critical Infrastructure

Andrew Appel
(Princeton)

TCB of the checker is ∼2700 lines of code (1865 loc of
LF definitions; 803 loc in C including 2 library functions)
167 loc in C implement a type-checker

Nanjing, 31. August 2010 – p. 21/32

.
Proof-Carrying Code..

........

user needs
to run

untrusted
code

.

code
developer/

web
server/
Apple
Store

.

proof-
checker

.

code

.

LF proof

.

certificate

.

Highly
Dangerous!

Type-Checking in LF

Bob Harper
(CMU)

Frank Pfenning
(CMU)

31 pages in
ACM Transact. on
Comp. Logic., 2005

Nanjing, 31. August 2010 – p. 22/32

..

. ...Spec ...Proof ...Alg

.

.1st
solution

.

..Spec+ex

.

..Proof

.

..Alg

.

.2nd
solution

.

..Spec

.

..Proof

.

..Alg-ex

.

.3rd
solution

.

..Spec

.

..Proof

.

..Alg

..2h

Type-Checking in LF

Bob Harper
(CMU)

Frank Pfenning
(CMU)

31 pages in
ACM Transact. on
Comp. Logic., 2005

Nanjing, 31. August 2010 – p. 22/32

..

. ...Spec ...Proof ...Alg

.

.1st
solution

.

..Spec+ex

.

..Proof

.

..Alg

.

.2nd
solution

.

..Spec

.

..Proof

.

..Alg-ex

.

.3rd
solution

.

..Spec

.

..Proof

.

..Alg

.

..2h

Type-Checking in LF

Bob Harper
(CMU)

Frank Pfenning
(CMU)

31 pages in
ACM Transact. on
Comp. Logic., 2005

Nanjing, 31. August 2010 – p. 22/32

..

. ...Spec ...Proof ...Alg

.

.1st
solution

.

..Spec+ex

.

..Proof

.

..Alg

.

.2nd
solution

.

..Spec

.

..Proof

.

..Alg-ex

.

.3rd
solution

.

..Spec

.

..Proof

.

..Alg

..2h

Type-Checking in LF

Bob Harper
(CMU)

Frank Pfenning
(CMU)

31 pages in
ACM Transact. on
Comp. Logic., 2005

Nanjing, 31. August 2010 – p. 22/32

..

. ...Spec ...Proof ...Alg

..1st
solution

...Spec+ex ...Proof ...Alg

.

.2nd
solution

.

..Spec

.

..Proof

.

..Alg-ex

.

.3rd
solution

.

..Spec

.

..Proof

.

..Alg

..2h

Type-Checking in LF

Bob Harper
(CMU)

Frank Pfenning
(CMU)

31 pages in
ACM Transact. on
Comp. Logic., 2005

Nanjing, 31. August 2010 – p. 22/32

..

. ...Spec ...Proof ...Alg

..1st
solution

...Spec+ex ...Proof ...Alg

..2nd
solution

...Spec ...Proof ...Alg-ex

.

.3rd
solution

.

..Spec

.

..Proof

.

..Alg

..2h

Type-Checking in LF

Bob Harper
(CMU)

Frank Pfenning
(CMU)

31 pages in
ACM Transact. on
Comp. Logic., 2005

Nanjing, 31. August 2010 – p. 22/32

..

. ...Spec ...Proof ...Alg

..1st
solution

...Spec+ex ...Proof ...Alg

..2nd
solution

...Spec ...Proof ...Alg-ex

..3rd
solution

...Spec ...Proof ...Alg

..2h

Type-Checking in LF

Bob Harper
(CMU)

Frank Pfenning
(CMU)

31 pages in
ACM Transact. on
Comp. Logic., 2005

Nanjing, 31. August 2010 – p. 22/32

..

. ...Spec ...Proof ...Alg

..1st
solution

...Spec+ex ...Proof ...Alg

..2nd
solution

...Spec ...Proof ...Alg-ex

..3rd
solution

...Spec ...Proof ...Alg

..2h

.

......
Each time one needs to check ∼31pp of informal paper proofs.
You have to be able to keep definitions and proofs consistent.

Theorem Provers

Theorem provers help with keeping large proofs
consistent; make them modifiable.

They can ensure that all cases are covered.

Sometimes, tedious reasoning can be automated.

Nanjing, 31. August 2010 – p. 23/32

Theorem Provers

You also pay a (sometimes heavy) price: reasoning
can be much, much harder.

Depending on your domain, suitable reasoning
infrastructure might not yet be available.

Nanjing, 31. August 2010 – p. 24/32

Theorem Provers

Recently impressive work has been accomplished
proving the correctness
of a compiler for C-light (compiled code has the
same observable behaviour as the original source
code),

a mirco-kernel operating system (absence of
certain bugs…no nil pointers, no buffer
overflows).

Nanjing, 31. August 2010 – p. 25/32

Trust in Theorem Provers

Why should we trust theorem provers?

Nanjing, 31. August 2010 – p. 26/32

Theorem Provers
Theorem provers are a special kind of software.
We do not need to trust them; we only need to
trust:

The logic they are based on (e.g. HOL), and
a proof checker that checks the proofs (this can be a
very small program).

To a little extend, we also need to trust our
definitions (this can be mitigated).

Nanjing, 31. August 2010 – p. 27/32

Theorem Provers
Theorem provers are a special kind of software.
We do not need to trust them; we only need to
trust:

The logic they are based on (e.g. HOL), and
a proof checker that checks the proofs (this can be a
very small program).
To a little extend, we also need to trust our
definitions (this can be mitigated).

Nanjing, 31. August 2010 – p. 27/32

Isabelle
I am using the Isabelle theorem prover
(development since 1990).

It follows the LCF-approach:
Have a special abstract type thm.
Make the constructors of this abstract type the
inference rules of your logic.
Implement the theorem prover in a strongly-typed
language (e.g. ML).

⇒ everything of type thm has been proved (even
if we do not have to explicitly generate proofs).

Nanjing, 31. August 2010 – p. 28/32

Robin Milner
Turing Award, 1991

Demo

Nanjing, 31. August 2010 – p. 29/32

Future Research
Make theorem provers more like a programming
environment.

Use all the computational power we get from the
hardware to automate reasoning (GPUs).
Provide a comprehensive reasoning infrastructure
for many domains and design automated decision
procedures.

“Formal methods will never have a significant impact un-
til they can be used by people that don’t understand
them.”

attributed to Tom Melham

Nanjing, 31. August 2010 – p. 30/32

Future Research
Make theorem provers more like a programming
environment.
Use all the computational power we get from the
hardware to automate reasoning (GPUs).

Provide a comprehensive reasoning infrastructure
for many domains and design automated decision
procedures.

“Formal methods will never have a significant impact un-
til they can be used by people that don’t understand
them.”

attributed to Tom Melham

Nanjing, 31. August 2010 – p. 30/32

Future Research
Make theorem provers more like a programming
environment.
Use all the computational power we get from the
hardware to automate reasoning (GPUs).
Provide a comprehensive reasoning infrastructure
for many domains and design automated decision
procedures.

“Formal methods will never have a significant impact un-
til they can be used by people that don’t understand
them.”

attributed to Tom Melham

Nanjing, 31. August 2010 – p. 30/32

Future Research
Make theorem provers more like a programming
environment.
Use all the computational power we get from the
hardware to automate reasoning (GPUs).
Provide a comprehensive reasoning infrastructure
for many domains and design automated decision
procedures.

“Formal methods will never have a significant impact un-
til they can be used by people that don’t understand
them.”

attributed to Tom Melham

Nanjing, 31. August 2010 – p. 30/32

Conclusion

The plan is to make this kind of programming the
“future”.

Though the technology is already there
(compiler + micro-kernel os).

Logic and reasoning (especially induction) are
important skills for Computer Scientists.

Nanjing, 31. August 2010 – p. 31/32

Conclusion

The plan is to make this kind of programming the
“future”.

Though the technology is already there
(compiler + micro-kernel os).

Logic and reasoning (especially induction) are
important skills for Computer Scientists.

Nanjing, 31. August 2010 – p. 31/32

Conclusion

The plan is to make this kind of programming the
“future”.

Though the technology is already there
(compiler + micro-kernel os).

Logic and reasoning (especially induction) are
important skills for Computer Scientists.

Nanjing, 31. August 2010 – p. 31/32

Thank you very much!
Questions?

Nanjing, 31. August 2010 – p. 32/32

