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@ ...is a definitional extension of Isabelle/HOL
(let-polymorphism and type classes)

e ...provides a convenient reasoning infrastructure
for terms involving binders (e.g. lambda calculus,
variable convention)

o ...mainly used to find errors in my own (published)
paper proofs and in those of others ;0)
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The “0Old Way”

e sorted atoms
> separate types (“copies” of nat)

@ sort-respecting permutations
— lists of pairs of atoms (list swappings)

b ifree = a
[lece=¢c (ab)imec=<a ifrec=0>

mwec otherwise

A small benefit: permutation composition is list
append and permutation inversion is list reversal.
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Problems

o _+_uzaperm= 3=7

@ supp _: 3 = o set

finite(supp ) o ser ---finite(supp ) a,, set

4 N

o Vmy, | © lotsof ML-code

@ not pretty

° tYP{?" e not a proof pearl :o(
o [Te
o (Mm@ T =7 (73T
o ifmy~mythenm ez =my°x
o if 7y, 7y have diff. type, then 7y ¢ (maox) = moe(w ox)
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A Better Way

datatype atom = Atom string nat

e permutations are (restricted) bijective functions
from atom => atom

o sortrespecting (Va. sort(wa) = sort(a))
o finite domain (finite{a. wa # a})

e What about swappings’

(a b) T sort(a) = sort(b)
then Xc.if a = ¢ then b else if b = ¢ then a else ¢
else id
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A Smoother Nominal
Theory

From there it is essentially plain sailing:
o (ab)=(ba)=(ac)+ (be)+ (ac)

e permutations are an instance of Isabelle’s
group_add (0, 7, + 7y, —7)

o _ec_llperm = ax =
e ex==x

o (m +my) ex=m1 ¢ (my*x)

+— only one type class needed, finite(supp ),
Vr.P



One Snatch

datatype atom = Atom string nat

e You like to get the advantages of the old way
back: you cannot mix atoms of different sort:

e.g. LF-objects:
M:=c|x|AXx:A.M | M; M,
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Our Solution

@ concrete atoms:

edef name = "a :: atom. sort a = "name”}”
typ
typedef ident = "a :: atom. sort a = "ident”}”

o they are a “subtype” of the generic atom type

e there is an overloaded function atom, which
injects concrete atoms into generic ones

atom(a) # x
(a <> b) ¥ (atom(a) atom(b))
One would like to have a # x, (a b), ...
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Sorts Reloaded

datatype atom = Atom string nat

Problem: HOL-binders or Church-style

lambda-terms

ALy To T3

datatype ty = TVar string | ty — ty
datatype var = Var name ty

(® = Y) * (Tar ) = (Yas Yp)
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datatype atom = Atom string nat
have

datatype ’a atom = Atom ’a nat

But then

_e_uzaperm= 3=0
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A Working Solution

datatype sort = Sort string "sort list”
datatype atom = Atom sort nat

sort_ty (T'Var x) & Sort "TVar” [Sort x {11
sort_ty (; = 2) & Sort "Fun” [sort_ty 1, sort_ty 5}

typedef var = {a :: atom. sort a € range sort_ty}

Varx & [ Atom (sort_ty) x |

(Varx <> Vary) ¢ Varx = Vary
(Varx <> Vary) ¢ Varx’=Varx’
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Conclusion

e the formalised version of the nominal theory is
now much nicer to work with (sorts are
occasionally explicit, V7. P)

e permutations: “be as abstract as you can”
(group_add is a slight oddity)

e the crucial insight: allow sort-disrespecting
swappings ...just define them as the identity
(a referee called this a “hack”)

o there will be a hands-on tutorial about Nominal
Isabelle at POPL11 in Austin Texas



Thank you very much

Questions?



