Proof Pearl: A New Foundation for Nominal Isabelle

Brian Huffman and Christian Urban

Nominal Isabelle

- ...is a definitional extension of Isabelle/HOL (let-polymorphism and type classes)
- ...provides a convenient reasoning infrastructure for terms involving binders (e.g. lambda calculus, variable convention)

Nominal Isabelle

- ...is a definitional extension of Isabelle/HOL (let-polymorphism and type classes)
- ...provides a convenient reasoning infrastructure for terms involving binders (e.g. lambda calculus, variable convention)
- ...mainly used to find errors in my own (published) paper proofs and in those of others ;0)

Nominal Theory

...by Pitts; at its core are:

- sorted atoms and
- sort-respecting permutations

Nominal Theory

...by Pitts; at its core are:

- sorted atoms and
- sort-respecting permutations

 $\pi \cdot x$

Nominal Theory

...by Pitts; at its core are:

- sorted atoms and
- sort-respecting permutations

$$inv_of_\pi \cdot (\pi \cdot x) = x$$

- sorted atoms
 - → separate types ("copies" of nat)
- sort-respecting permutations
 - → lists of pairs of atoms (list swappings)

- sorted atoms
 - → separate types ("copies" of nat)
- sort-respecting permutations
 - → lists of pairs of atoms (list swappings)

$$[] ullet c = c \quad (a \ b) :: \pi ullet c = egin{cases} b & ext{if } \pi ullet c = a \ a & ext{if } \pi ullet c = b \ \pi ullet c & ext{otherwise} \end{cases}$$

- sorted atoms
 - → separate types ("copies" of nat)
- sort-respecting permutations
 - → lists of pairs of atoms (list swappings)

$$\{ \} ullet c = c \quad (a \ b) :: \pi ullet c = egin{cases} b & ext{if } \pi ullet c = a \ a & ext{if } \pi ullet c = b \ \pi ullet c & ext{otherwise} \end{cases}$$

The big benefit: the type system takes care of the sort-respecting requirement.

- sorted atoms
 - → separate types ("copies" of nat)
- sort-respecting permutations
 - \mapsto lists of pairs of atoms (list swappings)

$$\{ \} ullet c = c \quad (a \ b) :: \pi ullet c = egin{cases} b & ext{if } \pi ullet c = a \ a & ext{if } \pi ullet c = b \ \pi ullet c & ext{otherwise} \end{cases}$$

A small benefit: permutation composition is list append and permutation inversion is list reversal.

•
$$_$$
 • $_$:: α perm $\Rightarrow \beta \Rightarrow \beta$

• $\operatorname{supp}_- :: \beta \Rightarrow \alpha$ set $\operatorname{finite}(\operatorname{supp} x)_{\alpha_1 \text{ set}} ... \operatorname{finite}(\operatorname{supp} x)_{\alpha_n \text{ set}}$

$$\bullet \ \forall \pi_{\alpha_1} \dots \pi_{\alpha_n} \cdot P$$

• type-classes

•
$$_$$
 • $_$:: α perm $\Rightarrow \beta \Rightarrow \beta$

• $\operatorname{supp}_{-} :: \beta \Rightarrow \alpha \operatorname{set}$

$$\operatorname{finite}(\operatorname{supp}\ x)_{\,lpha_1\,\mathrm{set}}\,...\operatorname{finite}(\operatorname{supp}\ x)_{\,lpha_n\,\mathrm{set}}$$

$$ullet$$
 $\forall \pi_{lpha_1} \dots \pi_{lpha_n}$. P

- type-classes
 - \bullet [] \bullet x = x
 - $\bullet \ (\boldsymbol{\pi}_1 @ \boldsymbol{\pi}_2) \bullet \boldsymbol{x} = \boldsymbol{\pi}_1 \bullet (\boldsymbol{\pi}_2 \bullet \boldsymbol{x})$
 - if $\pi_1 \sim \pi_2$ then $\pi_1 \bullet x = \pi_2 \bullet x$
 - if π_1, π_2 have diff. type, then $\pi_1 \bullet (\pi_2 \bullet x) = \pi_2 \bullet (\pi_1 \bullet x)$

- $_$ $_$:: α perm $\Rightarrow \beta \Rightarrow \beta$
- $\sup_{-} :: \beta \Rightarrow \alpha$ set $\operatorname{finite}(\operatorname{supp} x)_{\alpha_{1} \text{ set }} ... \operatorname{finite}(\operatorname{supp} x)_{\alpha_{n} \text{ set}}$
- ullet $\forall \pi_{lpha_1} \dots \pi_{lpha_n} \cdot P$
- type-classes can only have **one** type parameter
 - ullet $\{ \} \cdot x = x \}$
 - $\bullet \ (\boldsymbol{\pi}_1 @ \boldsymbol{\pi}_2) \bullet \boldsymbol{x} = \boldsymbol{\pi}_1 \bullet (\boldsymbol{\pi}_2 \bullet \boldsymbol{x})$
 - if $\pi_1 \sim \pi_2$ then $\pi_1 \bullet x = \pi_2 \bullet x$
 - if π_1, π_2 have diff. type, then $\pi_1 \bullet (\pi_2 \bullet x) = \pi_2 \bullet (\pi_1 \bullet x)$

- $_$ $_$:: α perm $\Rightarrow \beta \Rightarrow \beta$
- $\operatorname{supp} _ :: \beta \Rightarrow \alpha \operatorname{set}$

$$finite(supp \ x)_{\alpha_1 set} \dots finite(supp \ x)_{\alpha_n set}$$

- ullet $\forall \pi_{lpha_1}$
- lots of ML-code
 - not pretty
- type- not a proof pearl:0(
 - [] •
 - $\bullet \ \ (\boldsymbol{\pi}_1 \boldsymbol{@} \boldsymbol{\pi}_2) \bullet \boldsymbol{x} = \boldsymbol{\pi}_1 \bullet (\boldsymbol{\pi}_2 \bullet \boldsymbol{x})$
 - if $\pi_1 \sim \pi_2$ then $\pi_1 \bullet x = \pi_2 \bullet x$
 - if π_1, π_2 have diff. type, then $\pi_1 \bullet (\pi_2 \bullet x) = \pi_2 \bullet (\pi_1 \bullet x)$

- permutations are (restricted) bijective functions from atom ⇒ atom
 - sort-respecting $(\forall a. \operatorname{sort}(\pi a) = \operatorname{sort}(a))$
 - finite domain (finite $\{a. \ \pi a \neq a\}$)

$$_ \bullet _ :: perm \Rightarrow \beta \Rightarrow \beta$$

- permutations are (restricted) bijective functions from atom ⇒ atom
 - sort-respecting $(\forall a. \operatorname{sort}(\pi a) = \operatorname{sort}(a))$
 - finite domain (finite $\{a. \ \pi a \neq a\}$)
- What about **swappings**?
 - $(a\ b) \stackrel{\mathrm{def}}{=} ext{if } ext{sort}(a) = ext{sort}(b) \ ext{then } \lambda c. ext{if } a = c ext{ then } b ext{ else } c \ ext{else } c$

- permutations are (restricted) bijective functions from atom ⇒ atom
 - sort-respecting $(\forall a. \operatorname{sort}(\pi a) = \operatorname{sort}(a))$
 - finite domain (finite $\{a. \ \pi a \neq a\}$)
- What about **swappings**?
 - $(a \ b) \stackrel{\text{def}}{=} \text{if } \operatorname{sort}(a) = \operatorname{sort}(b)$ then λc . if a = c then b else if b = c then a else c else id

$$\bullet (a b) = (b a)$$

- $\bullet (a b) = (b a)$
- permutations are an instance of Isabelle's group_add $(0, \pi_1 + \pi_2, -\pi)$

From there it is essentially plain sailing:

$$\bullet \ (a \ b) = (b \ a) = (a \ c) + (b \ c) + (a \ c)$$

• permutations are an instance of Isabelle's group_add $(0, \pi_1 + \pi_2, -\pi)$

From there it is essentially plain sailing:

$$(a b) = (b a) = (a c) + (b c) + (a c)$$

 permutations are an instance of Isabelle's group_add $(0, \pi_1 + \pi_2, -\pi)$

This is slightly odd, since in general: $\pi_1 + \pi_2 \neq \pi_2 + \pi_1$

$$\pi_1 + \pi_2 \neq \pi_2 + \pi_1$$

$$\bullet \ (a \ b) = (b \ a) = (a \ c) + (b \ c) + (a \ c)$$

- permutations are an instance of Isabelle's group_add $(0, \pi_1 + \pi_2, -\pi)$
- $_$ $_$:: perm $\Rightarrow \alpha \Rightarrow \alpha$
 - \bullet 0 \bullet $\boldsymbol{x} = \boldsymbol{x}$
 - $\bullet \ (\boldsymbol{\pi}_1 + \boldsymbol{\pi}_2) \bullet \boldsymbol{x} = \boldsymbol{\pi}_1 \bullet (\boldsymbol{\pi}_2 \bullet \boldsymbol{x})$

$$\bullet \ (a \ b) = (b \ a) = (a \ c) + (b \ c) + (a \ c)$$

- permutations are an instance of Isabelle's group_add $(0, \pi_1 + \pi_2, -\pi)$
- $_$ $_$:: perm $\Rightarrow \alpha \Rightarrow \alpha$
 - \bullet 0 \bullet $\boldsymbol{x} = \boldsymbol{x}$
 - $\bullet \ (\boldsymbol{\pi}_1 + \boldsymbol{\pi}_2) \ \bullet \ \boldsymbol{x} = \boldsymbol{\pi}_1 \ \bullet \ (\boldsymbol{\pi}_2 \ \bullet \ \boldsymbol{x})$
 - \mapsto only one type class needed, finite(supp x), $\forall \pi. P$

One Snatch

datatype atom = Atom string nat

• You like to get the advantages of the old way back: you cannot mix atoms of different sort:

e.g. LF-objects:

$$M ::= c \mid x \mid \lambda x : A.M \mid M_1 M_2$$

Our Solution

concrete atoms:

```
typedef name = "{a :: atom. sort a = "name"}"
typedef ident = "{a :: atom. sort a = "ident"}"
```

- they are a "subtype" of the generic atom type
- there is an overloaded function **atom**, which injects concrete atoms into generic ones

$$atom(a) \# x$$

 $(a \leftrightarrow b) \stackrel{\text{def}}{=} (atom(a) \ atom(b))$

Our Solution

• concrete atoms:

```
typedef name = "{a :: atom. sort a = "name"}"
typedef ident = "{a :: atom. sort a = "ident"}"
```

- they are a "subtype" of the generic atom type
- there is an overloaded function **atom**, which injects concrete atoms into generic ones

$$\operatorname{atom}(\boldsymbol{a}) \ \# \ \boldsymbol{x}$$
 $(\boldsymbol{a} \leftrightarrow \boldsymbol{b}) \stackrel{\text{def}}{=} (\operatorname{atom}(\boldsymbol{a}) \ \operatorname{atom}(\boldsymbol{b}))$

One would like to have a # x, (a b), ...

datatype atom = Atom string nat

Problem: HOL-binders or Church-style

lambda-terms

 $\lambda x_{lpha}.\,x_{lpha}\,\,x_{eta}$

datatype atom = Atom string nat

Problem: HOL-binders or Church-style lambda-terms

$$\lambda x_{\alpha}. x_{\alpha} x_{\beta}$$

datatype ty = TVar string | ty \rightarrow ty **datatype** var = Var name ty

datatype atom = Atom string nat

Problem: HOL-binders or Church-style lambda-terms

$$\lambda x_{lpha}. x_{lpha} x_{eta}$$

datatype ty = TVar string | ty
$$\rightarrow$$
 ty **datatype** var = Var name ty $(x \leftrightarrow y) \cdot (x_{\alpha}, x_{\beta}) = (y_{\alpha}, y_{\beta})$

Non-Working Solution

Instead of

datatype atom = Atom string nat

have

datatype 'a atom = Atom 'a nat

Non-Working Solution

Instead of

datatype atom = Atom string nat

have

datatype 'a atom = Atom 'a nat

But then

$$_ \cdot _ :: \alpha \text{ perm} \Rightarrow \beta \Rightarrow \beta$$

datatype sort = Sort string "sort list"
datatype atom = Atom sort nat

datatype sort = Sort string "sort list"
datatype atom = Atom sort nat

```
sort_ty (TVar x) \stackrel{\text{def}}{=} Sort "TVar" [Sort x []]
sort_ty (1 \Rightarrow 2) \stackrel{\text{def}}{=} Sort "Fun" [sort_ty 1, sort_ty 2]
```

datatype sort = Sort string "sort list"
datatype atom = Atom sort nat

```
sort_ty (TVar x) \stackrel{\text{def}}{=} Sort "TVar" [Sort x []]
sort_ty (1 \Rightarrow 2) \stackrel{\text{def}}{=} Sort "Fun" [sort_ty 1, sort_ty 2]
```

typedef var = $\{a :: atom. sort a \in range sort_ty\}$

datatype sort = Sort string "sort list"
datatype atom = Atom sort nat

```
sort_ty (TVar x) \stackrel{\text{def}}{=} Sort "TVar" [Sort x []]

sort_ty (_1 \Rightarrow _2) \stackrel{\text{def}}{=} Sort "Fun" [sort_ty _1, sort_ty _2]

typedef var = {a :: atom. sort a \in range sort_ty}

Var x \stackrel{\text{def}}{=} [ Atom (sort_ty) x ]

(Var x \leftrightarrow Var y) \bullet Var x = Var y

(Var x \leftrightarrow Var y) \bullet Var x '= Var x'
```

- the formalised version of the nominal theory is now much nicer to work with (sorts are occasionally explicit, $\forall \pi.P$)
- permutations: "be as abstract as you can" (group_add is a slight oddity)
- the crucial insight: allow sort-disrespecting swappings

- the formalised version of the nominal theory is now much nicer to work with (sorts are occasionally explicit, $\forall \pi.P$)
- permutations: "be as abstract as you can" (group_add is a slight oddity)
- the crucial insight: allow sort-disrespecting swappings ...just define them as the identity

- the formalised version of the nominal theory is now much nicer to work with (sorts are occasionally explicit, $\forall \pi.P$)
- permutations: "be as abstract as you can" (group_add is a slight oddity)
- the crucial insight: allow sort-disrespecting swappings ...just define them as the identity (a referee called this a "hack")

- the formalised version of the nominal theory is now much nicer to work with (sorts are occasionally explicit, $\forall \pi.P$)
- permutations: "be as abstract as you can" (group_add is a slight oddity)
- the crucial insight: allow sort-disrespecting swappings ...just define them as the identity (a referee called this a "hack")
- there will be a hands-on tutorial about Nominal Isabelle at POPL'11 in Austin Texas

Thank you very much Questions?