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Binding in Old Nominal
the old Nominal Isabelle provided a reasoning
infrastructure for single binders

Lam [a].(Var a)

but representing
∀{a1, . . . , an}. T

with single binders and reasoning about it is a
major pain; take my word for it!
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for example
a # Lam [a]. t
Lam [a]. (Var a) = Lam [b]. (Var b)
Barendregt-style reasoning about bound variables
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Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type
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∗ x, y, z are assumed to be distinct

..
For type-schemes the order of bound
names does not matter, and
alpha-equivalence is preserved under
vacuous binders.



Other Binding Modes

alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x = 3 and y = 2 in x − y end

let y = 2 and x = 3 in x − y end
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Other Binding Modes

alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x = 3 and y = 2 in x − y end
̸≈α let y = 2 and x = 3 and z = loop in x − y end
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Even Another Binding Mode

sometimes one wants to abstract more than one
name, but the order does matter

let (x, y) = (3, 2) in x − y end
̸≈α let (y, x) = (3, 2) in x − y end
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Three Binding Modes

the order does not matter and alpha-equivelence
is preserved under vacuous binders (restriction)

the order does not matter, but the cardinality of
the binders must be the same (abstraction)

the order does matter (iterated single binders)

bind (set+) bind (set) bind
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Specification of Binding
nominal_datatype trm =

Var name
| App trm trm
| Lam name trm

bind x in t

| Let assn trm

bind bn(as) in t

and assn =
ANil

| ACons name trm assn

binder bn where
bn(ANil) = []

| bn(ACons a t as) = [a] @ bn(as)
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Inspiration from Ott

this way of specifying binding is inspired by Ott

,
but we made some adjustments:
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Inspiration from Ott

this way of specifying binding is inspired by Ott,
but we made some adjustments:

Ott allows specifications like
t ::= t t | λx.t
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Inspiration from Ott

this way of specifying binding is inspired by Ott,
but we made some adjustments:

whether something is bound can depend in Ott on
other bound things

..

Foo (λy.λx.t)

.

s

.{y, x}

this might make sense for “raw” terms, but not at all for
α-equated terms
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Inspiration from Ott

this way of specifying binding is inspired by Ott,
but we made some adjustments:

we allow multiple “binders” and “bodies”
bind a b c …in x y z …
bind (set) a b c …in x y z …
bind (set+) a b c …in x y z …

the reason is that with our definition of α-equivalence
bind (set+) as in x y ̸⇔

bind (set+) as in x, bind (set+) as in y

same with bind (set)
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Alpha-Equivalence

in the old Nominal Isabelle, we represented single
binders as partial functions:

Lam [a]. t “ def
= ”

λb. if a = b then t else
if b # t then (a b)·t else error
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∗ alpha-equality coincides with equality on functions



New Design

..bind.
spec.

. raw
terms

. α-
equiv..

quot.
type

.

lift
thms

.

add.
thms
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Alpha-Equivalence

lets first look at pairs

(as, x)

≈R,fv (bs, y)
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as is a set of names…the binders
x is the body (might be a tuple)
≈set is  where the cardinality  of  the
binders has to be the same
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def
=

∃π.

fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) R y

∧ π·as = bs
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Alpha-Equivalence

lets first look at pairs

(as, x) ≈ list
R,fv (bs, y)
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def
= ∃π. fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) R y

∧ π·as = bs

∗ as and bs are lists of names



Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set+
R,fv (bs, y)
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def
= ∃π. fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) R y

∧ π·as = bs



Examples

lets look at “type-schemes”:

(as, x) ≈ set
R,fv(bs, y)

fv(x) = {x}
fv(T1 → T2) = fv(T1) ∪ fv(T2)

Uppsala, 3. March 2011 – p. 12/31



Examples

lets look at “type-schemes”:

(as, x) ≈ set
=,fv(bs, y)

fv(x) = {x}
fv(T1 → T2) = fv(T1) ∪ fv(T2)

Uppsala, 3. March 2011 – p. 12/31



Examples

lets look at “type-schemes”:

(as, x) ≈ set
=,fv(bs, y)

fv(x) = {x}
fv(T1 → T2) = fv(T1) ∪ fv(T2)

Uppsala, 3. March 2011 – p. 12/31

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs



Examples

({x, y}, x → y) ≈? ({x, y}, y → x)

≈set+, ≈set
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≈set+, ̸≈set, ̸≈list
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..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..

α-equivalences coincide when a
single name is abstracted
in that case they are equivalent to
“old-fashioned” definitions of α



General Abstractions
we take (as, x) ≈ ∗

=,supp(bs, y)

they are equivalence relations

we can therefore use the quotient package to
introduce the types β abs∗

[as]. x
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introduce the types β abs∗
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General Abstractions
we take (as, x) ≈ ∗

=,supp(bs, y)

they are equivalence relations

we can therefore use the quotient package to
introduce the types β abs∗

[as].x = [bs].y iff
∃π. supp(x) − as = supp(y) − bs
∧ supp(x) − as #∗ π
∧π·x = y
(∧π·as = bs) ∗
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∗ set, set+, list



A Problem

let x1 = t1 . . . xn = tn in s

we cannot represent this as

let [x1, . . . , xn].s [t1, . . . , tn]

because

let [x].s [t1, t2]
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Our Specifications
nominal_datatype trm =

Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assn t::trm bind bn(as) in t

and assn =
ANil

| ACons name trm assn
binder bn where

bn(ANil) = []
| bn(ACons a t as) = [a] @ bn(as)
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“Raw” Definitions
datatype trm =

Var name
| App trm trm
| Lam name trm
| Let assn trm

and assn =
ANil

| ACons name trm assn

function bn where
bn(ANil) = []

| bn(ACons a t as) = [a] @ bn(as)
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+
automatically
generate fv’s



“Raw” Alpha-Equivalence

Lam x::name t::trm bind x in t

([x], t) ≈ list
≈α,fv([x′], t′)

Lam x t ≈α Lam x′ t′
Lam-≈α
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“Raw” Alpha-Equivalence

Lam x::name y::name t::trm s::trm bind x y in t s

([x, y], (t, s)) ≈ list
R,fv([x′, y′], (t′, s′))

Lam x y t s ≈α Lam x′ y′ t′ s′
Lam-≈α

where R = ≈α × ≈α and fv = fv ∪ fv
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“Raw” Alpha-Equivalence

Let as::assn t::trm bind bn(as) in t

(bn(as), t) ≈ list
≈α,fv(bn(as′), t′)

as ≈bn
α as′

Let as t ≈α Let as′ t′
Let-≈α

bn-function ⇒ deep binders
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“Raw” Alpha-Equivalence

Let as::assn t::trm bind bn(as) in t

(bn(as), t) ≈ list
≈α,fv(bn(as′), t′) as ≈bn

α as′

Let as t ≈α Let as′ t′
Let-≈α

bn-function ⇒ deep binders
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α for Binding Functions
…
binder bn where

bn(ANil) = []
| bn(ACons a t as) = [a] @ bn(as)

ANil ≈bn
α ANil

t ≈α t′ as ≈bn
α as′

ACons a t as ≈bn
α ACons a′ t′ as′

Uppsala, 3. March 2011 – p. 22/31



“Raw” Alpha-Equivalence

LetRec as::assn t::trm bind bn(as) in t as

(bn(as), (t, as)) ≈ list
R,fv(bn(as′), (t′, as′))

LetRec as t ≈α LetRec as′ t′
LetRec-≈α

deep recursive binders
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Restrictions
Our restrictions on binding specifications:
a body can only occur once in a list of binding
clauses

you can only have one binding function for a deep
binder

binding functions can return: the empty set,
singletons, unions (similarly for lists)
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Automatic Proofs
we can show that α’s are equivalence relations

as a result we can use our quotient package to
introduce the type(s) of α-equated terms

([x], t) ≈ list
=,supp([x′], t′)

Lam x t = Lam x′ t′

the properties for support are implied by the
properties of [_]._
we can derive strong induction principles
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Runtime is Acceptable

..bind.
spec.

. raw
terms

. α-
equiv.

.

quot.
type

.

lift
thms

.

add.
thms

Core Haskell: 11 types, 49 term-constructors, 7 binding functions

∼ 2 mins
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Interesting Phenomenon
nominal_datatype trm =

Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assn t::trm bind bn(as) in t

and assn =
ANil

| ACons name trm assn
binder bn where

bn(ANil) = []
| bn(ACons a t as) = [a] @ bn(as)

we cannot quotient assn: ACons a …̸≈α ACons b …
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Should a “naked”
assn be quotient?

{



Conclusion
the user does not see anything of the raw level

Lam a (Var a) = Lam b (Var b)

we have not yet done function definitions (will
come soon and we hope to make improvements
over the old way there too)

it took quite some time to get here, but it seems
worthwhile (Barendregt’s variable convention is
unsound in general, found bugs in two paper
proofs, quotient package, POPL 2011 tutorial)

Uppsala, 3. March 2011 – p. 28/31



Conclusion
the user does not see anything of the raw level

we have not yet done function definitions (will
come soon and we hope to make improvements
over the old way there too)

it took quite some time to get here, but it seems
worthwhile (Barendregt’s variable convention is
unsound in general, found bugs in two paper
proofs, quotient package, POPL 2011 tutorial)

Uppsala, 3. March 2011 – p. 28/31



Conclusion
the user does not see anything of the raw level

we have not yet done function definitions (will
come soon and we hope to make improvements
over the old way there too)

it took quite some time to get here, but it seems
worthwhile (Barendregt’s variable convention is
unsound in general, found bugs in two paper
proofs, quotient package, POPL 2011 tutorial)

Uppsala, 3. March 2011 – p. 28/31



Future Work

Function definitions
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Questions?

Thanks!
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Examples

({a, b}, a → b) ≈α ({a, b}, a → b)
({a, b}, a → b) ≈α ({a, b}, b → a)

({a, b}, (a → b, a → b))
̸≈α ({a, b}, (a → b, b → a))

1.) bind (set) as in τ1, bind (set) as in τ2

2.) bind (set) as in τ1 τ2
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