
Uppsala, 3. March 2011 – p. 1/31

Nominal Isabelle 2
Or, How to Reason Conveniently

with General Bindings

Christian Urban

joint work with Cezary Kaliszyk

Uppsala, 3. March 2011 – p. 1/31

Binding in Old Nominal
the old Nominal Isabelle provided a reasoning
infrastructure for single binders

Lam [a].(Var a)

but representing
∀{a1, . . . , an}. T

with single binders and reasoning about it is a
major pain; take my word for it!

Uppsala, 3. March 2011 – p. 2/31

for example
a # Lam [a]. t
Lam [a]. (Var a) = Lam [b]. (Var b)
Barendregt-style reasoning about bound variables

Binding in Old Nominal
the old Nominal Isabelle provided a reasoning
infrastructure for single binders

Lam [a].(Var a)

but representing
∀{a1, . . . , an}. T

with single binders and reasoning about it is a
major pain; take my word for it!

Uppsala, 3. March 2011 – p. 2/31

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Uppsala, 3. March 2011 – p. 3/31

∗ x, y, z are assumed to be distinct

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Uppsala, 3. March 2011 – p. 3/31

∗ x, y, z are assumed to be distinct

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Uppsala, 3. March 2011 – p. 3/31

∗ x, y, z are assumed to be distinct

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Uppsala, 3. March 2011 – p. 3/31

∗ x, y, z are assumed to be distinct

..
For type-schemes the order of bound
names does not matter, and
alpha-equivalence is preserved under
vacuous binders.

Other Binding Modes

alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x = 3 and y = 2 in x − y end

let y = 2 and x = 3 in x − y end

Uppsala, 3. March 2011 – p. 4/31

Other Binding Modes

alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x = 3 and y = 2 in x − y end
≈α let y = 2 and x = 3 in x − y end

Uppsala, 3. March 2011 – p. 4/31

Other Binding Modes

alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x = 3 and y = 2 in x − y end
̸≈α let y = 2 and x = 3 and z = loop in x − y end

Uppsala, 3. March 2011 – p. 4/31

Even Another Binding Mode

sometimes one wants to abstract more than one
name, but the order does matter

let (x, y) = (3, 2) in x − y end
̸≈α let (y, x) = (3, 2) in x − y end

Uppsala, 3. March 2011 – p. 5/31

Three Binding Modes

the order does not matter and alpha-equivelence
is preserved under vacuous binders (restriction)

the order does not matter, but the cardinality of
the binders must be the same (abstraction)

the order does matter (iterated single binders)

bind (set+) bind (set) bind

Uppsala, 3. March 2011 – p. 6/31

Three Binding Modes

the order does not matter and alpha-equivelence
is preserved under vacuous binders (restriction)

the order does not matter, but the cardinality of
the binders must be the same (abstraction)

the order does matter (iterated single binders)

bind (set+) bind (set) bind

Uppsala, 3. March 2011 – p. 6/31

Specification of Binding
nominal_datatype trm =

Var name
| App trm trm
| Lam name trm

bind x in t

| Let assn trm

bind bn(as) in t

and assn =
ANil

| ACons name trm assn

binder bn where
bn(ANil) = []

| bn(ACons a t as) = [a] @ bn(as)

Uppsala, 3. March 2011 – p. 7/31

Specification of Binding
nominal_datatype trm =

Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assn t::trm bind bn(as) in t

and assn =
ANil

| ACons name trm assn

binder bn where
bn(ANil) = []

| bn(ACons a t as) = [a] @ bn(as)

Uppsala, 3. March 2011 – p. 7/31

Specification of Binding
nominal_datatype trm =

Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assn t::trm bind bn(as) in t

and assn =
ANil

| ACons name trm assn
binder bn where

bn(ANil) = []
| bn(ACons a t as) = [a] @ bn(as)

Uppsala, 3. March 2011 – p. 7/31

Inspiration from Ott

this way of specifying binding is inspired by Ott

,
but we made some adjustments:

Uppsala, 3. March 2011 – p. 8/31

Inspiration from Ott

this way of specifying binding is inspired by Ott,
but we made some adjustments:

Ott allows specifications like
t ::= t t | λx.t

Uppsala, 3. March 2011 – p. 8/31

Inspiration from Ott

this way of specifying binding is inspired by Ott,
but we made some adjustments:

whether something is bound can depend in Ott on
other bound things

..

Foo (λy.λx.t)

.

s

.{y, x}

this might make sense for “raw” terms, but not at all for
α-equated terms

Uppsala, 3. March 2011 – p. 8/31

Inspiration from Ott

this way of specifying binding is inspired by Ott,
but we made some adjustments:

whether something is bound can depend in Ott on
other bound things

..

Foo (λy.λx.t)

.

s

.{y, x}

this might make sense for “raw” terms, but not at all for
α-equated terms

Uppsala, 3. March 2011 – p. 8/31

Inspiration from Ott

this way of specifying binding is inspired by Ott,
but we made some adjustments:

we allow multiple “binders” and “bodies”
bind a b c …in x y z …
bind (set) a b c …in x y z …
bind (set+) a b c …in x y z …

the reason is that with our definition of α-equivalence
bind (set+) as in x y ̸⇔

bind (set+) as in x, bind (set+) as in y

same with bind (set)
Uppsala, 3. March 2011 – p. 8/31

Alpha-Equivalence

in the old Nominal Isabelle, we represented single
binders as partial functions:

Lam [a]. t “ def
= ”

λb. if a = b then t else
if b # t then (a b)·t else error

Uppsala, 3. March 2011 – p. 9/31

∗ alpha-equality coincides with equality on functions

New Design

..bind.
spec.

. raw
terms

. α-
equiv..

quot.
type

.

lift
thms

.

add.
thms

Uppsala, 3. March 2011 – p. 10/31

New Design

..bind.
spec.

. raw
terms

. α-
equiv..

quot.
type

.

lift
thms

.

add.
thms

Uppsala, 3. March 2011 – p. 10/31

Alpha-Equivalence

lets first look at pairs

(as, x)

≈R,fv (bs, y)

Uppsala, 3. March 2011 – p. 11/31

as is a set of names…the binders
x is the body (might be a tuple)
≈set is where the cardinality of the
binders has to be the same

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set

R,fv

(bs, y)

Uppsala, 3. March 2011 – p. 11/31

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set
R,fv (bs, y)

Uppsala, 3. March 2011 – p. 11/31

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set
R,fv (bs, y)

Uppsala, 3. March 2011 – p. 11/31

def
=

∃π.

fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) R y

∧ π·as = bs

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set
R,fv (bs, y)

Uppsala, 3. March 2011 – p. 11/31

def
= ∃π. fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) R y

∧ π·as = bs

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set
R,fv (bs, y)

Uppsala, 3. March 2011 – p. 11/31

def
= ∃π. fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) R y

∧ π·as = bs

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ list
R,fv (bs, y)

Uppsala, 3. March 2011 – p. 11/31

def
= ∃π. fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) R y

∧ π·as = bs

∗ as and bs are lists of names

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set+
R,fv (bs, y)

Uppsala, 3. March 2011 – p. 11/31

def
= ∃π. fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) R y

∧ π·as = bs

Examples

lets look at “type-schemes”:

(as, x) ≈ set
R,fv(bs, y)

fv(x) = {x}
fv(T1 → T2) = fv(T1) ∪ fv(T2)

Uppsala, 3. March 2011 – p. 12/31

Examples

lets look at “type-schemes”:

(as, x) ≈ set
=,fv(bs, y)

fv(x) = {x}
fv(T1 → T2) = fv(T1) ∪ fv(T2)

Uppsala, 3. March 2011 – p. 12/31

Examples

lets look at “type-schemes”:

(as, x) ≈ set
=,fv(bs, y)

fv(x) = {x}
fv(T1 → T2) = fv(T1) ∪ fv(T2)

Uppsala, 3. March 2011 – p. 12/31

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

Examples

({x, y}, x → y) ≈? ({x, y}, y → x)

≈set+, ≈set

Uppsala, 3. March 2011 – p. 13/31

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

Examples

([x, y], x → y) ≈? ([x, y], y → x)

≈set+, ≈set, ̸≈list

Uppsala, 3. March 2011 – p. 13/31

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

Examples

({x}, x) ≈? ({x, y}, x)

≈set+, ̸≈set, ̸≈list

Uppsala, 3. March 2011 – p. 14/31

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

Examples

≈set+, ̸≈set, ̸≈list

Uppsala, 3. March 2011 – p. 14/31

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..

α-equivalences coincide when a
single name is abstracted
in that case they are equivalent to
“old-fashioned” definitions of α

General Abstractions
we take (as, x) ≈ ∗

=,supp(bs, y)

they are equivalence relations

we can therefore use the quotient package to
introduce the types β abs∗

[as]. x

Uppsala, 3. March 2011 – p. 15/31

∗ set, set+, list

General Abstractions
we take (as, x) ≈ ∗

=,supp(bs, y)

they are equivalence relations

we can therefore use the quotient package to
introduce the types β abs∗

supp([as].x) = supp(x) − as

Uppsala, 3. March 2011 – p. 15/31

∗ set, set+, list

General Abstractions
we take (as, x) ≈ ∗

=,supp(bs, y)

they are equivalence relations

we can therefore use the quotient package to
introduce the types β abs∗

[as].x = [bs].y iff
∃π. supp(x) − as = supp(y) − bs
∧ supp(x) − as #∗ π
∧π·x = y
(∧π·as = bs) ∗

Uppsala, 3. March 2011 – p. 15/31

∗ set, set+, list

A Problem

let x1 = t1 . . . xn = tn in s

we cannot represent this as

let [x1, . . . , xn].s [t1, . . . , tn]

because

let [x].s [t1, t2]

Uppsala, 3. March 2011 – p. 16/31

Our Specifications
nominal_datatype trm =

Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assn t::trm bind bn(as) in t

and assn =
ANil

| ACons name trm assn
binder bn where

bn(ANil) = []
| bn(ACons a t as) = [a] @ bn(as)

Uppsala, 3. March 2011 – p. 17/31

“Raw” Definitions
datatype trm =

Var name
| App trm trm
| Lam name trm
| Let assn trm

and assn =
ANil

| ACons name trm assn

function bn where
bn(ANil) = []

| bn(ACons a t as) = [a] @ bn(as)

Uppsala, 3. March 2011 – p. 18/31

“Raw” Definitions
datatype trm =

Var name
| App trm trm
| Lam name trm
| Let assn trm

and assn =
ANil

| ACons name trm assn

function bn where
bn(ANil) = []

| bn(ACons a t as) = [a] @ bn(as)

Uppsala, 3. March 2011 – p. 18/31

+
automatically
generate fv’s

“Raw” Alpha-Equivalence

Lam x::name t::trm bind x in t

([x], t) ≈ list
≈α,fv([x′], t′)

Lam x t ≈α Lam x′ t′
Lam-≈α

Uppsala, 3. March 2011 – p. 19/31

“Raw” Alpha-Equivalence

Lam x::name y::name t::trm s::trm bind x y in t s

([x, y], (t, s)) ≈ list
R,fv([x′, y′], (t′, s′))

Lam x y t s ≈α Lam x′ y′ t′ s′
Lam-≈α

where R = ≈α × ≈α and fv = fv ∪ fv

Uppsala, 3. March 2011 – p. 20/31

“Raw” Alpha-Equivalence

Let as::assn t::trm bind bn(as) in t

(bn(as), t) ≈ list
≈α,fv(bn(as′), t′)

as ≈bn
α as′

Let as t ≈α Let as′ t′
Let-≈α

bn-function ⇒ deep binders

Uppsala, 3. March 2011 – p. 21/31

“Raw” Alpha-Equivalence

Let as::assn t::trm bind bn(as) in t

(bn(as), t) ≈ list
≈α,fv(bn(as′), t′) as ≈bn

α as′

Let as t ≈α Let as′ t′
Let-≈α

bn-function ⇒ deep binders

Uppsala, 3. March 2011 – p. 21/31

α for Binding Functions
…
binder bn where

bn(ANil) = []
| bn(ACons a t as) = [a] @ bn(as)

ANil ≈bn
α ANil

t ≈α t′ as ≈bn
α as′

ACons a t as ≈bn
α ACons a′ t′ as′

Uppsala, 3. March 2011 – p. 22/31

“Raw” Alpha-Equivalence

LetRec as::assn t::trm bind bn(as) in t as

(bn(as), (t, as)) ≈ list
R,fv(bn(as′), (t′, as′))

LetRec as t ≈α LetRec as′ t′
LetRec-≈α

deep recursive binders

Uppsala, 3. March 2011 – p. 23/31

Restrictions
Our restrictions on binding specifications:
a body can only occur once in a list of binding
clauses

you can only have one binding function for a deep
binder

binding functions can return: the empty set,
singletons, unions (similarly for lists)

Uppsala, 3. March 2011 – p. 24/31

Automatic Proofs
we can show that α’s are equivalence relations

as a result we can use our quotient package to
introduce the type(s) of α-equated terms

([x], t) ≈ list
=,supp([x′], t′)

Lam x t = Lam x′ t′

the properties for support are implied by the
properties of [_]._
we can derive strong induction principles

Uppsala, 3. March 2011 – p. 25/31

Automatic Proofs
we can show that α’s are equivalence relations

as a result we can use our quotient package to
introduce the type(s) of α-equated terms

[x].t = [x′].t′

Lam x t = Lam x′ t′

the properties for support are implied by the
properties of [_]._
we can derive strong induction principles

Uppsala, 3. March 2011 – p. 25/31

Runtime is Acceptable

..bind.
spec.

. raw
terms

. α-
equiv.

.

quot.
type

.

lift
thms

.

add.
thms

Core Haskell: 11 types, 49 term-constructors, 7 binding functions

∼ 2 mins

Uppsala, 3. March 2011 – p. 26/31

Interesting Phenomenon
nominal_datatype trm =

Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assn t::trm bind bn(as) in t

and assn =
ANil

| ACons name trm assn
binder bn where

bn(ANil) = []
| bn(ACons a t as) = [a] @ bn(as)

we cannot quotient assn: ACons a …̸≈α ACons b …

Uppsala, 3. March 2011 – p. 27/31

Should a “naked”
assn be quotient?

{

Conclusion
the user does not see anything of the raw level

Lam a (Var a) = Lam b (Var b)

we have not yet done function definitions (will
come soon and we hope to make improvements
over the old way there too)

it took quite some time to get here, but it seems
worthwhile (Barendregt’s variable convention is
unsound in general, found bugs in two paper
proofs, quotient package, POPL 2011 tutorial)

Uppsala, 3. March 2011 – p. 28/31

Conclusion
the user does not see anything of the raw level

we have not yet done function definitions (will
come soon and we hope to make improvements
over the old way there too)

it took quite some time to get here, but it seems
worthwhile (Barendregt’s variable convention is
unsound in general, found bugs in two paper
proofs, quotient package, POPL 2011 tutorial)

Uppsala, 3. March 2011 – p. 28/31

Conclusion
the user does not see anything of the raw level

we have not yet done function definitions (will
come soon and we hope to make improvements
over the old way there too)

it took quite some time to get here, but it seems
worthwhile (Barendregt’s variable convention is
unsound in general, found bugs in two paper
proofs, quotient package, POPL 2011 tutorial)

Uppsala, 3. March 2011 – p. 28/31

Future Work

Function definitions

Uppsala, 3. March 2011 – p. 29/31

Questions?

Thanks!

Uppsala, 3. March 2011 – p. 30/31

Examples

({a, b}, a → b) ≈α ({a, b}, a → b)
({a, b}, a → b) ≈α ({a, b}, b → a)

({a, b}, (a → b, a → b))
̸≈α ({a, b}, (a → b, b → a))

1.) bind (set) as in τ1, bind (set) as in τ2

2.) bind (set) as in τ1 τ2

Uppsala, 3. March 2011 – p. 31/31

Examples

({a, b}, a → b) ≈α ({a, b}, a → b)
({a, b}, a → b) ≈α ({a, b}, b → a)

({a, b}, (a → b, a → b))
̸≈α ({a, b}, (a → b, b → a))

1.) bind (set) as in τ1, bind (set) as in τ2

2.) bind (set) as in τ1 τ2

Uppsala, 3. March 2011 – p. 31/31

