
Dagstuhl, 14 October 2013 – p. 1/19

Nominal Isabelle
or, How Not to be Intimidated by

the Variable Convention
Christian Urban

King’s College London
.

......

Variable Convention:
If M1, . . . ,Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound
variables are chosen to be different from the free variables.

Henk Barendregt in “The Lambda-Calculus: Its Syntax and Semantics”

Dagstuhl, 14 October 2013 – p. 1/19

dinner after my PhD examination

Dagstuhl, 14 October 2013 – p. 2/19

Aim: develop Nominal Isabelle for reasoning
formally about programming languages

.

......

Variable Convention:
If M1, . . . ,Mn occur in a certain mathematical context (e.g. definition,
proof), then in these terms all bound variables are chosen to be different
from the free variables. —Henk Barendregt

found an error in an ACM journal paper by Bob
Harper and Frank Pfenning about LF (and fixed it
in three ways)
found also fixable errors in my Ph.D.-thesis about
cut-elimination (examined by Henk Barendregt
and Andy Pitts)
found that the variable convention can in
principle be used for proving false

Dagstuhl, 14 October 2013 – p. 3/19

Aim: develop Nominal Isabelle for reasoning
formally about programming languages

.

......

Variable Convention:
If M1, . . . ,Mn occur in a certain mathematical context (e.g. definition,
proof), then in these terms all bound variables are chosen to be different
from the free variables. —Henk Barendregt

found an error in an ACM journal paper by Bob
Harper and Frank Pfenning about LF (and fixed it
in three ways)
found also fixable errors in my Ph.D.-thesis about
cut-elimination (examined by Henk Barendregt
and Andy Pitts)
found that the variable convention can in
principle be used for proving false

Dagstuhl, 14 October 2013 – p. 3/19

Nominal Techniques
Andy Pitts showed me that permutations
preserve α-equivalence:

t1 ≈α t2 ⇒ π·t1 ≈α π·t2
also permutations and substitutions commute, if
you suspend permutations in front of variables

π·σ(t) = σ(π·t)
this allowed us to define as simple Nominal
Unification algorithm

∇ ⊢ t ≈?
α t′ ∇ ⊢ a #? t

Dagstuhl, 14 October 2013 – p. 4/19

Nominal Isabelle
a general theory about atoms and permutations

sorted atoms and
sort-respecting permutations

support and freshness
supp(x) def

= {a | infinite {b | (a b)·x ̸= x}}

a # x
def
= a /∈ supp(x)

allow users to reason about alpha-equivalence
classes as if they were syntax trees

Dagstuhl, 14 October 2013 – p. 5/19

Nominal Isabelle
a general theory about atoms and permutations

sorted atoms and
sort-respecting permutations

support and freshness
supp(x) def

= {a | infinite {b | (a b)·x ̸= x}}

a # x
def
= a /∈ supp(x)

allow users to reason about alpha-equivalence
classes as if they were syntax trees

Dagstuhl, 14 October 2013 – p. 5/19

New Types in HOL

.

.
α-

classes
.

α-eq.
terms

.

existing
type

(sets of raw terms).
non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Dagstuhl, 14 October 2013 – p. 6/19

New Types in HOL

.

.
α-

classes
.

α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Dagstuhl, 14 October 2013 – p. 6/19

New Types in HOL

.

.
α-

classes
.

α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Dagstuhl, 14 October 2013 – p. 6/19

New Types in HOL

..
α-

classes
.

α-eq.
terms

.

existing
type
(sets of raw terms).

non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Dagstuhl, 14 October 2013 – p. 6/19

New Types in HOL

.

.
α-

classes

.
α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Dagstuhl, 14 October 2013 – p. 6/19

New Types in HOL

..
α-

classes
.

α-eq.
terms

.

existing
type
(sets of raw terms).

non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Dagstuhl, 14 October 2013 – p. 6/19

New Types in HOL

..
α-

classes
.

α-eq.
terms

.

existing
type
(sets of raw terms).

non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Dagstuhl, 14 October 2013 – p. 6/19

..The “new types mechanism” is the
reason why there is no Nominal Coq.

HOL vs. Nominal

Nominal logic by Pitts is incompatible with
choice principles

but HOL includes Hilbert’s epsilon

The solution: Do not require that everything has
finite support

finite(supp(x)) ⇒ a # a.x

Dagstuhl, 14 October 2013 – p. 7/19

HOL vs. Nominal

Nominal logic by Pitts is incompatible with
choice principles

but HOL includes Hilbert’s epsilon

The solution: Do not require that everything has
finite support

finite(supp(x)) ⇒ a # a.x

Dagstuhl, 14 October 2013 – p. 7/19

HOL vs. Nominal

Nominal logic by Pitts is incompatible with
choice principles

but HOL includes Hilbert’s epsilon

The solution: Do not require that everything has
finite support

finite(supp(x)) ⇒

a # a.x

Dagstuhl, 14 October 2013 – p. 7/19

Our Work

..
α-

classes
.

α-eq.
terms

.

existing
type
(sets of raw terms).

non-empty
subset

.

new
type

.
isomorphism

Dagstuhl, 14 October 2013 – p. 8/19

define fv and α

build quotient / new type
derive a reasoning infrastructure
(#, distinctness, injectivity,
cases,…)
derive a stronger cases lemma
from this, a stronger induction
principle (Barendregt variable
convention built in)

Foo (λx.λy.t) (λu.λv.s)

Our Work

.

.
α-

classes

.
α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

Dagstuhl, 14 October 2013 – p. 8/19

define fv and α

build quotient / new type

derive a reasoning infrastructure
(#, distinctness, injectivity,
cases,…)
derive a stronger cases lemma
from this, a stronger induction
principle (Barendregt variable
convention built in)

Foo (λx.λy.t) (λu.λv.s)

Our Work

.

.
α-

classes

.
α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

Dagstuhl, 14 October 2013 – p. 8/19

define fv and α

build quotient / new type
derive a reasoning infrastructure
(#, distinctness, injectivity,
cases,…)

derive a stronger cases lemma
from this, a stronger induction
principle (Barendregt variable
convention built in)

Foo (λx.λy.t) (λu.λv.s)

Our Work

.

.
α-

classes

.
α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

Dagstuhl, 14 October 2013 – p. 8/19

define fv and α

build quotient / new type
derive a reasoning infrastructure
(#, distinctness, injectivity,
cases,…)
derive a stronger cases lemma

from this, a stronger induction
principle (Barendregt variable
convention built in)

Foo (λx.λy.t) (λu.λv.s)

Our Work

.

.
α-

classes

.
α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

Dagstuhl, 14 October 2013 – p. 8/19

define fv and α

build quotient / new type
derive a reasoning infrastructure
(#, distinctness, injectivity,
cases,…)
derive a stronger cases lemma
from this, a stronger induction
principle (Barendregt variable
convention built in)

Foo (λx.λy.t) (λu.λv.s)

Nominal Isabelle
Users can for example define lambda-terms as:
atom_decl name
nominal_datatype lam =

Var name
| App lam lam
| Lam x::name t::lam binds x in t (”Lam _. _”)

These are named alpha-equivalence classes, for
example

Lam a.(Var a) = Lam b.(Var b)

Dagstuhl, 14 October 2013 – p. 9/19

(Weak) Induction Principles
The usual induction principle for lambda-terms is
as follows:

∀x. P x

∀t1 t2. P t1 ∧ P t2 ⇒ P (t1 t2)

∀x t. P t ⇒ P (λx.t)

P t

It requires us in the lambda-case to show the
property P for all binders x.
(This nearly always requires renamings and they
can be tricky to automate.)

Dagstuhl, 14 October 2013 – p. 10/19

Strong Induction Principles
Therefore we introduced the following strong
induction principle:

∀x c. P c x

∀t1 t2 c. (∀d. Pd t1) ∧ (∀d.P d t2) ⇒ P c (t1 t2)

∀x t c. x # c ∧ (∀d.P d t) ⇒ P c (λx.t)
..P ..c ..t

Dagstuhl, 14 October 2013 – p. 11/19

Strong Induction Principles
Therefore we introduced the following strong
induction principle:

∀x c. P c x

∀t1 t2 c. (∀d. Pd t1) ∧ (∀d.P d t2) ⇒ P c (t1 t2)

∀x t c. x # c ∧ (∀d.P d t) ⇒ P c (λx.t)
..P ..c ..t

Dagstuhl, 14 October 2013 – p. 11/19

..
The variable over which the induction pro-
ceeds:

“…By induction over the structure of M…”

Strong Induction Principles
Therefore we introduced the following strong
induction principle:

∀x c. P c x

∀t1 t2 c. (∀d. Pd t1) ∧ (∀d.P d t2) ⇒ P c (t1 t2)

∀x t c. x # c ∧ (∀d.P d t) ⇒ P c (λx.t)
..P ..c ..t

Dagstuhl, 14 October 2013 – p. 11/19

..
The context of the induction; i.e. what the bin-
der should be fresh for ⇒ (x, y,N, L):
“…By the variable convention we can assume
z ̸≡ x, y and z not free in N,L…”

Strong Induction Principles
Therefore we introduced the following strong
induction principle:

∀x c. P c x

∀t1 t2 c. (∀d. Pd t1) ∧ (∀d.P d t2) ⇒ P c (t1 t2)

∀x t c. x # c ∧ (∀d.P d t) ⇒ P c (λx.t)
..P ..c ..t

Dagstuhl, 14 October 2013 – p. 11/19

..
The property to be proved by induction:

λ(x,y,N,L). λM. x ̸= y ∧ x # L ⇒
M [x :=N][y :=L] = M [y :=L][x :=N [y :=L]]

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Dagstuhl, 14 October 2013 – p. 12/19

∗ x, y, z are assumed to be distinct

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Dagstuhl, 14 October 2013 – p. 12/19

∗ x, y, z are assumed to be distinct

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Dagstuhl, 14 October 2013 – p. 12/19

∗ x, y, z are assumed to be distinct

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Dagstuhl, 14 October 2013 – p. 12/19

∗ x, y, z are assumed to be distinct

..
For type-schemes the order of bound
names does not matter, and
α-equivalence is preserved under
vacuous binders.

Other Binding Modes

alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x = 3 and y = 2 in x − y end

let y = 2 and x = 3 in x − y end

Dagstuhl, 14 October 2013 – p. 13/19

Other Binding Modes

alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x = 3 and y = 2 in x − y end
≈α let y = 2 and x = 3 in x − y end

Dagstuhl, 14 October 2013 – p. 13/19

Other Binding Modes

alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x = 3 and y = 2 in x − y end
̸≈α let y = 2 and x = 3 and z = loop in x − y end

Dagstuhl, 14 October 2013 – p. 13/19

Even Another Binding Mode

sometimes one wants to abstract more than one
name, but the order does matter

let (x, y) = (3, 2) in x − y end
̸≈α let (y, x) = (3, 2) in x − y end

Dagstuhl, 14 October 2013 – p. 14/19

Specification of Binding
nominal_datatype trm =

Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assns t::trm bind bn(as) in t

and assns =
ANil

| ACons name trm assns

binder bn where
bn(ANil) = []

| bn(ACons a t as) = [a] @ bn(as)

Dagstuhl, 14 October 2013 – p. 15/19

Specification of Binding
nominal_datatype trm =

Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assns t::trm bind bn(as) in t

and assns =
ANil

| ACons name trm assns
binder bn where

bn(ANil) = []
| bn(ACons a t as) = [a] @ bn(as)

Dagstuhl, 14 October 2013 – p. 15/19

So Far So Good
A Faulty Lemma with the Variable Convention?

.

......

Variable Convention:
If M1, . . . ,Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound
variables are chosen to be different from the free variables.

Barendregt in “The Lambda-Calculus: Its Syntax and Semantics”

Inductive
Definitions:
prem1 . . . premn scs

concl

Rule Inductions:
1.) Assume the property for

the premises. Assume
the side-conditions.

2.) Show the property for
the conclusion.

Dagstuhl, 14 October 2013 – p. 16/19

Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:
Let t 7→ t′. If y # t then y # t′.

Dagstuhl, 14 October 2013 – p. 17/19

Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:
Let t 7→ t′. If y # t then y # t′.

Dagstuhl, 14 October 2013 – p. 17/19

Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:
Let t 7→ t′. If y # t then y # t′.

Cases 1 and 2 are trivial:

If y # x then y # x.
If y # t1 t2 then y # t1 t2.

Dagstuhl, 14 October 2013 – p. 17/19

Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:
Let t 7→ t′. If y # t then y # t′.

Case 3:
We know ..y # λx.t. We have to show y # t′.
The IH says: if y # t then y # t′.

So we have y # t. Hence y # t′ by IH. Done!

Dagstuhl, 14 October 2013 – p. 17/19

Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:
Let t 7→ t′. If y # t then y # t′.

Case 3:
We know ..y # λx.t. We have to show y # t′.
The IH says: if y # t then y # t′.

So we have y # t. Hence y # t′ by IH. Done!

Dagstuhl, 14 October 2013 – p. 17/19

..

Variable Convention:
If M1, . . . ,Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound varia-
bles are chosen to be different from the free variables.
In our case:
The free variables are y and t′; the bound one is
x.
By the variable convention we conclude that x ̸=
y.

Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:
Let t 7→ t′. If y # t then y # t′.

Case 3:
We know ..y # λx.t. We have to show y # t′.
The IH says: if y # t then y # t′.

So we have y # t. Hence y # t′ by IH. Done!

Dagstuhl, 14 October 2013 – p. 17/19

..

Variable Convention:
If M1, . . . ,Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound varia-
bles are chosen to be different from the free variables.
In our case:
The free variables are y and t′; the bound one is
x.
By the variable convention we conclude that x ̸=
y. ..y ̸∈ fv(λx.t) ⇐⇒ y ̸∈ fv(t)−{x} x̸=y⇐⇒ y ̸∈ fv(t)

Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:
Let t 7→ t′. If y # t then y # t′.

Case 3:
We know ..y # λx.t. We have to show y # t′.
The IH says: if y # t then y # t′.
So we have y # t. Hence y # t′ by IH. Done!

Dagstuhl, 14 October 2013 – p. 17/19

..

Variable Convention:
If M1, . . . ,Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound varia-
bles are chosen to be different from the free variables.
In our case:
The free variables are y and t′; the bound one is
x.
By the variable convention we conclude that x ̸=
y. ..y ̸∈ fv(λx.t) ⇐⇒ y ̸∈ fv(t)−{x} x̸=y⇐⇒ y ̸∈ fv(t)

Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:
Let t 7→ t′. If y # t then y # t′.

Case 3:
We know ..y # λx.t. We have to show y # t′.
The IH says: if y # t then y # t′.
So we have y # t. Hence y # t′ by IH. Done!

Dagstuhl, 14 October 2013 – p. 17/19

Conclusions
The user does not see anything of the “raw” level.
The Nominal Isabelle automatically derives the
strong structural induction principle for all
nominal datatypes (not just the lambda-calculus)
They are easy to use: you just have to think
carefully what the variable convention should be.
We can explore the dark corners of the variable
convention: when and where it can be used safely.

Main Point: Actually these proofs using the
variable convention are all trivial / obvious /
routine…provided you use Nominal Isabelle. ;o)

Dagstuhl, 14 October 2013 – p. 18/19

Conclusions
The user does not see anything of the “raw” level.
The Nominal Isabelle automatically derives the
strong structural induction principle for all
nominal datatypes (not just the lambda-calculus)
They are easy to use: you just have to think
carefully what the variable convention should be.
We can explore the dark corners of the variable
convention: when and where it can be used safely.
Main Point: Actually these proofs using the
variable convention are all trivial / obvious /
routine…provided you use Nominal Isabelle. ;o)

Dagstuhl, 14 October 2013 – p. 18/19

Thank you very much!
Questions?

Dagstuhl, 14 October 2013 – p. 19/19

