Saarbr[lcken, 31. March 2011 = p. 1/19

General Bindings and
Alpha-Equivalence
in Nominal Isabelle

Or, Nominal Isabelle 2

Christian Urban

joint work with Cezary Kaliszyk

Binding in Old Nominal

o the old Nominal Isabelle provided a reasoning
infrastructure for single binders

Lam [a}.(Var a)

for example
a# Lam [al. t
Lam {al. (Var a) = Lam {b}. (Var b)
Barendregt-style reasoning about bound variables

Binding in Old Nominal

o the old Nominal Isabelle provided a reasoning
infrastructure for single binders

Lam {a}.(Var a)
e but representing
V{ai,...,an}. T

with single binders and reasoning about it is a
major pain; take my word for it!

New Types in HOL

existing
type

New Types in HOL

existing
type

non-empty
subset

New Types in HOL

new . hi existing
type _ isomorphism type
N 4

non-empty
subset

New Types in HOL

existing
?;};’Z a-eq. isomorphism type
terms | ¢ > (sets of raw terms)

non-empty
subset

New Types in HOL

new

type a_eq.

terms

new

type

New Types in HOL

areq.
terms

isomorphism

V)
S

(N
7

non-empty
subset

existing
type

(sets of raw terms)

define a-equivalence

Binding Sets of Names

e binding sets of names has some interesting
properties:

Hz, 9}z =y =a V{y,z}.y— =

* x,y, z are assumed to be distinct

Binding Sets of Names

e binding sets of names has some interesting
properties:

Hz, 9}z =y =a V{y,z}.y— =

V{z,y}.x >y #. V{z}.z—> =z

* x,y, z are assumed to be distinct

Binding Sets of Names

e binding sets of names has some interesting
properties:

Hz, 9}z =y =a V{y,z}.y— =
V{z,y}.x >y #. V{z}.z—> =z
V{z}.x >y =, V{z,z}.z—y

provided z is fresh for the type

* x,y, z are assumed to be distinct

Binding Sets of Names

° l};if; For type-schemes the order of bound

names does not matter, and
a-equivalence is preserved under
vacuous binders.

V{Z,yf. T — Y ZEa Vizf.Z2 — 2 ’

V{z}.x >y =, V{z,z}.z—y
provided z is fresh for the type

* x,y, z are assumed to be distinct

Other Binding Modes

e alpha-equivalence being preserved under vacuous
binders is not always wanted:

letx =3andy =2inx — y end

Other Binding Modes

e alpha-equivalence being preserved under vacuous
binders is not always wanted:

letx =3andy =2inx — y end

Rqlety=2and x =3 inx — y end

Other Binding Modes

e alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x =3 and y =2 in x — y end
Faolety=2and x =3 and z = loop in — y end

Even Another Binding Mode

@ sometimes one wants to abstract more than one
name, but the order does matter

let (x,y) = (3,2) inx — y end
o let (y,x) = (3,2) in x — y end

Three Binding Modes

o the order does not matter and alpha-equivelence
is preserved under vacuous binders (restriction)

o the order does not matter, but the cardinality of
the binders must be the same (abstraction)

e the order does matter (iterated single binders)

Three Binding Modes

o the order does not matter and alpha-equivelence
is preserved under vacuous binders (restriction)

o the order does not matter, but the cardinality of
the binders must be the same (abstraction)

e the order does matter (iterated single binders)

bind (set+) bind (set) bind

Specification of Binding

nominal_datatype trm =
Var name
| App trm trm
| Lam name trm
| Let assns trm
and assns =
ANil

| ACons name trm assns

Specification of Binding

nominal_datatype trm =
Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assns t::trm bind bn(as) in t
and assns =
ANil

| ACons name trm assns

Specification of Binding

nominal_datatype trm =
Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assns t::trm bind bn(as) in t
and assns =
ANil
| ACons name trm assns
binder bn where
bn(ANil = {}
| bn(ACons a t as) = [a} @ bn(as)

Alpha-Equivalence

o lets first look at pairs

(as,x)

as is a set of names...the binders

x is the body (might be a tuple)

Rt 1s where the cardinality of the
binders has to be the same

Alpha-Equivalence

o lets first look at pairs

(CLS, ZB) zset (b37 y)

Alpha-Equivalence

o lets first look at pairs

(CLS, ZB) zset (b37 y)

Alpha-Equivalence

o lets first look at pairs
(CLS, ZB) ~ set (bs, y)

o fv(x) — as = fv(y) — bs

Alpha-Equivalence

o lets first look at pairs
(a’87 iL’) ~ set (bs, y)

“ Ir. fv(x) — as = fv(y) — bs
A tv(x) —as #* =
A (mex) =y

Alpha-Equivalence

o lets first look at pairs
(GS, iL’) ~ set (bS, y)

“ Ir. fv(x) — as = fv(y) — bs
A tv(x) —as #* =
N (mex) =y
N meas = bs

Alpha-Equivalence

o lets first look at pairs
(as,) ~jisc (bs, y)

“ Ir. fv(x) — as = fv(y) — bs
A tv(x) —as #* =
N (mex) =y
N meas = bs

* as and bs are lists of names

Alpha-Equivalence

o lets first look at pairs
(as,) = . (bs, y)

“ Ir. fv(x) — as = fv(y) — bs
A fv(x) —as #* =
N (mex) =y
11K HhidK H bE

Examples

o lets look at type-schemes:

(a’s, m) ~ set (bs, y)

Examples

o lets look at type-schemes:
(a’s’ m) ~ set (bs, y)

fv(z) = {z}
fV(Tl — TQ) = fV(Tl) U fV(TQ)

Examples

o lets look at type-schemes:
(as’ m) ~ set (bs, y)

() — {}
fV(Tl — TQ) = fV(Tl) U fV(TQ)

set+: set: list:
3w. fv(x) — as = fv(y) — bs| 3w. fv(x) — as = fv(y) — bs| 3. fv(x) — as = fv(y) — bs
A fv(z) —as #* = A fv(z) —as #* = A fv(z) — as #* m
NT-xT=1y NT-xT=1y NT-x=1y
A 7 -as = bs AN T -as = bs

Examples

({way}aw — y) ~? ({:I}, y},y — w)

~ ~
QO getry ~set

set+: set: list:
3w. fv(x) — as = fv(y) — bs| 3w, fv(x) — as = fv(y) — bs| 3. fv(x) — as = fv(y) — bs
A fv(z) —as #* = A fv(z) —as #* = A fv(z) —as #* m
NT-xT=1y ANT-xT=1y ANmT-x=1y
A 7 -as = bs AN 7 -as = bs

Examples

([cc,y],a: — y) ~? ([.’I), y]7y — $)

~o ~ .
QO ety ~sets ?ehst

set+: set: list:
3w. fv(x) — as = fv(y) — bs| 3w, fv(x) — as = fv(y) — bs| 3. fv(x) — as = fv(y) — bs
A fv(z) —as #* = A fv(z) —as #* = A fv(z) —as #* m
NT-xT=1y ANT-xT=1y ANmT-x=1y
A 7 -as = bs AN 7 -as = bs

Examples

({:13}, w) ~? ({wa y}a w)

(*} zset_,_, %set, %list

set+: set: list:
3w. fv(x) — as = fv(y) — bs| 3w, fv(x) — as = fv(y) — bs| 3. fv(x) — as = fv(y) — bs
A fv(z) —as #* = A fv(z) —as #* = A fv(z) —as #* m
NT-xT=1y ANT-xT=1y ANmT-x=1y
A 7 -as = bs AN 7 -as = bs

Examples

()
e a-equivalences coincide when a
single name is abstracted

o ~. | @ in that case they are equivalent to
“old-fashioned” definitions of a

" 7
set+: set: list:
3w. fv(x) — as = fv(y) — bs| 3w, fv(x) — as = fv(y) — bs| 3. fv(x) — as = fv(y) — bs
A fv(z) —as #* = A fv(z) —as #* = A fv(z) —as #* m
NT-xT=1y NT-xT=1y NT-xT=1y

A 7 -as = bs AN 7 -as = bs

Our Specifications

nominal_datatype trm =
Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assns t::trm bind bn(as) in t
and assns =
ANil
| ACons name trm assns
binder bn where
bn(ANil = ||
| bn(ACons a t as) = [a] @ bn(as)

Binding Functions

Foo (Ay.Ax.t) s

\ /

{y,x}

Binder Clauses

@ We need for a bound variable to have a ‘clear
scope’, and bound variables should not be free
and bound at the same time.

shallow binders
Lam x::name t:trm bind x in t
All xs::name set T::ty bind xsin T
Foo x::name t:trm to::trm bind x in ty, bind x in ty
Bar x::name t;::trm toi:trm bind xin t; t

Binder Clauses

e We need for a bound variable to have a ‘clear
scope’, and bound variables should not be free

and bound at the same time.

deep binders
Let as::assns t::trm bind bn(as) in t

Foo as::assns ty::trm to::trm
bind bn(as) in t{, bind bn(as) in t,

X Bar as::assns ty::trm to::trm
bind bn;(as) in t;, bind bns(as) in t;

Binder Clauses

@ We need for a bound variable to have a ‘clear
scope’, and bound variables should not be free
and bound at the same time.

deep recursive binders
Let_rec as::assns t::trm bind bn(as) in t as

XFoo_rec as::assns ty:trm to::trm
bind bn(as) in t; as, bind bn(as) in t,

Our Work

o defined fv and &

new
aceq.

e
P terms

Our Work

o defined fv and &

e derived a reasoning infrastructure

new [(#, distinctness, injectivity,
type | @eq.
terms cases,...)

Our Work

o defined fv and &

e derived a reasoning infrastructure

new [(#, distinctness, injectivity,
type | @eq.
terms cases,...)

e a (weak) induction principle

Our Work

o defined fv and &

e derived a reasoning infrastructure

new (#, distinctness, injectivity,
type .
YPE 1 terms cases,...)

e a (weak) induction principle

e derive a stronger induction
principle (Barendregt variable
convention built in)

Foo Axz.Ay.t) Au.\v.s)

Conclusion

o the user does not see anything of the raw level

Lam a (Var a) = Lam b (Var b)

Conclusion

o the user does not see anything of the raw level

e it took quite some time to get here, but it seems
worthwhile (Barendregt’s variable convention is
unsound in general, found bugs in two paper
proofs)

Conclusion

o the user does not see anything of the raw level

e it took quite some time to get here, but it seems
worthwhile (Barendregt’s variable convention is
unsound in general, found bugs in two paper
proofs)

e http://isabelle.in.tum.de/nominal/

Questions?

Thanks!

Examples

({a,b},a — b) =, ({a,b},a — b)
({a,b},a — b) = ({a,b},b — a)

({a, b}, (a — b,a — b))
#a ({a,b}, (@ = b,b — a))

Examples

({a,b},a — b) =, ({a,b},a — b)
({a,b},a — b) =, ({a,b},b — a)

({a, b}, (a — b,a — b))
#a ({a,b}, (@ = b,b — a))

1.) bind (set) as in 71, bind (set) as in T

2.) bind (set) asin 7 T

