Saarbr□cken, 31. March 2011 – p. 1/19

General Bindings and Alpha-Equivalence in Nominal Isabelle

Or, Nominal Isabelle 2

Christian Urban

joint work with Cezary Kaliszyk

Saarbr Cken, 31. March 2011 - p. 1/19

Binding in Old Nominal

• the old Nominal Isabelle provided a reasoning infrastructure for single binders

Lam [a].(Var a)

for example a # Lam [a]. t Lam [a]. (Var a) = Lam [b]. (Var b) Barendregt-style reasoning about bound variables

Binding in Old Nominal

• the old Nominal Isabelle provided a reasoning infrastructure for single binders

Lam [a].(Var a)

but representing

$$orall \{a_1,\ldots,a_n\}.\ T$$

with single binders and reasoning about it is a **major** pain; take my word for it!

Saarbr Cken, 31. March 2011 - p. 3/19

Saarbr Cken, 31. March 2011 - p. 3/19

Saarbr Cken, 31. March 2011 - p. 3/19

define α -equivalence

Saarbr Cken, 31. March 2011 - p. 3/19

• binding sets of names has some interesting properties:

 $orall \{x,y\}.\, x o y \;\;pprox_lpha \;\; orall \{y,x\}.\, y o x$

• binding sets of names has some interesting properties:

 $egin{array}{lll} orall \{x,y\}.\, x
ightarrow y &pprox_lpha &orall \{y,x\}.\, y
ightarrow x \ orall \{x,y\}.\, x
ightarrow y &pprox_lpha &orall \{z\}.\, z
ightarrow z \end{array}$

• binding sets of names has some interesting properties:

 $egin{aligned} &orall \{x,y\}.\,x o y &pprox_lpha &orall \{y,x\}.\,y o x \ &orall \{x,y\}.\,x o y &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
otin &
o$

Other Binding Modes

• alpha-equivalence being preserved under vacuous binders is <u>not</u> always wanted:

let x = 3 and y = 2 in x - y end

Other Binding Modes

- alpha-equivalence being preserved under vacuous binders is <u>not</u> always wanted:
- let x = 3 and y = 2 in x y end \approx_{α} let y = 2 and x = 3 in x - y end

Other Binding Modes

- alpha-equivalence being preserved under vacuous binders is <u>not</u> always wanted:
- let x = 3 and y = 2 in x y end $\not\approx_{\alpha}$ let y = 2 and x = 3 and z =loop in x - y end

Even Another Binding Mode

• sometimes one wants to abstract more than one name, but the order <u>does</u> matter

let $(\boldsymbol{x}, \boldsymbol{y}) = (3, 2)$ in $\boldsymbol{x} - \boldsymbol{y}$ end $\boldsymbol{\varkappa}_{\alpha}$ let $(\boldsymbol{y}, \boldsymbol{x}) = (3, 2)$ in $\boldsymbol{x} - \boldsymbol{y}$ end

Three Binding Modes

- the order does not matter and alpha-equivelence is preserved under vacuous binders (restriction)
- the order does not matter, but the cardinality of the binders must be the same (abstraction)
- the order does matter (iterated single binders)

Three Binding Modes

- the order does not matter and alpha-equivelence is preserved under vacuous binders (restriction)
- the order does not matter, but the cardinality of the binders must be the same (abstraction)
- the order does matter (iterated single binders)

bind (set+) bind (set) bind

Specification of Binding

nominal_datatype trm =

Var name | App trm trm | Lam name trm | Let assns trm and assns = ANil | ACons name trm assns

Specification of Binding

nominal_datatype trm =

Var name

App trm trm

Lam x::name t::trm **bind** x **in** t

| Let as::assns t::trm **bind** bn(as) in t

and assns =

ANil

ACons name trm assns

Specification of Binding

nominal_datatype trm = Var name App trm trm Lam x::name t::trm bind x in t L of assesses futrm bind bp(ac)

| Let as::assns t::trm **bind** bn(as) in t

and assns =

ANil

ACons name trm assns

binder bn where

bn(ANil) = [] | bn(ACons a t as) = [a] @ bn(as)

• lets first look at pairs

 $(\boldsymbol{as,x})$

as is a set of names...the binders x is the body (might be a tuple) \approx_{set} is where the cardinality of the binders has to be the same

• lets first look at pairs

 $(as, x) pprox_{set} (bs, y)$

• lets first look at pairs

 $(as, x) pprox_{set} (bs, y)$

• lets first look at pairs

 $(as, x) pprox_{\text{set}} (bs, y)$

 $\stackrel{ ext{def}}{=} \qquad ext{fv}(oldsymbol{x}) - oldsymbol{as} = ext{fv}(oldsymbol{y}) - oldsymbol{bs}$

• lets first look at pairs

 $(as, x) pprox_{set} (bs, y)$

$$\stackrel{ ext{def}}{=} \ \exists \pi. \ ext{fv}(m{x}) - m{as} = ext{fv}(m{y}) - m{bs} \ \land \ ext{fv}(m{x}) - m{as} \ \#^* \ \pi \ \land \ (\pi {f \cdot} m{x}) = m{y}$$

Saarbr Cken, 31. March 2011 - p. 9/19

• lets first look at pairs

 $(as, x) pprox_{set} (bs, y)$

$$\begin{array}{ll} \stackrel{\mathrm{def}}{=} & \exists \pi. \ \mathrm{fv}(x) - as = \mathrm{fv}(y) - bs \\ & \wedge \ \mathrm{fv}(x) - as \ \#^* \ \pi \\ & \wedge \ (\pi {\boldsymbol{\cdot}} x) = y \\ & \wedge \ \pi {\boldsymbol{\cdot}} as = bs \end{array}$$

Saarbr Cken, 31. March 2011 - p. 9/19

• lets first look at pairs

 $(\boldsymbol{as,x}) pprox_{\text{list}} (\boldsymbol{bs,y})$

$$\stackrel{\text{def}}{=} \exists \pi. \text{ fv}(x) - as = \text{fv}(y) - bs \\ \land \text{fv}(x) - as \#^* \pi \\ \land (\pi \cdot x) = y \\ \land \pi \cdot as = bs$$

* as and bs are lists of names

• lets first look at pairs

 $(as, x) pprox_{set+}(bs, y)$

$$\begin{array}{l} \stackrel{\mathrm{def}}{=} & \exists \pi. \ \mathrm{fv}(x) - as = \mathrm{fv}(y) - bs \\ & \wedge \ \mathrm{fv}(x) - as \ \#^* \ \pi \\ & \wedge \ (\pi \boldsymbol{\cdot} x) = y \\ & /// \wedge \ \# \flat ds / \# / \flat s \end{array}$$

• lets look at type-schemes:

 $(as, x) pprox_{set}(bs, y)$

• lets look at type-schemes:

$$(as, x) pprox_{\text{set}}(bs, y)$$

$$\begin{aligned} & \operatorname{fv}(\boldsymbol{x}) = \{\boldsymbol{x}\} \\ & \operatorname{fv}(\boldsymbol{T}_1 \to \boldsymbol{T}_2) = \operatorname{fv}(\boldsymbol{T}_1) \cup \operatorname{fv}(\boldsymbol{T}_2) \end{aligned}$$

• lets look at type-schemes:

$$(\boldsymbol{as,x}) pprox_{\mathrm{set}}(\boldsymbol{bs,y})$$

$$egin{aligned} &\mathbf{fv}(m{x}) = \{m{x}\} \ &\mathbf{fv}(m{T}_1 o m{T}_2) = \mathbf{fv}(m{T}_1) \cup \mathbf{fv}(m{T}_2) \end{aligned}$$

set+: $\exists \pi. \text{ fv}(x) - as = \text{fv}(y) - bs$ $\land \text{ fv}(x) - as \#^* \pi$ $\land \pi \cdot x = y$

set:

$$\exists \pi. fv(x) - as = fv(y) - bs$$

 $\land fv(x) - as \#^* \pi$
 $\land \pi \cdot x = y$
 $\land \pi \cdot as = bs$

list:

$$\exists \pi. fv(x) - as = fv(y) - bs$$

 $\land fv(x) - as #^* \pi$
 $\land \pi \cdot x = y$
 $\land \pi \cdot as = bs$

Saarbr cken, 31. March 2011 - p. 10/19

$(\{x,y\}, x \rightarrow y) \approx_? (\{x,y\}, y \rightarrow x)$

list:

$$\begin{array}{l} \exists \pi. \ \mathrm{fv}(x) - as = \mathrm{fv}(y) - bs \\ \wedge \ \mathrm{fv}(x) - as \ \#^* \ \pi \\ \wedge \ \pi \cdot x = y \\ \wedge \ \pi \cdot as = bs \end{array}$$

Saarbr cken, 31. March 2011 - p. 11/19

$([\boldsymbol{x}, \boldsymbol{y}], \boldsymbol{x} \rightarrow \boldsymbol{y}) \boldsymbol{pprox}_? ([\boldsymbol{x}, \boldsymbol{y}], \boldsymbol{y} \rightarrow \boldsymbol{x})$

-bs

$$\begin{array}{l} \text{set:} \\ \exists \pi. \ \text{fv}(x) - as = \text{fv}(y) - bs \\ \land \ \text{fv}(x) - as \ \#^* \ \pi \\ \land \ \pi \cdot x = y \end{array} \begin{array}{l} \text{set:} \\ \exists \pi. \ \text{fv}(x) - as = \text{fv}(y) \\ \land \ \text{fv}(x) - as \ \#^* \ \pi \\ \land \ \pi \cdot x = y \\ \land \ \pi \cdot as = bs \end{array}$$

list:

$$\exists \pi. fv(x) - as = fv(y) - bs$$

 $\land fv(x) - as \#^* \pi$
 $\land \pi \cdot x = y$
 $\land \pi \cdot as = bs$

Saarbr Cken, 31. March 2011 - p. 11/19

$(\{x\}, x) pprox_? (\{x, y\}, x)$

set::

$$\exists \pi. \text{ fv}(x) - as = \text{fv}(y) - bs$$

 $\land \text{ fv}(x) - as \#^* \pi$
 $\land \pi \cdot x = y$

set:

$$\exists \pi. \text{ fv}(x) - as = \text{fv}(y) - bs$$

 $\land \text{ fv}(x) - as \#^* \pi$
 $\land \pi \cdot x = y$
 $\land \pi \cdot as = bs$

list:

$$\begin{array}{l} \exists \pi. \ \mathrm{fv}(x) - as = \mathrm{fv}(y) - bs \\ \wedge \ \mathrm{fv}(x) - as \ \#^* \ \pi \\ \wedge \ \pi \cdot x = y \\ \wedge \ \pi \cdot x = bs \end{array}$$

Saarbr cken, 31. March 2011 - p. 12/19

set+:

$$\exists \pi. \text{ fv}(x) - as = \text{fv}(y) - b$$

 $\land \text{ fv}(x) - as \#^* \pi$
 $\land \pi \cdot x = y$

set: $\exists \pi. f_{v}(x) - as = f_{v}(y) - bs$ $\land f_{v}(x) - as \#^{*} \pi$ $\land \pi \cdot x = y$ $\land \pi \cdot as = bs$

list:

$$\exists \pi. \text{ fv}(x) - as = \text{fv}(y) - bs \\ \land \text{ fv}(x) - as \#^* \pi \\ \land \pi \cdot x = y \\ \land \pi \cdot as = bs$$

Saarbr cken, 31. March 2011 - p. 12/19

Our Specifications

nominal_datatype trm = Var name App trm trm Lam x::name t::trm **bind** x **in** t | Let as::assns t::trm **bind** bn(as) in t and assns =**ANil** ACons name trm assns binder bn where bn(ANil) = []| bn(ACons a t as) = [a] @ bn(as)

Binding Functions

Foo $(\lambda y.\lambda x.t)$ s $\{y, x\}$

Binder Clauses

• We need for a bound variable to have a 'clear scope', and bound variables should not be free and bound at the same time.

shallow binders

Binder Clauses

• We need for a bound variable to have a 'clear scope', and bound variables should not be free and bound at the same time.

deep binders

Let as::assns t::trm **bind** bn(as) **in** t Foo as::assns t₁::trm t₂::trm **bind** bn(as) **in** t₁, **bind** bn(as) **in** t₂

×Bar as::assns t_1 ::trm t_2 ::trm **bind** $bn_1(as)$ **in** t_1 , **bind** $bn_2(as)$ **in** t_2

Binder Clauses

• We need for a bound variable to have a 'clear scope', and bound variables should not be free and bound at the same time.

deep recursive binders

Let_rec as::assns t::trm **bind** bn(as) **in** t as

×Foo_rec as::assns t₁::trm t₂::trm bind bn(as) in t₁ as, bind bn(as) in t₂

• defined fv and α

Saarbr Cken, 31. March 2011 - p. 16/19

Our Work

• defined fv and α

 derived a reasoning infrastructure (#, distinctness, injectivity, cases,...)

Our Work

- derived a reasoning infrastructure (#, distinctness, injectivity, cases,...)
- a (weak) induction principle

Our Work

- defined fv and lpha
- derived a reasoning infrastructure (#, distinctness, injectivity, cases,...)
- a (weak) induction principle
- derive a **stronger** induction principle (Barendregt variable convention built in)

Foo $(\lambda x.\lambda y.t) (\lambda u.\lambda v.s)$

Conclusion

• the user does not see anything of the raw level Lam a (Var a) = Lam b (Var b)

Conclusion

- the user does not see anything of the raw level
- it took quite some time to get here, but it seems worthwhile (Barendregt's variable convention is unsound in general, found bugs in two paper proofs)

Conclusion

- the user does not see anything of the raw level
- it took quite some time to get here, but it seems worthwhile (Barendregt's variable convention is unsound in general, found bugs in two paper proofs)
- http://isabelle.in.tum.de/nominal/

Thanks!

Saarbr Cken, 31. March 2011 - p. 18/19

$\begin{array}{l} (\{a,b\},a\rightarrow b)\approx_{\alpha}(\{a,b\},a\rightarrow b)\\ (\{a,b\},a\rightarrow b)\approx_{\alpha}(\{a,b\},b\rightarrow a) \end{array}$

$$\begin{array}{c} (\{a,b\},(a\rightarrow b,a\rightarrow b))\\ \not\approx_{\alpha}(\{a,b\},(a\rightarrow b,b\rightarrow a)) \end{array}$$

Saarbr cken, 31. March 2011 - p. 19/19

$\begin{array}{l} (\{a,b\},a\rightarrow b)\approx_{\alpha}(\{a,b\},a\rightarrow b)\\ (\{a,b\},a\rightarrow b)\approx_{\alpha}(\{a,b\},b\rightarrow a) \end{array}$

$$\begin{array}{c} (\{ \boldsymbol{a}, \boldsymbol{b} \}, (\boldsymbol{a} \rightarrow \boldsymbol{b}, \boldsymbol{a} \rightarrow \boldsymbol{b})) \\ \not\approx_{\alpha} (\{ \boldsymbol{a}, \boldsymbol{b} \}, (\boldsymbol{a} \rightarrow \boldsymbol{b}, \boldsymbol{b} \rightarrow \boldsymbol{a})) \end{array}$$

bind (set) as in τ₁, bind (set) as in τ₂
 bind (set) as in τ₁ τ₂