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Binding in Old Nominal

o the old Nominal Isabelle provided a reasoning
infrastructure for single binders

Lam [a}.(Var a)

for example
a# Lam [al. t
Lam {al. (Var a) = Lam {b}. (Var b)
Barendregt-style reasoning about bound variables



Binding in Old Nominal

o the old Nominal Isabelle provided a reasoning
infrastructure for single binders

Lam {a}.(Var a)
e but representing
V{ai,...,an}. T

with single binders and reasoning about it is a
major pain; take my word for it!
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Binding Sets of Names

e binding sets of names has some interesting
properties:

Hz, 9}z =y =a V{y,z}.y— =
V{z,y}.x >y #. V{z}.z—> =z
V{z}.x >y =, V{z,z}.z—y

provided z is fresh for the type

* x,y, z are assumed to be distinct



Binding Sets of Names

° l};if; For type-schemes the order of bound

names does not matter, and
a-equivalence is preserved under
vacuous binders.

V{Z,yf. T — Y ZEa Vizf.Z2 — 2 ’

V{z}.x >y =, V{z,z}.z—y
provided z is fresh for the type

* x,y, z are assumed to be distinct
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Other Binding Modes

e alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x =3 and y =2 in x — y end
Faolety=2and x =3 and z = loop in  — y end



Even Another Binding Mode

@ sometimes one wants to abstract more than one
name, but the order does matter

let (x,y) = (3,2) inx — y end
o let (y,x) = (3,2) in x — y end



Three Binding Modes

o the order does not matter and alpha-equivelence
is preserved under vacuous binders (restriction)

o the order does not matter, but the cardinality of
the binders must be the same (abstraction)

e the order does matter (iterated single binders)



Three Binding Modes

o the order does not matter and alpha-equivelence
is preserved under vacuous binders (restriction)

o the order does not matter, but the cardinality of
the binders must be the same (abstraction)

e the order does matter (iterated single binders)

bind (set+) bind (set) bind
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Var name
| App trm trm
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| Let assns trm
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| ACons name trm assns
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Specification of Binding

nominal_datatype trm =
Var name
| App trm trm
| Lam x::name t::trm  bind x in t
| Let as::assns t::trm  bind bn(as) in t
and assns =
ANil
| ACons name trm assns
binder bn where
bn(ANil = {}
| bn(ACons a t as) = [a} @ bn(as)



Alpha-Equivalence

o lets first look at pairs

(as,x)

as is a set of names...the binders

x is the body (might be a tuple)

Rt 1s where the cardinality of the
binders has to be the same
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Alpha-Equivalence

o lets first look at pairs
(CLS, ZB) ~ set (bs, y)

o fv(x) — as = fv(y) — bs
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Alpha-Equivalence

o lets first look at pairs
(as, ) ~jisc (bs, y)

“ Ir. fv(x) — as = fv(y) — bs
A tv(x) —as #* =
N (mex) =y
N meas = bs

* as and bs are lists of names



Alpha-Equivalence

o lets first look at pairs
(as, ) = . (bs, y)

“ Ir. fv(x) — as = fv(y) — bs
A fv(x) —as #* =
N (mex) =y
11K HhidK H bE
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Examples

o lets look at type-schemes:
(as’ m) ~ set (bs, y)

() — {}
fV(Tl — TQ) = fV(Tl) U fV(TQ)

set+: set: list:
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({way}aw — y) ~? ({:I}, y},y — w)

~ ~
QO getry ~set
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([cc,y],a: — y) ~? ([.’I), y]7y — $)

~o ~ .
QO ety ~sets ?ehst
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Examples

({:13}, w) ~? ({wa y}a w)

(*} zset_,_, %set, %list

set+: set: list:
3w. fv(x) — as = fv(y) — bs| 3w, fv(x) — as = fv(y) — bs| 3. fv(x) — as = fv(y) — bs
A fv(z) —as #* = A fv(z) —as #* = A fv(z) —as #* m
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Examples

( )
e a-equivalences coincide when a
single name is abstracted

o ~. | @ in that case they are equivalent to
“old-fashioned” definitions of a

" 7
set+: set: list:
3w. fv(x) — as = fv(y) — bs| 3w, fv(x) — as = fv(y) — bs| 3. fv(x) — as = fv(y) — bs
A fv(z) —as #* = A fv(z) —as #* = A fv(z) —as #* m
NT-xT=1y NT-xT=1y NT-xT=1y

A 7 -as = bs AN 7 -as = bs




Our Specifications

nominal_datatype trm =
Var name
| App trm trm
| Lam x::name t::trm  bind x in t
| Let as::assns t::trm  bind bn(as) in t
and assns =
ANil
| ACons name trm assns
binder bn where
bn(ANil = ||
| bn(ACons a t as) = [a] @ bn(as)



Binding Functions

Foo (Ay.Ax.t) s

\ /

{y,x}



Binder Clauses

@ We need for a bound variable to have a ‘clear
scope’, and bound variables should not be free
and bound at the same time.

shallow binders
Lam x::name t:trm bind x in t
All xs::name set T::ty bind xsin T
Foo x::name t:trm to::trm bind x in ty, bind x in ty
Bar x::name t;::trm toi:trm bind xin t; t



Binder Clauses

e We need for a bound variable to have a ‘clear
scope’, and bound variables should not be free

and bound at the same time.

deep binders
Let as::assns t::trm  bind bn(as) in t

Foo as::assns ty::trm to::trm
bind bn(as) in t{, bind bn(as) in t,

X Bar as::assns ty::trm to::trm
bind bn;(as) in t;, bind bns(as) in t;



Binder Clauses

@ We need for a bound variable to have a ‘clear
scope’, and bound variables should not be free
and bound at the same time.

deep recursive binders
Let_rec as::assns t::trm  bind bn(as) in t as

XFoo_rec as::assns ty:trm to::trm
bind bn(as) in t; as, bind bn(as) in t,
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Our Work

o defined fv and &

e derived a reasoning infrastructure

new (#, distinctness, injectivity,
type .
YPE 1 terms cases,...)

e a (weak) induction principle

e derive a stronger induction
principle (Barendregt variable
convention built in)

Foo Axz.Ay.t) Au.\v.s)



Conclusion

o the user does not see anything of the raw level

Lam a (Var a) = Lam b (Var b)
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worthwhile (Barendregt’s variable convention is
unsound in general, found bugs in two paper
proofs)



Conclusion

o the user does not see anything of the raw level

e it took quite some time to get here, but it seems
worthwhile (Barendregt’s variable convention is
unsound in general, found bugs in two paper
proofs)

e http://isabelle.in.tum.de/nominal/



Questions?

Thanks!
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({a,b},a — b) =, ({a,b},a — b)
({a,b},a — b) = ({a,b},b — a)

({a, b}, (a — b,a — b))
#a ({a,b}, (@ = b,b — a))



Examples

({a,b},a — b) =, ({a,b},a — b)
({a,b},a — b) =, ({a,b},b — a)

({a, b}, (a — b,a — b))
#a ({a,b}, (@ = b,b — a))

1.) bind (set) as in 71, bind (set) as in T

2.) bind (set) asin 7 T



