
Saarbr�cken, 31. March 2011 – p. 1/19

General Bindings and
Alpha-Equivalence
in Nominal Isabelle
Or, Nominal Isabelle 2

Christian Urban

joint work with Cezary Kaliszyk

Saarbr�cken, 31. March 2011 – p. 1/19

Binding in Old Nominal
the old Nominal Isabelle provided a reasoning
infrastructure for single binders

Lam [a].(Var a)

but representing
∀{a1, . . . , an}. T

with single binders and reasoning about it is a
major pain; take my word for it!

Saarbr�cken, 31. March 2011 – p. 2/19

for example
a # Lam [a]. t
Lam [a]. (Var a) = Lam [b]. (Var b)
Barendregt-style reasoning about bound variables

Binding in Old Nominal
the old Nominal Isabelle provided a reasoning
infrastructure for single binders

Lam [a].(Var a)

but representing
∀{a1, . . . , an}. T

with single binders and reasoning about it is a
major pain; take my word for it!

Saarbr�cken, 31. March 2011 – p. 2/19

New Types in HOL

.

.
α-

classes
.

α-eq.
terms

.

existing
type

(sets of raw terms).
non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Saarbr�cken, 31. March 2011 – p. 3/19

New Types in HOL

.

.
α-

classes
.

α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Saarbr�cken, 31. March 2011 – p. 3/19

New Types in HOL

.

.
α-

classes
.

α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Saarbr�cken, 31. March 2011 – p. 3/19

New Types in HOL

..
α-

classes
.

α-eq.
terms

.

existing
type
(sets of raw terms).

non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Saarbr�cken, 31. March 2011 – p. 3/19

New Types in HOL

.

.
α-

classes

.
α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Saarbr�cken, 31. March 2011 – p. 3/19

New Types in HOL

..
α-

classes
.

α-eq.
terms

.

existing
type
(sets of raw terms).

non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Saarbr�cken, 31. March 2011 – p. 3/19

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Saarbr�cken, 31. March 2011 – p. 4/19

∗ x, y, z are assumed to be distinct

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Saarbr�cken, 31. March 2011 – p. 4/19

∗ x, y, z are assumed to be distinct

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Saarbr�cken, 31. March 2011 – p. 4/19

∗ x, y, z are assumed to be distinct

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Saarbr�cken, 31. March 2011 – p. 4/19

∗ x, y, z are assumed to be distinct

..
For type-schemes the order of bound
names does not matter, and
α-equivalence is preserved under
vacuous binders.

Other Binding Modes

alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x = 3 and y = 2 in x − y end

let y = 2 and x = 3 in x − y end

Saarbr�cken, 31. March 2011 – p. 5/19

Other Binding Modes

alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x = 3 and y = 2 in x − y end
≈α let y = 2 and x = 3 in x − y end

Saarbr�cken, 31. March 2011 – p. 5/19

Other Binding Modes

alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x = 3 and y = 2 in x − y end
̸≈α let y = 2 and x = 3 and z = loop in x − y end

Saarbr�cken, 31. March 2011 – p. 5/19

Even Another Binding Mode

sometimes one wants to abstract more than one
name, but the order does matter

let (x, y) = (3, 2) in x − y end
̸≈α let (y, x) = (3, 2) in x − y end

Saarbr�cken, 31. March 2011 – p. 6/19

Three Binding Modes

the order does not matter and alpha-equivelence
is preserved under vacuous binders (restriction)

the order does not matter, but the cardinality of
the binders must be the same (abstraction)

the order does matter (iterated single binders)

bind (set+) bind (set) bind

Saarbr�cken, 31. March 2011 – p. 7/19

Three Binding Modes

the order does not matter and alpha-equivelence
is preserved under vacuous binders (restriction)

the order does not matter, but the cardinality of
the binders must be the same (abstraction)

the order does matter (iterated single binders)

bind (set+) bind (set) bind

Saarbr�cken, 31. March 2011 – p. 7/19

Specification of Binding
nominal_datatype trm =

Var name
| App trm trm
| Lam name trm

bind x in t

| Let assns trm

bind bn(as) in t

and assns =
ANil

| ACons name trm assns

binder bn where
bn(ANil) = []

| bn(ACons a t as) = [a] @ bn(as)

Saarbr�cken, 31. March 2011 – p. 8/19

Specification of Binding
nominal_datatype trm =

Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assns t::trm bind bn(as) in t

and assns =
ANil

| ACons name trm assns

binder bn where
bn(ANil) = []

| bn(ACons a t as) = [a] @ bn(as)

Saarbr�cken, 31. March 2011 – p. 8/19

Specification of Binding
nominal_datatype trm =

Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assns t::trm bind bn(as) in t

and assns =
ANil

| ACons name trm assns
binder bn where

bn(ANil) = []
| bn(ACons a t as) = [a] @ bn(as)

Saarbr�cken, 31. March 2011 – p. 8/19

Alpha-Equivalence

lets first look at pairs

(as, x)

≈ (bs, y)

Saarbr�cken, 31. March 2011 – p. 9/19

as is a set of names…the binders
x is the body (might be a tuple)
≈set is where the cardinality of the
binders has to be the same

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set (bs, y)

Saarbr�cken, 31. March 2011 – p. 9/19

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set (bs, y)

Saarbr�cken, 31. March 2011 – p. 9/19

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set (bs, y)

Saarbr�cken, 31. March 2011 – p. 9/19

def
=

∃π.

fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) = y

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set (bs, y)

Saarbr�cken, 31. March 2011 – p. 9/19

def
= ∃π. fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) = y

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set (bs, y)

Saarbr�cken, 31. March 2011 – p. 9/19

def
= ∃π. fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) = y

∧ π·as = bs

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ list (bs, y)

Saarbr�cken, 31. March 2011 – p. 9/19

def
= ∃π. fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) = y

∧ π·as = bs

∗ as and bs are lists of names

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set+(bs, y)

Saarbr�cken, 31. March 2011 – p. 9/19

def
= ∃π. fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) = y

/////∧ //////////////π·as = bs

Examples

lets look at type-schemes:

(as, x) ≈ set (bs, y)

fv(x) = {x}
fv(T1 → T2) = fv(T1) ∪ fv(T2)

Saarbr�cken, 31. March 2011 – p. 10/19

Examples

lets look at type-schemes:

(as, x) ≈ set (bs, y)

fv(x) = {x}
fv(T1 → T2) = fv(T1) ∪ fv(T2)

Saarbr�cken, 31. March 2011 – p. 10/19

Examples

lets look at type-schemes:

(as, x) ≈ set (bs, y)

fv(x) = {x}
fv(T1 → T2) = fv(T1) ∪ fv(T2)

Saarbr�cken, 31. March 2011 – p. 10/19

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

Examples

({x, y}, x → y) ≈? ({x, y}, y → x)

≈set+, ≈set

Saarbr�cken, 31. March 2011 – p. 11/19

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

Examples

([x, y], x → y) ≈? ([x, y], y → x)

≈set+, ≈set, ̸≈list

Saarbr�cken, 31. March 2011 – p. 11/19

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

Examples

({x}, x) ≈? ({x, y}, x)

≈set+, ̸≈set, ̸≈list

Saarbr�cken, 31. March 2011 – p. 12/19

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

Examples

≈set+, ̸≈set, ̸≈list

Saarbr�cken, 31. March 2011 – p. 12/19

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..

α-equivalences coincide when a
single name is abstracted
in that case they are equivalent to
“old-fashioned” definitions of α

Our Specifications
nominal_datatype trm =

Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assns t::trm bind bn(as) in t

and assns =
ANil

| ACons name trm assns
binder bn where

bn(ANil) = []
| bn(ACons a t as) = [a] @ bn(as)

Saarbr�cken, 31. March 2011 – p. 13/19

Binding Functions

..

Foo (λy.λx.t)

.

s

.
{y, x}

Saarbr�cken, 31. March 2011 – p. 14/19

Binder Clauses
We need for a bound variable to have a ‘clear
scope’, and bound variables should not be free
and bound at the same time.

shallow binders
Lam x::name t::trm bind x in t
All xs::name set T::ty bind xs in T
Foo x::name t1::trm t2::trm bind x in t1, bind x in t2
Bar x::name t1::trm t2::trm bind x in t1 t2

Saarbr�cken, 31. March 2011 – p. 15/19

Binder Clauses
We need for a bound variable to have a ‘clear
scope’, and bound variables should not be free
and bound at the same time.

deep binders
Let as::assns t::trm bind bn(as) in t
Foo as::assns t1::trm t2::trm

bind bn(as) in t1, bind bn(as) in t2

×Bar as::assns t1::trm t2::trm
bind bn1(as) in t1, bind bn2(as) in t2

Saarbr�cken, 31. March 2011 – p. 15/19

Binder Clauses
We need for a bound variable to have a ‘clear
scope’, and bound variables should not be free
and bound at the same time.

deep recursive binders
Let_rec as::assns t::trm bind bn(as) in t as

×Foo_rec as::assns t1::trm t2::trm
bind bn(as) in t1 as, bind bn(as) in t2

Saarbr�cken, 31. March 2011 – p. 15/19

Our Work

.

.
α-

classes

.
α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

Saarbr�cken, 31. March 2011 – p. 16/19

defined fv and α

derived a reasoning infrastructure
(#, distinctness, injectivity,
cases,…)
a (weak) induction principle
derive a stronger induction
principle (Barendregt variable
convention built in)

Foo (λx.λy.t) (λu.λv.s)

Our Work

.

.
α-

classes

.
α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

Saarbr�cken, 31. March 2011 – p. 16/19

defined fv and α

derived a reasoning infrastructure
(#, distinctness, injectivity,
cases,…)

a (weak) induction principle
derive a stronger induction
principle (Barendregt variable
convention built in)

Foo (λx.λy.t) (λu.λv.s)

Our Work

.

.
α-

classes

.
α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

Saarbr�cken, 31. March 2011 – p. 16/19

defined fv and α

derived a reasoning infrastructure
(#, distinctness, injectivity,
cases,…)
a (weak) induction principle

derive a stronger induction
principle (Barendregt variable
convention built in)

Foo (λx.λy.t) (λu.λv.s)

Our Work

.

.
α-

classes

.
α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

Saarbr�cken, 31. March 2011 – p. 16/19

defined fv and α

derived a reasoning infrastructure
(#, distinctness, injectivity,
cases,…)
a (weak) induction principle
derive a stronger induction
principle (Barendregt variable
convention built in)

Foo (λx.λy.t) (λu.λv.s)

Conclusion
the user does not see anything of the raw level

Lam a (Var a) = Lam b (Var b)

it took quite some time to get here, but it seems
worthwhile (Barendregt’s variable convention is
unsound in general, found bugs in two paper
proofs)

http://isabelle.in.tum.de/nominal/

Saarbr�cken, 31. March 2011 – p. 17/19

Conclusion
the user does not see anything of the raw level

it took quite some time to get here, but it seems
worthwhile (Barendregt’s variable convention is
unsound in general, found bugs in two paper
proofs)

http://isabelle.in.tum.de/nominal/

Saarbr�cken, 31. March 2011 – p. 17/19

Conclusion
the user does not see anything of the raw level

it took quite some time to get here, but it seems
worthwhile (Barendregt’s variable convention is
unsound in general, found bugs in two paper
proofs)

http://isabelle.in.tum.de/nominal/

Saarbr�cken, 31. March 2011 – p. 17/19

Questions?

Thanks!

Saarbr�cken, 31. March 2011 – p. 18/19

Examples

({a, b}, a → b) ≈α ({a, b}, a → b)
({a, b}, a → b) ≈α ({a, b}, b → a)

({a, b}, (a → b, a → b))
̸≈α ({a, b}, (a → b, b → a))

1.) bind (set) as in τ1, bind (set) as in τ2

2.) bind (set) as in τ1 τ2

Saarbr�cken, 31. March 2011 – p. 19/19

Examples

({a, b}, a → b) ≈α ({a, b}, a → b)
({a, b}, a → b) ≈α ({a, b}, b → a)

({a, b}, (a → b, a → b))
̸≈α ({a, b}, (a → b, b → a))

1.) bind (set) as in τ1, bind (set) as in τ2

2.) bind (set) as in τ1 τ2

Saarbr�cken, 31. March 2011 – p. 19/19

