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Abstract
Modular languages support generative type abstraction, ensuring
that an abstract type is distinct from its representation, except inside
the implementation where the two are synonymous. We show that
this well-established feature is in tension with the non-parametric
features of newer type systems, such as indexed type families and
GADTs. In this paper we solve the problem by using kinds to
distinguish between parametric and non-parametric contexts. The
result is directly applicable to Haskell, which is rapidly developing
support for type-level computation, but the same issues should arise
whenever generativity and non-parametric features are combined.

1. Introduction
Generative type abstraction allows programmers to introduce new
type constants in their programs that are isomorphic to existing
types; examples include ML’s module system [Milner et al. 1997;
Pierce 2005, Ch. 8], and Haskell’s newtype construct [Peyton
Jones et al. 2003]. Type generativity is very important because it
supports modularity by enforcing abstraction: the implementor of
a module can move freely between the abstract and representation
types, whereas to the client of the module the two types are com-
pletely distinct.

There is growing interest in languages that support some form of
type-level computation, including Haskell’s type classes [Hall et al.
1996] and indexed type families [Kiselyov et al. 2010]. However, as
we show in Section 2, there is a fundamental tension between type-
level computation and generative type abstraction, at least in the
latter’s more flexible forms. To summarize very briefly, the conflict
is this:

• To maximize re-use and convenience, it is very desirable for
the implementor to be able to treat the abstract type A and its
concrete representation type C as synonymous – we call this
flexible type generativity.

• However, given type-level function F the result of (F A) and
(F C) may differ, so A and C cannot be synonymous.

Resolving this conflict is the subject of this paper. Specifically our
contributions are:
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• We show in Section 2 that the naive combination of type genera-
tivity and non-parametric type-level features can violate sound-
ness; a problem that already manifests in the Glasgow Haskell
Compiler, and affects not only type-level non-parametric func-
tions, but also other forms of non-parametric constructs, such as
generalized algebraic datatypes (GADTs) [Cheney and Hinze
2003; Hinze et al. 2002; Peyton Jones et al. 2006; Xi et al.
2003].

• We formalize a solution to this problem that reconciles flexi-
ble type generativity and non-parametric type functions in Sec-
tion 3. Our language, FC2, builds on GHC’s existing core
language, System FC [Sulzmann et al. 2007], which supports
erasable type-level coercions. The key ingredient in our solu-
tion is to employ kinds decorated with roles to distinguish pos-
sibly non-parametric type contexts and to refine the admissible
coercions of System FC.

• We prove that FC2 programs are type safe, provided that user
axioms and definitions give rise to consistent axiom sets (Sec-
tion 4).

• We give sufficient conditions for showing the consistency of
an axiom set. For our proofs, we introduce a rewrite system
for types that is novel in two dimensions: rewriting (i) is role-
sensitive, and (ii) introduces a new (to our knowledge) notion
of parallel reduction that does not require termination of the
rewrite system in the consistency conditions (Section 4.2).

• We present a Haskell-specific result: we show how Haskell
source programs that may involve non-parametric type contexts
and flexible type generativity can be translated to yield provably
consistent FC2 axiom sets. (Section 5)

• Our core language is an improvement of System FC since it
permits safe flexible type generativity, but also unsaturated type
functions. Perhaps surprisingly, our language is additionally
a significant simplification of the original System FC, which
removes several of the original coercion constructs that we have
identified to be encodable (even in the original System FC). We
discuss these differences in Section 6.2.

For the sake of concreteness we build our presentation around
Haskell and System FC, since this setting allows us to demon-
strate our points with real code, instead of using a hypothetical
λ-calculus. However, we stress that our work is applicable when-
ever flexible type generativity and non-parametric type-level fea-
tures are combined. For example, the very same issues could arise
in extensions of the ML module system. We discuss related work
in Section 7.
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2. The problems with generative type abstraction
Generative type abstraction is an extremely useful mechanism for
enforcing abstraction barriers and for refining interfaces. To see
this, let us consider the Haskell incarnation of type generativity,
namely newtype definitions. In Haskell the programmer may
declare a newtype Age, with concrete representation type Int,
thus:

newtype Age = MkAge Int

The implementor uses the “data constructor” MkAge to coerce an
Int to an Age, and pattern matching to effect the inverse coercion.
For example:

addAge :: Age→ Int→ Age
addAge (MkAge a) n = MkAge (a+n)

The client, in contrast, can be prevented from making such conver-
sions, by using the module system to hide the MkAge constructor:

module AgeModule( Age, addAge, ... ) where
-- Age definition and implementation

2.1 Coercion lifting
In describing MkAge, we wrote “data constructor” in quotes be-
cause although it behaves in many ways like a data constructor, its
cost model is different. Specifically, a newtype definition guaran-
tees that the abstract type really is represented by the concrete type,
so the runtime conversion cost is zero. That would not be true if
Age were instead declared with data instead of newtype.

So Age can be coerced to an Int, and vice versa, for free—i.e.
without runtime cost—because it is an Int. Notationally, we say
that Int ∼ Age, where we use ∼ for type equality1. But what
about, say, Maybe Age?

data Maybe a = Nothing | Just a

Obviously, Maybe Age should be freely coercible to Maybe Int,
because the two are represented identically. Alas, in Haskell 98 one
would have to write

cvt :: Maybe Age→ Maybe Int
cvt t = mapMaybe (λ MkAge a→ a) t
-- mapMaybe :: (a→b)→ Maybe a→ Maybe b

This is unsavory for several reasons: (a) it is tedious for the pro-
grammer; (b) it is hard for the compiler to eliminate a runtime call
to mapMaybe (let alone to guarantee to do so) especially if it is
recursive; and (c) it may be difficult to implement the necessary
“map” function. As an example of (c) consider the mapping func-
tion for the type T shown below, with co- and contra-variance, and
higher kinds:

data T a f = T1 a
| T2 (a→ Int)
| T3 (f (T a f) (T a f))

These difficulties are frustrating, because we know that, say,
T Age Maybe is represented identically to T Int Maybe. So,
let us imagine a hypothetical extension of Haskell that provides
lifted coercions; that is, it implements the following rule:

Coercion lifting: if for two types ϕ and ψ we have ϕ ∼ ψ
(for example, if they are the abstract and concrete types of
a newtype declaration), then T ϕ ∼ T ψ for any type
constructor T .

1 There are too many sorts of “=”!

In fact this extension is not so hypothetical, because such a rule is
the basis of the so-called “newtype deriving” feature implemented
by GHC, but we do not want to get distracted by Haskell-specific
details here.

ML supports coercion lifting even more directly: within a struc-
ture the abstract and the representation types are considered entirely
interchangeable. For example in ML one might say

signature AgeSig = sig {
type age
addAge : age → int → age
... }

structure AgeModule : AgeSig = struct {
type age = int
addAge a n = a+n
... }

Inside AgeModule the two types are synonymous, and so addAge
need not convert in either direction. Similarly, cvt would simply
be the identity function, as indeed it should be.

However, the point of this paper is that the innocuous and
obvious-seeming “lifting” of type identities becomes unsound
when combined with type-level computation, as we show in the
next section.

2.2 Type-level computation
One very popular extension to Haskell is that of Generalized Alge-
braic Data Types (GADTs) [Peyton Jones et al. 2006], with which
we assume the reader is somewhat familiar. In GHC one could de-
clare a GADT with three nullary constructors like this:

data K a where
KAge :: K Age
KInt :: K Int
KAny :: K a

Now, consider these functions:

kint :: K Int
kint = KInt

get :: K Age→ String
get KAge = "Age"
get KAny = "Any"

Since get’s type signature declares that its argument is of type
K Age, it follows that the patterns in get are exhaustive. But
consider the call (get kint). By coercion lifting, K Int and
K Age are coercible, so the call is well typed—yet the pattern
match in get will fail.

In the last few years we have gone beyond GADTs, by extend-
ing GHC with type-level functions [Chakravarty et al. 2005a,b;
Kiselyov et al. 2010]. The reader is urged to consult these papers
for motivated examples of type functions, but for the purposes of
this paper we content ourselves with a small but contrived example:

type family F a :: *
type instance F Age = Char
type instance F Int = Bool

Here the type function F maps the type Age to the type Char, but
it maps Int to Bool.

However, the existence of such a type-level function threatens
not just pattern exhaustiveness but type soundness itself. Consider
the type Bool. This type is equivalent to F Int by the equation
for F; and by coercion lifting that should be equivalent to F Age;
and that is equivalent to Char by the other equation for F. Alto-
gether we can coerce Bool to Char, which is obvious nonsense.

What went wrong? Maybe it should be illegal for a type function
to behave differently on two coercible types, such as Age and Int?
But in fact Haskell programmers often use newtype precisely so
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that they can give a different type-class instance (for comparison,
say) for Age than for the underlying Int. Type functions are no
different; indeed, they are often introduced as an “associated type”
of a type class [Kiselyov et al. 2010], and hence, just as the type
class distinguishes between the abstract and concrete type, so must
the type function.

How else might we fix the problem? Perhaps, in the definition of
coercion lifting we should not allow T to range over type functions
such as F? Indeed we should not, but that is not enough. Consider

data TF a = MkTF (F a)

Now, should coercion lifting allow us to coerce TF Age to
TF Int? Obviously not! Otherwise we could write

to :: Bool→ TF Int
to b = MkTF b

from :: TF Age→ Char
from (MkTF c) = c

and now the composition from ◦ to is well-typed (via coercion
lifting) but obviously unsound.

2.3 Summary
At this point it should be clear that a naive combination of:

• type-level dispatch, whether by GADTs or by type functions
• unrestricted coercion lifting

simply does not work. This interaction was far from obvious to us
initially, and indeed GHC has a well-documented type-soundness
bug2 that arises directly from this unforeseen interaction. Yet both
type-level dispatch and coercion lifting (suitably restricted) are
valuable. The purpose of this paper is to show how they may be
soundly combined.

We urge the reader not to be distracted by the question of
whether the coercion between abstract and concrete types is explicit
(as in Haskell) or implicit (as in ML). This is a property of the sur-
face language, and one that is intimately connected with type infer-
ence. Instead, for most of the paper we will focus our attention on
the intermediate language, in which (runtime-erasable) coercions
are explicit. Whether they come directly from the source program,
or from elaboration by the type checker, is secondary.

This problem is important not only because it arises in GHC,
but also because the same issues will arise in any type system that
combines type-level dispatch and coercion lifting. Haskell is the
first programming language that has pushed the type system far
enough for these problems to arise in practice, but others (such as
ML) may well do so in the future, although their particularities may
affect the applicability of our solution.

3. The FC2 language: codes versus types
As shown above, the fundamental issue is that there is a tension
between generative types, which allow programmers to express
the intent that two types have identical representations, and type
functions, which can distinguish two types even if they have the
same underlying representation.

The key idea of our solution is to separate types that can be
analyzed by type functions from those that must be used paramet-
rically. We call the former codes, as in “codes for types,” [Benke
et al. 2003; Dybjer 2000] since type functions can branch on them
and thus treat them as a form of data. Codes are themselves valid
types, which, as usual, classify program expressions and indicate
the representation of data structures. This distinction also gives rise
to two different notions of equality—code equality is used to reason
about the meaning of type-indexed functions and is finer-grained

2 http://hackage.haskell.org/trac/ghc/ticket/1496

than type equality, which is used for determining which type coer-
cions are safe.

To see why these distinctions matter, reconsider the Age exam-
ple from above. The newtype declaration introduces a new code,
Age, that is distinct (as a code) from the code Int. On the other
hand Age and Int are equal when considered as types, since, in
fact, they have identical representations and it is safe to coerce be-
tween them.

3.1 FC2: an overview
These ideas are best explained in terms of an intermediate language
that exposes the differences between codes and types and makes
explicit the uses of the two kinds of equality mentioned above.
Thus, the remainder of this section describes FC2, our new variant
of System FC [Sulzmann et al. 2007]—a model of the intermediate
language used in GHC. As such, it is expressive enough to capture
indexed type functions, newtype and newtype deriving,
GADTs, existential and nested datatypes, and much more.

Figure 1 summarizes the syntax of FC2, which, at the term
level (e), is just the polymorphic lambda calculus with two exten-
sions. First, FC2 provides polymorphic datatypes, introduced by
data constructors K . These datatypes are eliminated using a case
construct that should be familiar from Haskell or ML-style func-
tional programming—we describe how datatypes and case are
typechecked in Section 3.5.

Second, FC2 includes first-class proofs of type equality that
witness safe coercions introduced during compilation. These ex-
plicit coercions, written γ, make typechecking FC2 programs
syntax-directed—every expression is annotated with enough in-
formation to determine whether it is well-typed (and with what
type) using just an inductive walk over the expression. Programs in
FC2 can abstract over coercions reflecting a particular type equal-
ity (written Λc :ϕ1∼ϕ2.e), pass a coercion as an argument to such
a function (written e γ), and use a coercion to cast a term from one
type to another (written e . γ).

Figure 2 shows the typing rules for the terms of FC2. The
first five rules, ETVAR through ETAPP, are completely standard.
We defer explanation of the remaining rules until we build up
some more technical machinery having to do with FC2’s kind-level
distinction between codes and types and the rules by which explicit
coercions can themselves be combined. We describe these aspects
of FC2 next.

3.2 FC2 types and kinds
Types in FC2 are classified by pairs κ of the form η/R, where the
kind η ensures (as usual) that types are well-formed structurally,
and the roleR determines whether the type can be analyzed. Codes
have role C, whereas types that must be used parametrically have
role T. This syntax is summarized at the top of Figure 1. There is
an inclusion relation C�T on roles that makes explicit the fact that
any code can play the role of a type but not vice-versa (see the top
of Figure 3). For example, both Int : ?/C and Int : ?/T hold;
that is, Int can play both roles.

The distinction between codes and types allows us to give infor-
mative kinds to type constructors:

• The Maybe type (Section 2.1) has kind ?/T → ?, indicating
that Maybe treats its argument parametrically.

• The types K, F, and TF (Section 2.2) all use type indexing and
therefore have kind ?/C → ?.

It is only safe to lift coercions through functions with paramet-
ric kinds, as we discuss in more detail below. So, for example,
Maybe Age ∼ Maybe Int holds but TF Age 6∼ TF Int.

Despite these non-standard kinds, the types of FC2 are mostly
standard: codes ϕ and types σ are drawn from the same syntax (see
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η ::= ? | κ→ η kind

R ::= C | T role

κ ::= η/R kind and role

H ::= type constants
| T datatypes
| F functions/newtypes
| (→) arrow
| (∼η) equality

ϕ, σ, ψ, υ ::= codes and types
| a variables
| H constants
| ϕ1 ϕ2 application
| ∀a :κ.ϕ polymorphism

γ ::= coercion proof
| c ϕ assumption
| 〈ϕ〉 reflexivity
| sym γ symmetry
| γ1 ; γ2 transitivity
| γ1 γ2 application
| nth k γ injectivity
| ∀a :κ.γ2 polymorphism
| γ@ϕ instantiation

e, v ::= expressions
| x variable
| λx :σ.e abstraction
| e1 e2 application
| Λa:κ.e type abstraction
| e ϕ type application
| K data constructor
| caseσ e of brs case analysis
| Λc :ϕ1∼ϕ2.e proof abstraction
| e γ proof application
| e . γ coercion

brs ::= Ki ⇒ ei
i∈1..n

branches

bnd ::= binding
| a:κ type variable

| H :η type constant
| c :∆. ϕ1 ∼ ϕ2/R coercion
| x :σ term variable
| K :∆.σ data constructor

Γ ::= · | Γ, bnd context

∆ ::= · | a:κ,∆ type context

ρ ::= e | ϕ | γ datacon argument

Θ ::= telescopes
| · empty
| σ,Θ expression type
| a:κ,Θ type variable
| ϕ1 ∼ ϕ2,Θ equality

Figure 1. Syntax

Γ ` e : σ

x :σ ∈ Γ ` Γ

Γ ` x : σ
ETVAR

Γ, x :σ1 ` e : σ2

Γ ` λx :σ1.e : σ1 → σ2
EEABS

Γ ` e1 : σ1 → σ2 Γ ` e2 : σ1

Γ ` e1 e2 : σ2
EEAPP

Γ, a:κ ` e : σ

Γ ` Λa:κ.e : ∀a :κ.σ
ETABS

Γ ` e : ∀a :κ.σ Γ ` ϕ : κ

Γ ` e ϕ : σ[a 7→ ϕ]
ETAPP

K :∆.σ ∈ Γ ` Γ

Γ ` K : ∀∆.σ
EDATACON

Γ ` e : T ϕ Γ ` σ : ?/T
for each Ki ∈ ConstrΓ(T )

Ki :∆.ψi ∈ Γ
ψi [∆ 7→ ϕ] = ∀Θi .T ϕ
Γ ` ei : ∀Θi .σ

Γ ` caseσ e of Ki ⇒ ei
i
: σ

ECASE

Γ, c:ϕ1 ∼ ϕ2/C ` e : σ

Γ ` Λc :ϕ1∼ϕ2.e : (ϕ1∼ϕ2) ⇒ σ
ECABS

Γ ` e : (ϕ1∼ϕ2) ⇒ σ
Γ ` γ : ϕ1 ∼ ϕ2 ∈ η/C

Γ ` e γ : σ
ECAPP

Γ ` e : σ1 Γ ` γ : σ1 ∼ σ2 ∈ ?/T
Γ ` e . γ : σ2

ECOERCE

Figure 2. Typing rules

R1�R2
C�T

RSUB
R�R RREFL

Γ ` ϕ : κ

a:η/R1 ∈ Γ R1�R2 ` Γ

Γ ` a : η/R2
PVAR

H :η ∈ Γ ` Γ

Γ ` H : η/R
PCONST

Γ ` ϕ1 : (η1/R2 → η2)/R1

Γ ` ϕ2 : η1/min(R1, R2)

Γ ` ϕ1 ϕ2 : η2/R1
PAPP

Γ, a:κ ` ϕ : ?/R

Γ ` ∀a :κ.ϕ : ?/R
PALL

Γ ` ϕ : ∆

Γ ` · : · PNIL
Γ ` ϕ : κ Γ ` ϕ : ∆

Γ ` ϕ,ϕ : (a:κ,∆)
PCONS

Figure 3. Kinding
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Figure 1)—we use two different metavariables as a reminder of the
intended role. The type language includes type variables a , type
constants H , applications ϕ1 ϕ2, and polymorphic types ∀a :κ.σ.

Type constants, H , include datatypes T , and type functions
F . For the most part, datatypes and type functions are treated
uniformly, but there are two important distinctions:

• Datatypes must be injective, while type functions need not be.
Injectivity is important because equalities between injective
functions imply equalities between their arguments; see rule
CNTHT in Section 3.3.

• Datatypes are inhabited by values, but type functions are not—
there are no values v with types that are headed by F . This
distinction is key to the definition of consistency in Section 4.1.

Newtypes are not inhabited by values, so we treat them like type
functions, ranged over by F . Unlike type functions, however, new-
types are injective at role C—after all, the essence of generativity
is that newtypes create a fresh constant—but for now we will not
take advantage of that fact, leaving it for discussion in Section 6.1.

The set of type constants also includes the familiar arrow type
constructor (→), and a kind-indexed family of constructors (∼η),
which construct functions that abstract over coercions. The kinds
of these constants are:

(→) : ?/T → ?/T → ?
(∼η) : η/C → η/C → ?/T → ?

(We discuss in Sections 3.3 and 3.6 why the kind of (∼η) must
require role C for its first two arguments.) Type constants are
generally applied prefix, but for these two constants we define infix
syntactic sugar:

σ → σ′ ≡ (→) σ σ′

(ϕ1∼ϕ2) ⇒ σ ≡ (∼η) ϕ1 ϕ2 σ

In the latter case, because the syntactic sugar lacks the η annotation,
we only use this notation in contexts where the kind of ϕ1 and ϕ2

is irrelevant. Rule ECABS follows this convention—it shows that
this family of type constructors is used to give a type to terms of
the form Λc : ϕ1 ∼ ϕ2.e , which abstracts over an equality proof
in the body e . Note that this rule applies only to code equalities;
abstraction over type equalities is not needed for compilation of
Haskell and permitting it, while straightforward, would require
extra syntactic complexity that we choose to omit for the sake of
presentation.

Figure 3 defines the kinding rules for FC2 using judgments of
the form Γ ` ϕ : κ. Here, the context Γ maps type variables to
their kind/role pairs and type constants and type functions to their
kinds.

Rule PVAR uses subsumption to allow a variable playing the
role of a code to be treated as though its role is a type. Type con-
stants introduce new codes but, again using subsumption, PCONST
allows a type constant to play either role. (Although a type con-
stant introduces a new code, its kind may well involve arguments
with role T; for example, see the signature for (→) above.)

Rule PAPP says that the argument to an indexed type function
must be a code (if R2 is C then min(C, R1) is C). Likewise, if an
application is viewed as a code by the context (i.e. R1 is C) the
argument should be viewed as a code too. If neither R1 nor R2 is
C, then the argument’s role is effectively unconstrained. Together
these kinding rules implement a subsumption relation that includes
codes into the language of types:

LEMMA 1. If Γ ` ϕ : η/C then Γ ` ϕ : η/T.

On the other hand, types have only one kind regardless of their role:

LEMMA 2. If Γ ` ϕ : η1/R1 and Γ ` ϕ : η2/R2 then η1 = η2.

Γ ` γ : ϕ1 ∼ ϕ2 ∈ κ

(c :∆. ϕ1 ∼ ϕ2/R1) ∈ Γ
Γ ` ϕ1 : η/R1 Γ ` ψ : ∆ R1�R2

Γ ` c ψ : ϕ1[∆ 7→ ψ] ∼ ϕ2[∆ 7→ ψ] ∈ η/R2

CASSM

Γ ` ϕ : κ

Γ ` 〈ϕ〉 : ϕ ∼ ϕ ∈ κ CREFL

Γ ` γ : ϕ1 ∼ ϕ2 ∈ κ
Γ ` sym γ : ϕ2 ∼ ϕ1 ∈ κ

CSYM

Γ ` γ1 : ϕ1 ∼ ϕ2 ∈ κ
Γ ` γ2 : ϕ2 ∼ ϕ3 ∈ κ

Γ ` γ1 ; γ2 : ϕ1 ∼ ϕ3 ∈ κ
CTRANS

Γ ` γ1 : ϕ1 ∼ ϕ2 ∈ (η1/R2 → η2)/R1

Γ ` γ2 : ψ1 ∼ ψ2 ∈ η1/min(R1, R2)

Γ ` γ1 γ2 : ϕ1 ψ1 ∼ ϕ2 ψ2 ∈ η2/R1
CAPP

Γ ` γ : T ϕ ∼ T ψ ∈ η/T
T :∀∆.η ∈ Γ
η′/R1 = nth k ∆ R1�R2

Γ ` nth k γ : nth k ϕ ∼ nth k ψ ∈ η′/R2

CNTHT

Γ, a:κ ` γ2 : ϕ1 ∼ ϕ2 ∈ ?/R
Γ ` ∀a :κ.γ2 : ∀a :κ.ϕ1 ∼ ∀a :κ.ϕ2 ∈ ?/R

CALL

Γ ` γ : ∀a :κ.ϕ1 ∼ ∀a :κ.ϕ2 ∈ ?/R
Γ ` ψ : κ

Γ ` γ@ψ : (ϕ1[a 7→ ψ]) ∼ (ϕ2[a 7→ ψ]) ∈ ?/R CINST

Γ ` γ : ϕ1 ∼ ϕ2 ∈ ∆

` Γ

Γ ` · : · ∼ · ∈ · CNIL

Γ ` γ : ϕ1 ∼ ϕ2 ∈ κ
Γ ` γ : ϕ1 ∼ ϕ2 ∈ ∆

Γ ` γ, γ : ϕ1, ϕ1 ∼ ϕ2, ϕ2 ∈ a:κ,∆
CCONS

Figure 4. Coercions

Note that this judgment, like term typing, is syntax-directed. In
particular, the role componentR of the κ in this judgment is treated
as input to the algorithm, and the η is an output—the context in
which ϕ is used determines what the role should be. The only
interesting case from this perspective is PAPP, in which ϕ1 must
be checked first to obtain R2 so that the minimum of R1 and R2

can be passed as an input when checking ϕ2.

3.3 Coercions and equality
In FC2 a coercion is a proof term that witnesses the equality of
two types. Coercions are used to change the type of a term, thus
(Figure 2):

Γ ` e : σ1 Γ ` γ : σ1 ∼ σ2 ∈ ?/T
Γ ` e . γ : σ2

ECOERCE

Here, γ is a coercion witnessing the equality σ1 ∼ σ2 in role T;
given that e has type σ1, we can use γ to let us treat the term as hav-
ing type σ2. At compile time, these explicit coercions ensure that
typechecking FC2 programs is completely syntax directed. Such
coercions have no run-time effect: they will be erased by the com-
piler before the program is run. Nevertheless, FC2’s operational
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semantics includes coercions, thereby allowing us to establish type
safety using standard techniques (Section 3.6).

The translation of a source program into FC2 may extend the
type environment Γ with new equality axioms. For example, the
Age newtype definition generates the axiom:

mkAge : Age ∼ Int/T

Note that ECOERCE requires σ1 and σ2 to be equal when
considered in role T, which is consistent with the idea that type
equality determines when it is safe to coerce. On the other hand,
source programs can also introduce code equalities. For example
the type function F (Section 2.2) generates the two axioms:

axF1 : F Int ∼ Bool/C
axF2 : F Age ∼ Char/C

More generally we permit axiom schemes. For example, the source
language declaration

type instance F(Maybe a) = (a,a)

would create the axiom scheme

axF3 : (a :?/C).F(Maybe a) ∼ (a,a)/C

In general, as shown in Figure 1, the context Γ includes bindings of
the form c :∆. ϕ1 ∼ ϕ2/R for coercion axioms. The metavariable
∆ stands for a list of quantified type variable bindings of the form
a:κ. The same binding form is used both for axioms introduced at
top level, and (with empty ∆) for local assumptions introduced in
ECABS (Figure 2).

Of course it is important to know that the top-level axioms are
consistent—it would be unsound to assert that Bool ∼ Char/T,
for example. Section 4 gives a sufficient set of conditions for ensur-
ing that source programs generate consistent axioms.

Next, we need a way to compose coercions together to construct
other coercions. Our goal is to have rules that allow the creation of
composite coercions such as:

〈List〉 mkAge : List Age ∼ List Int/T
〈List〉 axF2 : List(F Int) ∼ List Bool/T

On the other hand, the coercion formation rules should disallow
the formation of a coercion of the form γ3 : F Age ∼ F Int/T,
which creates the unsoundness described in Section 2.2.

Figure 1 gives the syntax of coercion terms, γ, and Figure 4
gives their typing rules. Coercions are typechecked using the judg-
ment: Γ ` γ : ϕ1 ∼ ϕ2 ∈ η/R, which asserts that the type of a
coercion γ is an equality proposition ϕ1 ∼ ϕ2 ∈ η/R. This propo-
sition in turn implies that ϕ1 and ϕ2 both have kind η and are equal
in role R. Technically, is convenient to include η in the syntax of
the judgement to enforce that both types have the same kind. How-
ever, this component is not always relevant, so we sometimes omit
the ∈ η part, as we have done in the examples above.

Rule CASSM instantiates an axiom scheme with types ψ, using
an auxiliary judgment Γ ` ψ : ∆ defined at the bottom of
Figure 3 to ensure that each variable is instantiated with a type
of the matching kind and role. The notation ϕ[∆ 7→ ψ] applies
a multi-substitution of the types ψ for each of the corresponding
variables in the domain of ∆.

Rule CREFL shows that any type ϕ can be lifted to a reflexive
coercion 〈ϕ〉, while CSYM and CTRANS add symmetry and tran-
sitivity, ensuring that equality is an equivalence relation. The rules
CAPP and CALL extend equality compatibly over applications and
polymorphic types; their structure is analogous to the correspond-
ing kinding rules in Figure 3. Rule CAPP is particularly important,
because it implements the key coercion lifting idea we discussed
in Section 2.1, using kinds to prevent the formation of the bogus
coercion

〈F〉 mkAge : F Age ∼ F Int/T

To see why, recall that F has kind ?/C → ?, but the mkAge axiom
holds only at role T—type equalities cannot be lifted through code
functions. Another example of a coercion that is correctly rejected
by the application rule (because of the kind of (∼η)) is

〈(∼?)〉 mkAge 〈Int〉 〈σ〉

This coercion proves (Age∼ Int) ⇒ σ ∼ (Int∼ Int) ⇒ σ,
an equality that could be used to introduce a bogus assumption that
Age ∼ Int/C and satisfy it with reflexivity for Int.

As well as composing coercions to witness the equality of big-
ger types, it is also essential to do the reverse: to decompose equali-
ties over complex types to give equalities of simpler types. Decom-
position is required by FC2’s operational semantics (Section 3.6),
and it also makes the language usefully more expressive. Rule
CINST allows equalities between polymorphic types to be instan-
tiated. The remaining, and most important decomposition rule is
CNTHT, which decomposes the application of a datatype constant
to arguments. For example, given a coercion γ : List Int ∼
List a/T we can use nth 0 γ to conclude that Int ∼ a/T.
The soundness of this rule depends on the fact that datatypes are
injective. In general, type functions are not, and hence CNTHT is
restricted to datatypes T .

In rule CNTHT, the notation T ϕ abbreviates the multi-application
((T ϕ1) . . . ϕn) for ϕ1 . . . ϕn in ϕ. In the conclusion of the rule,
the notation nth k ψ, accesses the kth element of the sequence of
types, and nth k ∆, accesses the kind of the kth variable binding.
Both of these notations are undefined if k is not less than the length
of the sequence. The context ∆ in this rule is determined by match-
ing the kind of the type constructor with the kinds of the types in
the equality proposition.

DEFINITION 3. We define ∀∆.η by induction on ∆ as follows:

∀ · .η = η
∀ (a:κ,∆).η = κ→ (∀∆.η)

The coercion judgment satisfies a number of sanity checking
properties.

LEMMA 4 (Coercion regularity). If Γ ` γ : ϕ1 ∼ ϕ2 ∈ κ then
Γ ` ϕ1 : κ and Γ ` ϕ2 : κ.

LEMMA 5 (Unique propositions). If Γ ` γ : ϕ1 ∼ ϕ2 ∈ η/R and
Γ ` γ : ϕ′1 ∼ ϕ′2 ∈ η′/R then ϕ1 = ϕ′1 and ϕ2 = ϕ′2 and η = η′.

Equality for Cs is a refinement of that for Ts; that is, code equality
implies type equality, but not vice versa.

LEMMA 6. If Γ ` γ : ϕ1 ∼ ϕ2 ∈ η/C then Γ ` γ : ϕ1 ∼ ϕ2 ∈
η/T.

3.4 Coercion lifting
The application rule CAPP described in the previous section allows
us to lift equalities through arbitrary type constructors; that is, for
all datatypes T of kind ?/T → ?, we have a coercion T Age ∼
T Int ∈ ?/T.

In fact, this notion of coercion lifting is not restricted to
datatypes (like List), but is available for more general contexts.
More precisely, given an arbitrary type σ with free variable a of
kind ?/T, we can also create a coercion σ[a 7→ Age] ∼ σ[a 7→
Int] ∈ ?/T.

We create such coercions with the lifting operation. This opera-
tion replaces type variables by coercions in types to produce a new
coercion, relying on the fact that the syntax of types is a subset of
the syntax of coercions:
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DEFINITION 7 (Lifting Operation). Define the lifting operation,
written ϕ[a 7→ γ], by induction on ϕ.

a[a 7→ γ] = γ
b[a 7→ γ] = 〈b〉 when a 6= b
H [a 7→ γ] = 〈H 〉
(ϕψ)[a 7→ γ] = (ϕ[a 7→ γ]) (ψ[a 7→ γ])
(∀b :κ.σ)[a 7→ γ] = ∀b :κ.(σ[a 7→ γ])

The lifting operation produces a valid result as long as the role of
the lifted coercion matches the role of the type variable in the type.

LEMMA 8 (Lifting). If Γ, a:η/R ` σ : κ and Γ ` γ : ϕ ∼ ϕ′ ∈
η/R, then Γ ` σ[a 7→ γ] : σ[a 7→ ϕ] ∼ σ[a 7→ ϕ′] ∈ κ.

In other words, if a were used in some indexed context in σ,
that is, if its role were C, then we would not be able to lift the
coercion Age ∼ Int ∈ ?/T in σ. We generalise lifting to replace
multiple type variables simultaneously in the obvious way, with
notation σ[∆ 7→ γ].

3.5 Pattern matching and datatypes
FC2 includes a formalization of recursive datatypes. These datatypes
include all Haskell extensions to standard datatypes: empty datatypes,
nested datatypes, existential types, first-class polymorphism and
GADTS. Both datatypes T and data constructors K must be de-
clared in a context Γ before they can be used. For example, using
the syntax for Γ in Figure 1, the declarations for the data construc-
tors of List are:

List : ?/T → ?
Nil : (a: ? /T).List a
Cons : (a: ? /T). a → List a → List a

What about GADTs? Here’s an example in Haskell:

data Rep a where
Rint :: Rep Int
Rlist :: Rep a→ Rep (List a)

Although a Haskell programmer writes the data constructors of a
GADT with non-parametric result types, in the internal type system
it is more convenient for the result type of a data constructor to take
the form (T a1 . . . an), where the a are the type parameters, using
equality constraints to express the indexing, thus:

Rep : ?/C → ?
Rint : (a: ? /C).(a∼Int) ⇒ Rep a
Rlist : (a: ? /C).∀ (b : ?/C).(a∼List b) ⇒ Repb → Rep a

Notice here that Rep’s kind expresses that its argument is an index
(role C) rather than a parameter (role T). In fact, the C role for
variable a falls out naturally because a appears as argument to the
(∼?) constructor (in the type of Rint and Rlist), which in turn
requires it to have role C.

More generally, we use the notation of telescopes [de Bruijn
1991] to conveniently express the kind of a datatype and the types
of its data constructors. Figure 1 defines a telescope Θ like this:

Θ ::= · | a:κ,Θ | ϕ1 ∼ ϕ2,Θ | σ,Θ
A telescope is like a mini-context just for arguments: a list of types,
type variable bindings, and equality propositions (between codes
only) that classify each argument of the data constructor. We also
define the syntactic sugar ∀Θ.σ as follows:

DEFINITION 9 (Telescope syntactic sugar).

∀ · .σ = σ
∀ (a:κ,Θ).σ = ∀a :κ.(∀Θ.σ)
∀ (ϕ1 ∼ ϕ2,Θ).σ = (ϕ1∼ϕ2) ⇒ (∀Θ.σ)
∀ (σ′,Θ).σ = σ′ → (∀Θ.σ)

Σ ` γ : (σ1 → υ1) ∼ (σ2 → υ2) ∈ ?/T
γ0 = sym (nth 0 γ) γ1 = nth 1 γ

((λx :σ1.e1) . γ) e2  (λx :σ1.(e1 . γ1)) (e2 . γ0)
SSPUSH

Σ ` γ : ∀a :κ.σ1 ∼ ∀a :κ.σ2 ∈ ?/T
((Λa:κ.e) . γ)ϕ (Λa:κ.(e . γ@a))ϕ

SSTPUSH

Σ ` γ : (ϕ1∼ϕ2) ⇒ σ ∼ (ϕ′1∼ϕ′2) ⇒ σ′ ∈ ?/T
γ0 = nth 0 γ γ1 = sym (nth 1 γ) γ2 = nth 2 γ

((Λc :ϕ1∼ϕ2.e) . γ) γ′  
(Λc :ϕ1∼ϕ2.(e . γ2)) (γ0 ; γ′ ; γ1)

SSCPUSH

Σ ` γ : T ϕ ∼ T ϕ′ ∈ ?/T
K :∆.σ ∈ Σ

case′σ (K ϕρ) . γ of brs  
case′σ K ϕ′ (ρ . σ[∆ 7→ nth γ]) of brs

SSKPUSH

Figure 5. Operational Semantics (Push rules)

Now the type of any data constructor has the form

K :∆.∀Θ.T ∆

where T ∆ is syntactic sugar for the application ((T a1) . . . an)
for a1 . . . an in the domain of ∆. For example, the telescope for
Cons is (a,List a, ·), and the one for Rlist is (b: ? /C, b ∼
List a, (Rep b), ·).

Moreover, the ∆ in the signature for a data constructor must
exactly match the kind of its datatype, which we conveniently
express by saying that T :∀∆.?, using the syntactic sugar ∀∆.η
in Definition 3.3

This notation is used to typecheck a case expression in rule
ECASE (Figure 2). The type of the scrutinee of the case must
be headed by a datatype constant T . Furthermore, for each data
constructor that could create a T , there must be a corresponding
branch. After substituting for the parameters, the branch for data
constructor Ki must abstract the same arguments as Ki and and
return the same result type as the entire case. To make sure that
typechecking is syntax directed even when there are no branches
(for empty datatypes), the case expression is annotated with its
result type σ, and we must check that this type is well-formed in
the current context.

3.6 Operational semantics: pushing coercions
The operational semantics of FC2 is largely standard, so we high-
light only the novel features here. As alluded to above, this oper-
ational semantics preserves the coercion proofs, which allows us
to establish type safety using standard syntactic proofs of progress
and preservation (described in the next section). In practice, all of
the coercions are erased by the compiler and so impose no run-time
costs.

The most important rules of the operational semantics are those
that “push” coercions when they appear in active positions so that
they do not interfere with reduction. Figure 5 shows the relevant
pushing rules. (The complete rules of the operational semantics are
listed in the appendix.)

The first three rules show how in an application of a coerced
abstraction, the term steps to a new application, where the coercion
has been decomposed into a coercion for the body of the abstrac-

3 Note the difference between ∆.σ, which is part of the syntax for declaring
a data constructor (Figure 1) and ∀∆.η, which is syntactic sugar for the
arrow kind of a datatype constructor.
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Γ ` ρ : Θ

` Γ

Γ ` · : · TNIL

Γ ` e : σ Γ ` ρ : Θ

Γ ` e, ρ : (σ,Θ)
TCONSE

Γ ` ϕ : κ Γ ` ρ : Θ[a 7→ ϕ]

Γ ` ϕ, ρ : (a:κ,Θ)
TCONST

Γ ` γ : ϕ1 ∼ ϕ2 ∈ κ Γ ` ρ : Θ

Γ ` γ, ρ : (ϕ1 ∼ ϕ2,Θ)
TCONSC

Figure 6. Telescope rules

tion, and a coercion of the argument. For example, consider SS-
PUSH. Here, the γ is a coercion between function types σ1 → υ1

and σ2 → υ2. The rule uses nth and sym to decompose γ into
two coercions, one from σ2 ∼ σ1 (the order is reversed to account
for contra-variance) and one from υ1 ∼ υ2. These new coercions
can be pushed to the body of the lambda and the function argument,
exposing the reduction. Rules SSTPUSH and SSCPUSH work anal-
ogously.

Note, however that SSCPUSH justifies the kind of (∼η), which
requires that the first two arguments be codes. If we had assigned
(∼η) the parametric kind η/T → η/T → ?/T → ?, then the
coercions γ0 and γ1 in the rule would both be type coercions.
However, type coercions cannot be composed with γ′ to form a
code coercion, which is the role required for the right hand side of
the rule to typecheck.

The last rule SSKPUSH pushes the coercion of a data construc-
tor in the scrutinee position of a case expression into coercions of
the arguments of the data constructor. In this rule we use the tele-
scope notation at the term level: the arguments of a data constructor,
notated ρ, can either be an expression, a type, or a coercion.

ρ ::= e | ϕ | γ
Returning to SSKPUSH, if the declared type of the data constructor
K is K :∆.∀Θ.T ∆, then we know that the arguments can be typed
by the telescope. i.e. Γ ` ρ : Θ[∆ 7→ ϕ] (see Figure 6). However,
the coercion changes the types of the parameters to be ϕ′, so the
new arguments must have type Θ[∆ 7→ ϕ′].

These new arguments are produced by coercing the list of argu-
ments ρ with the coercion generated by lifting as described above.
(The notation σ[∆ 7→ nth γ] means that if ∆ = a1:κ1, . . . , an :κn ,
then variable ai is lifted to coercion nth i γ.) Once this coercion
has been defined by lifting, we use it to coerce the list of arguments
of the data constructor with the following operation.

DEFINITION 10. Define ρ . γ by induction on ρ:

· . γ = ·
(e, ρ) . γ1 → γ2 = (e . γ1), ρ . γ2

(ϕ, ρ) . ∀a :κ.γ2 = ϕ, ρ . γ2

(γ, ρ) . (γ1∼γ2)⇒γ3 = (sym γ1 ; γ ; γ2), ρ . γ3

LEMMA 11. If Γ ` ρ : Θ and Γ ` γ : ∀Θ.σ ∼ ∀Θ′.σ′ ∈ ?/T
then Γ ` (ρ . γ) : Θ′

4. Type safety and consistency
The FC2 language supports a straightforward proof of type safety
based on the usual preservation and progress theorems. Impor-
tantly, the progress theorem holds only for consistent contexts—
those that cannot equate Int and Char, for example. Below, we

state the progress and preservation theorems and give a precise def-
inition of consistency. In the next subsection, we formulate suffi-
cient conditions for proving that a context is consistent.

4.1 Preservation and progress
The preservation proof for FC2 is standard, relying on the usual
regularity and substitution lemmas for the various judgement
forms. For space reasons, we omit those definitions here and in-
stead refer the reader to the extended version.

THEOREM 12 (Preservation). If Γ ` e1 : σ and e1  e2 then
Γ ` e2 : σ.

The progress theorem holds only for closed, consistent contexts.
A context is closed if it does not contain any term variable bindings.
We use the metavariable Σ for closed contexts.

The definition of consistency and the canonical forms lemma
are both stated using the notion of value types, which correspond
to the types of un-coerced FC2 values. Formally, we define values
v and value types τ , with the following grammars:

τ ::= T | (→) | (∼η) | ∀a :κ.ϕ | τ ϕ
v ::= λx :σ.e | Λa:κ.e | Λc :ϕ1∼ϕ2.e | K ϕρ

The canonical forms lemma tells us that the shape of a value is
determined by its type:

LEMMA 13 (Canonical Forms). Say Σ ` v : σ. Then σ is a value
type. Furthermore,

1. If σ = σ1 → σ2 then v is λx :σ1.e or K ϕρ.
2. If σ = ∀a :κ.σ′ then v is Λa:κ.e or K ϕρ.
3. If σ = (ϕ1∼ϕ2) ⇒ σ′ then v is Λc :ϕ1∼ϕ2.e or K ϕρ.
4. If σ = T ϕ1 then v is K ϕρ.

In FC2, not all irreducible forms are values. Evaluation can also
produce a coerced value of the form v . γ, which erases to a value
when coercions are dropped. To prove the progress theorem, we
must reason about what sort of coercion γ could be so that we can
appropriately apply the “push” rules in Figure 5. Here, because γ
coerces the value v , we know (by ECOERCE and canonical forms)
that γ : τ ∼ σ—the left type is a value type τ . Consistency of the
axiom set assures us that if σ is also a value type, it must have the
same head form.

DEFINITION 14 (Consistency). A context Γ is consistent if when-
ever Γ ` γ : τ1 ∼ τ2 ∈ η/T it is the case that

1. If τ1 is T ϕ1 then τ2 is T ϕ2.
2. If τ1 is (→)ϕ1 then τ2 is (→)ϕ2.
3. If τ1 is (∼η)ϕ1 then τ2 is (∼η)ϕ2.
4. If τ1 is ∀a :κ.σ1 then τ2 is ∀a :κ.σ2.

Putting these observations together, we obtain:

THEOREM 15 (Progress). If Σ is consistent and Σ ` e1 : σ and
e1 is not a value v or a coerced value v . γ, then there exists an e2

such that e1  e2.

4.2 Conditions for consistency
Although the previous subsection gives a definition of when con-
texts are consistent, it does not provide any mechanism for deter-
mining whether a set of axioms leads to a consistent context.

This subsection defines sufficient conditions (written GoodΓ)
for establishing context consistency—these conditions are not the
only way to show consistency (they are not necessary) but they are
permissive enough to cover the axioms generated by compilation
of type family declarations and newtype definitions.
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Γ ` ϕ ϕ′ ∈ κ

Γ ` a : ∀∆.η/R
Γ ` ϕ ϕ′ ∈ ∆/R

Γ ` a ϕ a ϕ′ ∈ η/R
RVAR

H :∀∆.η ∈ Γ
Γ ` ϕ ϕ′ ∈ ∆/R
Γ /̀matchH ϕ′ ∈ η/R

Γ ` H ϕ H ϕ′ ∈ η/R
RCONST

Γ, a:κ ` σ  σ′ ∈ ?/R

Γ ` ∀a :κ.σ  ∀a :κ.σ′ ∈ ?/R
RALL

H :∀∆1.∀∆2.η ∈ Γ
Γ ` ϕ1  ϕ′1 ∈ ∆1/R
Γ ` ϕ2  ϕ′2 ∈ ∆2/R
Γ ` c ψ : H ϕ′1 ∼ υ ∈ ∀∆2.η/R

Γ ` H ϕ1 ϕ2  υ ϕ′2 ∈ η/R
RRED

Γ ` ϕ ϕ′ ∈ ∆/R

Γ ` · · ∈ ·/R RNIL

Γ ` ϕ ϕ′ ∈ η/min(R1, R2)
Γ ` ϕ ϕ′ ∈ ∆/R1

Γ ` ϕ,ϕ ϕ′, ϕ′ ∈ a:η/R2,∆/R1
RCONS

Figure 7. Type rewriting

As in the previous version of FC, we show consistency by
defining a rewriting system for types and proving that two types
are joinable (share a common reduct) if and only if there is some
coercion proof between those types. The rewrite system guarantees
that value types preserve their head form throughout rewriting
and therefore value types with different head forms can never be
equated.

The rewriting relation is novel in two ways.

• It takes roles into account: rewriting occurs at some role R,
which specifies what axioms are available. For example, at role
T we can rewrite a newtype Age to its definition Int, but at
role C, we cannot.

• It is deterministic and total. In a good context Γ, each ϕ has
exactly one ϕ′ that it rewrites to—the rewrite system is trivially
confluent. As a consequence, to prove soundness and complete-
ness with respect to the coercion proof system we do not need
to show that the rewriting system is terminating.

These properties stand in contrast to previous work [Sulzmann
et al. 2007] in which establishing type soundness is contingent on
strong normalization of the axiom sets. With our new approach, this
termination requirement is relaxed—a programmer can be confi-
dent that, even in the presence of possibly non-terminating type
functions, if the compiler can show that the program is well-typed,
it won’t crash.

Figure 7 shows the rewriting relation, which is a variant of
parallel reduction—it looks throughout the type, trying to do as
many reductions as possible. Whether a reduction of a type constant
happens is governed by rules RCONST and RRED. If, after the
arguments to H have been reduced toϕ′, there is some instantiation
of an axiom such that H applied to some prefix of the ϕ′ matches
the left-hand side of the coercion, then the type reduces to the right-
hand-side type (RRED). The precondition Γ /̀matchH ϕ′ ∈

η/R in RCONST means that there is no such match, so these two
rules are mutually exclusive, which is necessary for determinism.

Unlike standard definitions of parallel reduction, the rewriting
relation has no general reflexivity rules. Instead, the relation is re-
flexive only for “normal form” types: those with no subcomponents
that match an axiom. The definition of normal form types appears
in the appendices.

LEMMA 16. If Γ ` ϕnormal ∈ κ then Γ ` ϕ ϕ ∈ κ.

The sufficient conditions for consistent contexts are stated in
terms of the normal forms of this rewrite relation.

DEFINITION 17 (Good contexts). We have GoodΓ when the fol-
lowing conditions hold:

1. All axioms rewrite type functions applied to normal arguments.
In other words, all axioms are of the form: c : ∆.F ϕ ∼ ψ/R
and if F :∀∆′.η ∈ Γ, we have Γ ` ϕ normal ∈ ∆′/R.

2. There is no overlap between axioms. For each F ϕ, there is
exactly one prefix ϕ1 of ϕ, such that there exists a c, ψ, and
υ where Γ ` c ψ : F ϕ1 ∼ υ ∈ κ.

The condition that the arguments to type functions must be nor-
mal restricts the kind that a type function may have. For example,
recall the axioms for F from Section 2.2:

axF1 : F Int ∼ Bool/C
axF2 : F Age ∼ Char/C

For this to be a Good axiom set, the kind of F must be ?/C → ?
because the newtype Age is only normal in role C. However, if a
type function, such as G below, does not include any axioms that
match newtypes, it may be assigned the kind ?/T → ?.

axG1 : G Int ∼ Bool/C
axG2 : G Bool ∼ Char/C

In the rest of this section, we sketch the proof that our conditions are
sufficient for consistency. Below, assume that all contexts are good.
We first observe that good contexts yield deterministic rewrite
systems.

LEMMA 18 (Determinacy). If GoodΓ and Γ ` ϕ  ϕ1 ∈ κ
and Γ ` ϕ ϕ2 ∈ κ then ϕ1 = ϕ2.

The two most important results of this section are that rewriting
is sound and complete with respect to the coercion proof system.
Soundness is a straightforward proof.

THEOREM 19 (Soundness). If Γ ` ϕ1  ϕ2 ∈ κ then there is
some γ such that Γ ` γ : ϕ1 ∼ ϕ2 ∈ κ.

We show completeness for a reflexive, symmetric, transitive closure
of rewriting. We call this relation joinability.

DEFINITION 20 (Joinable). Two types are joinable if they share a
common reduct. Define Γ ` ϕ1 ⇔ ϕ2 ∈ κ if Γ ` ϕ1  ∗ ϕ ∈ κ
and Γ ` ϕ2  ∗ ϕ ∈ κ.

The two key lemmas of the completeness proof are that joinability
is preserved under application and substitution.

LEMMA 21 (Application). If GoodΓ and Γ ` ϕ1 ⇔ ϕ′1 ∈
(η1/R1 → η2)/R2 and Γ ` ϕ2 ⇔ ϕ′2 ∈ η1/min(R1, R2)
then Γ ` ϕ1 ϕ2 ⇔ ϕ′1 ϕ

′
2 ∈ η2/R2.

LEMMA 22 (Substitution). If GoodΓ and Γ, a:κ∆ ` σ  ∗

σ′ ∈ κ′ and Γ ` ϕ  ∗ ϕ′ ∈ κ, then there is some Γ ∆ `
σ[a 7→ ϕ] ⇔ σ′[a 7→ ϕ′] ∈ κ′.

THEOREM 23 (Completeness). If GoodΓ and Γ ` γ : ϕ1 ∼
ϕ2 ∈ κ then Γ ` ϕ1 ⇔ ϕ2 ∈ κ.
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COROLLARY 24 (Empty context is consistent). The initial con-
text Σ (with no axioms) is consistent as it trivially satisfies GoodΣ.

5. Compilation from source Haskell
In the previous sections we have informally presented the transla-
tions of Haskell source features such as datatype, type family, and
newtype declarations into FC2. We summarize them here:

data T ∆ whereKi : σ 7→
T : ∀∆.?,Ki : ∆.σ

type family F : η/C → η 7→
F : η/C → η

type instance ∆.F ϕ = ψ 7→
cF : ∆.F ϕ ∼ ψ ∈ η/C

newtype ∆.M a = MkM ϕ 7→
M : ∆.?,MkM : ∆.M a ∼ ϕ ∈ ?/T

The important parts of this definition are that (i) type families ac-
cept code arguments, (ii) type families give rise to code equali-
ties, and (iii) newtype definitions give rise to type equality axioms.
The bindings generated in this way can be easily checked for well-
formedness. If, in addition, the resulting context is Good (see Sec-
tion 4.2)—the only possible problem is the potential to generate
overlapping type instance declarations—then the context is
consistent, which in turn guarantees type safety.

The careful reader will have noticed that the source language
features in this translation have been already annotated with their
kinds. This is a reasonable assumption. Prior to type inference,
which translates a source declaration to an FC2 binding, we must
have determined the kinds involved in the declarations. For the
purposes of this paper, we assume that the kinds are given—in
practice they would be the output of a kind inference process,
potentially guided by the user to disambiguate role information and
higher-order kinds.

Newtype deriving Generative type abstraction is achieved in
Haskell using the newtype deriving mechanism, which al-
lows type classes to be automatically lifted to new types. For in-
stance, we may write

newtype Age = MkAge Int deriving Eq

The type class Eq a is a standard class in Haskell (signature, in
ML terminology) that defines one method, eq :: a → a → Bool.
For the type checker, a type class is nothing but a record type
containing the method eq. The deriving line automatically
generates an implementation of Eq Age from a pre-existing in-
stance Eq Int. This can be done by simply applying a coercion
Eq Int ∼ Eq Age to the old record. It is straightforward to con-
struct this coercion: lift the Age ∼ Int axiom from the newtype
definition over the Eq constructor and apply symmetry. Impor-
tantly, this lifting is safe because Eq has a parametric kind of the
form ?/T → ? (vs. ?/C → ?). However, if a type class has a
indexed kind, newtype deriving is no longer sound. The doc-
umented GHC bug mentioned earlier arises precisely as the result
of such an unsound lifting over a non-parametric type class.

6. Discussion
6.1 Relaxing decomposition
Recall the coercion decomposition rule, CNTHT, from Figure 4.
This rule allows us to deconstruct an equality of the form Γ ` γ :
T ϕ ∼ T ψ ∈ η/T. In effect, it asserts that data constructors are
injective. The rule is important because it is used in the operational
semantics to ensure subject reduction. However, the decomposi-
tion rule may be somewhat restrictive for some Haskell source pro-
grams. Consider the following:

newtype M a = MkM (Maybe [a])
data Eq a b where EQ :: Eq a a
f :: Eq (M a) (M b)→ a→ b
f EQ x = x

Pattern matching against the EQ constructor introduces a coercion
between M a and M b, which cannot be decomposed using the
CNTHT rule to obtain a ∼ b, so this program cannot be typed.
Nevertheless, we know that M is injective, because M a is defined
to be equal to Maybe [a], which is clearly injective.

On the other hand, the following newtype is not injective.

type instance G a = Char
newtype N a = MkN (G a)

Here, it is possible to derive Γ ` γ : N Int ∼ N Char ∈ ?/T,
using the axiom for G, even though Int is not coercible to Char.

It turns out that newtype definitions are always injective with
respect to code equality, but they might not be injective with re-
spect to type equality (as illustrated by the two examples above).
Thus it would be sound and potentially useful (but not necessary
for type soundness) to introduce yet another decomposition rule
for newtype definitions that takes advantage of injectivity with
respect to codes (we use letter N below for newtypes):

Γ ` γ : N ϕ ∼ N ψ ∈ η/C
N :∀∆.η ∈ Γ
η′/R′ = nth k ∆

Γ ` nth k γ : nth k ϕ ∼ nth k ψ ∈ η′/R
CNTHN

The only subtle part of this rule is that R is not related to R′, since
the equality Γ ` γ : N ϕ ∼ N ψ ∈ η/C is a C-equality (and
min(C, R′) = C).

Arguably, decomposition for injective type functions is also de-
sirable, were we able to effectively specify and check that property.

6.2 Other technical differences of FC2 from System FC
The intermediate language FC2 described in this paper is a sig-
nificant modification of System FC [Sulzmann et al. 2007] due to
the introduction of codes. However, FC2 also makes a number of
technical simplifications:

• The original System FC presentation includes coercion kinds,
σ1 ∼ σ2. The original coercion language includes three ad-
ditional constructs, one to coerce coercions, and two more to
decompose coercion kinds. By treating (ϕ1 ∼ ϕ2) ⇒ ϕ3 as
the application of a constructor (∼η) we no longer need any
of these constructs in the operational semantics, nor have we
identified any uses of these constructs that are not encodable.

• The operational semantics rules of FC2 in Figure 5 not only
use simpler coercion constructs, but are also expressed without
need for substitutions, contrary to their original FC versions.

• FC2 replaces the FC coercions left and right, which decom-
posed arbitrary type applications, by nth, which decomposes
only the application of a datatype constructor. The latter is a lit-
tle less expressive. Generalizing the example from Section 6.1,
should this program be well typed?

data Eq a b where EQ :: Eq a a
f :: Eq (p q) (r s)→ q→ s
f EQ x = x

To type it we must decompose a proof that p q ∼ r s to get a
proof that q ∼ s, which right could do, but nth cannot.

• One consequence of using nth instead of left and right is
that type functions in FC2 are not required to be saturated, as
they were in System FC. Type family saturation was necessary
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in FC, in order to prevent the decomposition of equalities as
F a ∼ Maybe [a] via left or right. Allowing unsaturated
functions increases the expressivity of FC2 but also opens new
directions for future research on type inference in the presence
of unsaturated type functions.

Some other differences are presentational:

• System FC used a common syntax for types and coercions,
which is a convenient pun, but has turned out to be more con-
fusing than helpful. In FC2 we use a distinct syntax for types
and coercions (Figure 1).

• In FC2 we define top-level axiom schemes c : ∆. ϕ1 ∼ ϕ2/R
directly, and fully instantiate them at every occurrence with
the form c γ (Figure 1). System FC instead defined a top-
level axiom scheme as an equality between polytypes, thus
c : ∀∆.ϕ1 ∼ ∀∆.ϕ2. Here again FC is confusing (but not
wrong) so in FC2 we opt for telling the story more directly,
albeit with slightly more syntax. Moreover the kinding rules for
∀ (PALL and CALL) can insist that the body of the forall has
kind ? as is conventional.

• Using telescopes in the treatment of datatypes simplifies the
operational semantics rules but is also (only slightly) more
expressive: The types of data constructors do not have to have
their quantified variables preceding their coercion and term
arguments. Instead, telescopes allow arbitrary interleavings.

7. Related work
Previous work on System FC [Sulzmann et al. 2007] discusses a
significant amount of related work, in typed languages with ex-
plicit proof witnesses [Licata and Harper 2005; Shao et al. 2005], or
in calculi that support coercions [Breazu-Tannen et al. 1991]. Be-
low, we present related work in generativity and abstraction, type-
indexed constructs and the separation between codes and types.

Generativity, abstraction, and module systems Generativity and
abstraction has been studied extensively in the context of ML mod-
ule systems [Milner et al. 1997]. Russo shows how generativity
in module systems is connected to existential quantification [Russo
1999] and Dreyer [2005] has studied this connection in the presence
of recursive modules. In recent work, Montagu and Rémy [2009]
refine this connection by introducing “open” existential types.

Type abstraction can be understood in terms of name genera-
tion [Rossberg 2003; Vytiniotis et al. 2005], which can re-establish
abstraction properties in languages with dynamic type analysis.
Neis et al. [2009] prove a parametricity theorem in this setting.
In addition, they use a translation from polymorphism to genera-
tive types to establish the parametric behavior of certain functions
although they work in a non-parametric language.

Although many of these languages support type generativity
and non-parametric features, they do not exhibit the soundness
problems described in the paper, mainly due to the absence of type-
level type dispatching. Nevertheless, the techniques developed in
the aforementioned related work would be valuable in the formal
study of the parametricity properties of FC2.

Type-indexed types Although many systems for generic pro-
gramming support dynamic computation based on types, very few
systems allow the structure of types to be destructed to produce
other types. However, such facility is often necessary to describe
the type of generic programs. For example, Harper and Morrisett
include a Typerec operator to their typed intermediate language
λML

i [Harper and Morrisett 1995], to describe type-directed opti-
mizations. (They credit NuPRL’s mechanism of “Universe Elimi-
nation” in NuPRL as the inspiration for this operation [Constable
1982; Constable and Zlatin 1984].)

To support generic programming in source languages, Hinze,
Jeuring and Löh added Type-Indexed Datatypes [Hinze et al.
2002] to the Generic Haskell front end. In later work, Chakravarty
et al. [2005b] introduced associated data families in GHC, which
are type-indexed datatypes associated with type class instances.
Extending this work, they later introduced associated type syn-
onyms [Chakravarty et al. 2005a], which are proper type-level func-
tions with instances associated with type class instances. Currently,
the source language of GHC also supports standalone type-level
type functions, often referred to as indexed type families [Kise-
lyov et al. 2010; Schrijvers et al. 2008], a feature that we have
extensively used in our presentation.

Codes, types, and interpretations Our distinction between codes
and types—and our terminology—is inspired by similar notions in
intuitionistic type theory [Benke et al. 2003; Dybjer 2000; Martin-
Löf 1975]. There, types (sets) are constructed as the recursive
interpretation of codes, which inhabit inductively constructed code
universes. A newtype definition can be viewed as giving rise
to a new code, inhabiting an open universe of codes, and whose
interpretation coincides with the interpretation of its definition.

Languages based on dependent type theory, such as Agda [Bove
et al. 2009] or Coq [The Coq Team], naturally offer type-level com-
putation to construct types, but they allow elimination of codes
only, not types. Therefore, they do not exhibit the same soundness
problem, as the expressiveness of these languages can readily en-
force the distinction between types and codes. The disadvantage
is the extra programming verbosity of explicit definitions and in-
terpretations of codes. To better support generic programming, the
dependently-typed language Epigram [Chapman et al. 2010] iden-
tifies types with their code universes.

The LX language [Crary et al. 1998] also uses universe con-
structions to solve problems with type-directed compilation. When
the type translation in a compiler pass is not the identity then
type dispatch must be compiled to code dispatch (so the gener-
ated code can dispatch on source types instead of target types).
The interpretation of codes is then the type translation. To sup-
port universes, LX includes datakinds (for codes) and primitive re-
cursive functions over datakinds (for their interpretation at types).
In LX, source types Age and Int would be mapped to definable
codes AgeCode and IntCode, and would be accompanied by
an interpretation function such that interp(AgeCode) equals
Int and interp(IntCode) equals Int. Therefore, the prob-
lem with generativity would not show up in that context. If one
wanted to solve the problem in this paper along the LX lines, one
would have to translate source Haskell types to void types that stand
in as codes and handle the interp() function as any other type
function. This function, as well as interpreting the codes as types,
would have to be accompanied with suitable congruence axioms,
like interp(T t) ∼ T (interp(t)). Explicitly introduc-
ing these axioms means that coercions would be significantly more
verbose. Our system dispenses with an explicit interp() func-
tion by conveniently using the roles in the judgements to determine
whether we wish to derive an equality between codes or between
their interpretations.

8. Conclusions and future work
In this paper we have identified a problem for the safe interaction of
flexible type generativity and type-level computation. We have pro-
posed a solution that distinguishes between indexed and parametric
type contexts, by extending the language of kinds, and formalized
the solution in the FC2 language. We have several avenues for fu-
ture research in mind, which we outline below.

Source language technology We would like to work on ways
to expose the FC2 expressive features to programmers. Specific
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directions are: enriching the kind declarations with the ability to
declare parametric or indexed type-level constructs, introducing
type family injectivity annotations, extending kind inference with
roles, and extending type inference to support unsaturated functions
using the more sophisticated kinds.

Enriching the universes of codes with terms We are currently
working on enriching the universe of codes with constants or func-
tions drawn from the term syntax, such as data constructors, in or-
der to enable direct dependently-typed programming in Haskell.

Refining equality in code universes Lemma 6 asserts that the
equivalence classes induced by T-equality are refined by the C-
equality. However, our approach readily extends to arbitrary hier-
archies of universes Cn � Cn−1 � . . . � C � T with gradu-
ally more refined equivalence classes as we move down the � rela-
tion. It is an interesting direction for future research to investigate
whether more levels in the universe hierarchy have any important
theoretical or practical implications.
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A. Additional specification
For space reasons, the following definitions and rules did not appear in the main text of the paper.

DEFINITION 25. We define ∀∆.σ by induction on ∆ as follows:

∀ · .σ = σ
∀ (a:κ,∆).σ = ∀a :κ.(∀∆.σ)

DEFINITION 26 (Multilifting Operation). Define the multiple lifting operation, written ϕ[∆ 7→ γ], by induction on ϕ.

a[∆ 7→ γ] = γi when ai : κi in ∆
b[∆ 7→ γ] = 〈b〉 when b 6∈ ∆
H [∆ 7→ γ] = 〈H 〉
(ϕψ)[∆ 7→ γ] = (ϕ[∆ 7→ γ]) (ψ[∆ 7→ γ])
(∀b :κ.σ)[∆ 7→ γ] = ∀b :κ.(σ[∆ 7→ γ])

Γ ` bnd

Γ ` a:κ
BTVAR

Γ ` (→): ? /T → ?/T → ?
BARR

Γ ` (∼η):η/C → η/C → ?/T → ?
BCOERCE

Γ ` T :η
BCONST

Γ ` F :η
BFUN

Γ ∆ ` ϕ1 : η/R Γ ∆ ` ϕ2 : η/R

Γ ` c :∆. ϕ1 ∼ ϕ2/R
BCVAR

Γ ` σ : ?/T

Γ ` x :σ
BEVAR

T :∀∆.? ∈ Γ
Γ ∆ ` ∀Θ.T ∆ : ?/T

Γ ` K :∆.(∀Θ.T ∆)
BDATACON

` Γ

` · GEMPTY

dom bnd# dom Γ Γ ` bnd ` Γ

` Γ bnd
GCONS

Γ ` ϕnormal ∈ κ

a:(∀∆.η)/R ∈ Γ
Γ ` ϕ normal ∈ ∆/R

Γ ` a ϕnormal ∈ η/R
NVARS

Γ /̀matchH ϕ ∈ η/R
H :∀∆.η ∈ Γ
Γ ` ϕ normal ∈ ∆/R

Γ ` H ϕnormal ∈ η/R
NCONST

Γ, a:κ ` σ normal ∈ ?/R

Γ ` ∀a :κ.σ normal ∈ ?/R
NALL

Γ ` ϕ normal ∈ ∆/R

Γ ` · normal ∈ ·/R NFSNIL

Γ ` ϕnormal ∈ η/min(R1, R2)
Γ ` ϕ normal ∈ ∆/R1

Γ ` ϕ,ϕ normal ∈ a:η/R2,∆/R1
NFSCONS
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e  e ′

Σ ` γ : (σ1 → υ1) ∼ (σ2 → υ2) ∈ ?/T
γ0 = sym (nth 0 γ) γ1 = nth 1 γ

((λx :σ1.e1) . γ) e2  (λx :σ1.(e1 . γ1)) (e2 . γ0)
SSPUSH

(λx :σ.e1) e2  e1[x 7→ e2]
SSBETA

e1  e ′1
e1 e2  e ′1 e2

SSEAPP

Σ ` γ : ∀a :κ.σ1 ∼ ∀a :κ.σ2 ∈ ?/T
((Λa:κ.e) . γ)ϕ (Λa:κ.(e . γ@a))ϕ

SSTPUSH

(Λa:κ.e)ϕ e[a 7→ ϕ]
SSTBETA

e1  e ′1
e1 ϕ e ′1 ϕ

SSTAPP

Σ ` γ : (ϕ1∼ϕ2) ⇒ σ ∼ (ϕ′1∼ϕ′2) ⇒ σ′ ∈ ?/T
γ0 = nth 0 γ γ1 = sym (nth 1 γ) γ2 = nth 2 γ

((Λc :ϕ1∼ϕ2.e) . γ) γ′  (Λc :ϕ1∼ϕ2.(e . γ2)) (γ0 ; γ′ ; γ1)
SSCPUSH

(Λc :ϕ1∼ϕ2.e) γ  e[c 7→ γ]
SSCBETA

e1  e ′1
e1 γ  e ′1 γ

SSCAPP

(v . γ1) . γ2  v . (γ1 ; γ2)
SSTRANS

e  e ′

e . γ  e ′ . γ
SSCOERCE

Σ ` γ : T ϕ ∼ T ϕ′ ∈ ?/T K :∆.σ′ ∈ Σ

caseσ (K ϕρ) . γ of brs  caseσ K ϕ′ (ρ . σ′[∆ 7→ nth γ]) of brs
SSKPUSH

1 ≤ j ≤ n

caseσ (Kj ϕρ) of Ki ⇒ ei
i∈1..n

 ej ρ
SSCASEMATCH

e  e ′

caseσ e of brs  caseσ e ′ of brs
SSCASE

B. Additional lemmas and proofs
B.1 Preservation and progress
We state additional basic properties of our judgements below. Proofs of these properties are by straightforward induction.

LEMMA 27 (Type regularity). If Γ ` e : σ then Γ ` σ : ?/T and ` Γ.

LEMMA 28 (Type Substitution). Say Γ1 ` ϕ′ : κ′.

1. If Γ1, a:κ′ Γ2 ` ϕ : κ then Γ1 (Γ2[a 7→ ϕ′]) ` ϕ[a 7→ ϕ′] : κ
2. If Γ1, a:κ′ Γ2 ` ϕ : ∆ then Γ1 (Γ2[a 7→ ϕ′]) ` ϕ[a 7→ ϕ′] : ∆
3. If Γ1, a:κ′ Γ2 ` γ : ϕ1 ∼ ϕ2 ∈ κ then Γ1 (Γ2[a 7→ ϕ′]) ` γ[a 7→ ϕ′] : ϕ1[a 7→ ϕ′] ∼ ϕ2[a 7→ ϕ′] ∈ κ.
4. If Γ1, a:κ′ Γ2 ` γ : ϕ1 ∼ ϕ2 ∈ ∆ then Γ1 (Γ2[a 7→ ϕ′]) ` γ[a 7→ ϕ′] : ϕ1[a 7→ ϕ′] ∼ ϕ2[a 7→ ϕ′] ∈ ∆.
5. If Γ, a:κ′ Γ2 ` e : σ then Γ1 (Γ2[a 7→ ϕ′]) ` e[a 7→ ϕ′] : σ[a 7→ ϕ′]

LEMMA 29 (Coercion substitution). Say Γ1 ` γ : ϕ1 ∼ ϕ2 ∈ η/R.

1. If Γ1, c:ϕ1 ∼ ϕ2/RΓ2 ` γ′ : ψ1 ∼ ψ2 ∈ κ′ then Γ1 Γ2 ` γ′[c 7→ γ] : ψ1 ∼ ψ2 ∈ κ′

2. If Γ1, c:ϕ1 ∼ ϕ2/RΓ2 ` γ : ψ1 ∼ ψ2 ∈ ∆ then Γ1 Γ2 ` γ[c 7→ γ] : ψ1 ∼ ψ2 ∈ ∆
3. If Γ1, c:ϕ1 ∼ ϕ2/RΓ2 ` e : σ then Γ1 Γ2 ` e[c 7→ γ] : σ

LEMMA 30 (Term substitution). Say Γ1 ` e ′ : σ′. If Γ1, x :σ′ Γ2 ` e : σ, then Γ1 Γ2 ` e[x 7→ e ′] : σ.

LEMMA 31 (Multilifting). If Γ ∆ ` σ : κ and Γ ` γi : ϕi ∼ ϕ′i ∈ κi for each ai :κi in ∆, then Γ ` σ[∆ 7→ γ] : σ[∆ 7→ ϕ] ∼ σ[∆ 7→
ϕ′] ∈ κ
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Next we sketch the proofs of the progress and preservation theorems.
PROOF OF THEOREM 12 (Preservation): If Γ ` e1 : σ and e1  e2 then Γ ` e2 : σ.

Proof by induction on e1  e2.

• Case SSBETA, SSTBETA, SSCBETA: Application of the appropriate substitution lemma.
• Case SSCASEMATCH: By inversion Γ ` Kj ϕρ : T ϕ and Kj :∆.ψj ∈ Γ and ψj [∆ 7→ ϕ] = ∀Θj .T ϕ and Γ ` ej : ∀Θj .σ. Further

inversion gives Γ ` ρ : Θj By repeated use of the application rule, Γ ` ej ρ : σ.
• Case SSPUSH: By inversion σ = υ2 and Γ ` γ : (σ1 → υ1) ∼ (σ2 → υ2) ∈ ?/T and Γ ` (λx :σ1.e1) : σ1 → υ1 and Γ ` e2 : σ2. We

have Γ ` γ0 : σ2 ∼ σ1 ∈ ?/T and Γ ` γ1 : υ1 ∼ υ2 ∈ ?/T. Therefore, Γ ` (λx :σ1.(e1 . γ1)) : σ1 → υ2 and Γ ` e2 . γ0 : σ1 and the
result follows by the application typing rule.

• Case SSTPUSH: Straightforward use of inversion and typing/coercion rules.
• Case SSCPUSH: By inversion, Γ ` γ : (ϕ1 ∼ ϕ2) ⇒ σ ∼ (ϕ′1 ∼ ϕ′2) ⇒ σ′ ∈ ?/T and Γ ` γ′ : ϕ′1 ∼ ϕ′2 ∈ η/C and

Γ, c:ϕ1 ∼ ϕ2/C ` e : σ. We have Γ ` γ0 : ϕ1 ∼ ϕ′1 ∈ η/C and Γ ` γ1 : ϕ′2 ∼ ϕ2 ∈ η/C and Γ ` γ2 : σ ∼ σ′ ∈ ?/T. Therefore
Γ ` e .γ2 : σ′ and Γ ` γ0 ; γ′ ; γ1 : ϕ1 ∼ ϕ2 ∈ η/C. Finally, the RHS has type σ′ by coercion abstraction and application typing rules.

• Case SSKPUSH: By inversion, Γ ` γ : T ϕ ∼ T ϕ′ ∈ ?/T and K :∆.σ′ ∈ Σ and Γ ` K ϕρ . γ : T ϕ′. Further inversion
yields Γ ` K ϕρ : T ϕ and Γ ` ρ : Θ[∆ 7→ ϕ] where σ′ = ∀Θ.T ∆. Let γ = (∀Θ.T ∆)[∆ 7→ nth γ] By lifting lemma,
Γ ` γ : ∀Θ[∆ 7→ ϕ].T ϕ ∼ ∀Θ[∆ 7→ ϕ′].T ϕ′ ∈ ?/T. Therefore we have by Lemma 11 that Γ ` ρ . γ : Θ[∆ 7→ ϕ′] and thus
Γ ` K ϕ′ (ρ . γ) : T ϕ′.

• Case TRANS: Application of CTRANS.
• All other cases by induction.

PROOF OF THEOREM 15 (Progress): If Σ is consistent and Σ ` e1 : σ and e1 is not a value v or a coerced value v . γ, then there exists an
e2 such that e1  e2.

Proof by induction on e1. Assume e1 is not a value or a coerced value.

• Case e1 = e e ′. By induction, either e is a value v or a coerced value v .γ or takes a step. In the first case, by canonical forms, v is either
an abstraction (which beta reduces) or a constructor application (which means that e1 is a value). In the second case, we have a coercion
γ between a value type τ (the type of v ) and σ1 → σ2. By consistency, then τ must be σ′1 → σ′2 and the push rule applies. In the last
case e1 steps by the application congruence rule.

• Case e1 = e ϕ and e1 = e γ are analogous to the previous case.
• Case e1 = e . γ. By induction, either e is value v or a coerced value v . γ′ or takes a step. In the first case, then e1 is a coerced value. In

the second case, (v . γ′) . γ steps to v . (γ′ ; γ). In the last case, the congruence rule for coercion apply.
• Case e1 = caseσ e of brs . By induction, either e is a value v or a coerced value v . γ or takes a step. In the first case, by canonical

forms, v is a a constructor application, so the case expression reduces. In the second case, we have a coercion γ between a value type τ
(the type of v ) and T ϕ. By consistency, then τ must be T ϕ′ and the push rule applies. In the last case e1 steps by the case congruence
rule.

B.2 Rewriting
LEMMA 32 (Rewriting regularity). If Γ ` ϕ1  ϕ2 ∈ κ then ` Γ and Γ ` ϕ1 : κ and Γ ` ϕ2 : κ.

Once we get a type constants at the head, it remains.

LEMMA 33 (Constant Rewriting). If GoodΓ and Γ ` T ϕ ϕ′ ∈ η/R then ϕ′ = T ϕ′ and Γ ` ϕ ϕ′ ∈ ∆/R.

(Proof is by inspection of the rules of type rewriting.) There is a similar result for types of the form ∀a :κ.σ.
We can add types to the end of a list of arguments that reduce.

LEMMA 34 (Snoc). If Γ ` ϕ ϕ′ ∈ ∆/R1 and Γ ` ψ  ψ′ ∈ η/min(R1, R2), then Γ ` ϕ,ψ  ϕ′, ψ′ ∈ (∆, a:η/R2)/R1

LEMMA 35 (Single Rewriting Application). If GoodΓ and Γ ` ϕ1  ϕ′1 ∈ (η1/R1 → η2)/R2 and Γ ` ϕ2  ϕ′2 ∈ η1/min(R1, R2)
then Γ ` ϕ1 ϕ2 ⇔ ϕ′1 ϕ

′
2 ∈ η2/R2.

Proof By case analysis of ϕ1. The only interesting case is for when ϕ1 is of the form F ϕ which reduces by rule RRED. In this case we have
that Γ ` F ϕ F ϕ′ ∈ (κ1 → η)/R given that Γ ` ϕ ϕ′ ∈ ∆/R and F ϕ′ does not match any top-level axiom. In this case we have
two cases:

• F ϕ′ ϕ′2 matches uniquely some top-level axiom giving υ. In this case, ϕ1 ϕ2 is F ϕϕ2 and we have that Γ ` F ϕϕ2  υ ∈ η/R.
On the other hand, since F ϕ′ ϕ′2 matches a top-level axiom, ϕ′ and ϕ′2 must be normal forms and hence Γ ` ϕ′  ϕ′ ∈ ∆/R and
Γ ` ϕ′2  ϕ′2 ∈ κ2. It follows that Γ ` F ϕ′ ϕ′2  υ ∈ η/R and hence Γ ` ϕ1 ϕ2 ⇔1 ϕ′1 ϕ

′
2 ∈ η/R as required.

• F ϕ′ ϕ′2 does not match any top-level axiom. In this case we are finished by applying the snoc lemma and then rule RCONST.

PROOF OF LEMMA 21: If GoodΓ and Γ ` ϕ1 ⇔ ϕ′1 ∈ (η1/R1 → η2)/R2 and Γ ` ϕ2 ⇔ ϕ′2 ∈ η1/min(R1, R2) then
Γ ` ϕ1 ϕ2 ⇔ ϕ′1 ϕ

′
2 ∈ η2/R2.

Proof Assume the intermediate join points of ϕ1 and ϕ′1 and ϕ2 and ϕ′2, call them σ1 and σ2 respectively. Let k be the maximum number of
steps for any of these rewritings. Because rewriting is deterministic and total, we can extend the rewritings of all of the others to be k steps
to get Γ ` ϕ1  ∗ σ′1 ∈ (η1/R1 → η)/R2 and Γ ` ϕ′1  

∗ σ′1 ∈ (η1/R1 → η)/R2 and Γ ` ϕ2  ∗ σ′2 ∈ η2/min(R1, R2) and
Γ ` ϕ′2  ∗ σ′2 ∈ η2/min(R1, R2).
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By the Single Rewriting Application Lemma (and an inner induction on k), it must be that Γ ` ϕ1 ϕ2 ⇔ σ′1 σ
′
2 ∈ η2/R2. Similarly, it

must be that Γ ` ϕ′1 ϕ′2 ⇔ σ′1 σ
′
2 ∈ η2/R2. By transitivity we get finally Γ ` ϕ1 ϕ2 ⇔ ϕ′1 ϕ

′
2 ∈ η2/R2 as required.

COROLLARY 36 (Multi-Application). If GoodΓ and Γ ` ϕ1 ⇔ ϕ′1 ∈ (∀∆.η)/R and Γ ` ϕ2 ⇔ ϕ′2 ∈ ∆/R then Γ ` ϕ1 ϕ2 ⇔
ϕ′1 ϕ

′
2 ∈ η/R.

LEMMA 37 (StepSubst1). If GoodΓ and Γ, a:κ∆ ` σ : η/R and Γ ` ϕ ϕ′ ∈ κ, then Γ ` σ[a 7→ ϕ] ⇔ σ[a 7→ ϕ′] ∈ η/R.

Proof by induction on σ.
Case σ = F ϕ: By induction, we have Γ ∆ ` ϕ[a 7→ ϕ] ⇔ ϕ[a 7→ ϕ′] ∈ ∆1/R. Result holds by lemma (Application).
Case σ = b ϕ: By induction, we have Γ ∆ ` ϕ[a 7→ ϕ] ⇔ ϕ[a 7→ ϕ′] ∈ ∆1/R. If b is not a , we are done by lemma (Application).
Otherwise, suppose a = b: so we want to show that Γ ∆ ` ϕ (ϕ[a 7→ ϕ]) ⇔ ϕ (ϕ[a 7→ ϕ′]) ∈ κ. This also holds by lemma (Application).
Case σ = T ϕ: By induction and Application.
Case σ = ∀b :κ.σ′: Result holds by induction.

LEMMA 38 (StepSubstMany). If GoodΓ and Γ, a:κ∆ ` σ : κ′ and Γ ` ϕ ∗ ϕ′ ∈ κ, then Γ ` σ[a 7→ ϕ] ⇔ σ[a 7→ ϕ′] ∈ κ′.

Proof Proof is by induction on the number of steps in Γ ` ϕ  ∗ ϕ′ ∈ κ. If n = 0 then the result is trivial. Say n = m + 1 and
Γ ` ϕ ϕ′′ ∈ κ and Γ ` ϕ′′  ∗ ϕ′ ∈ κ in m steps. By induction, we have Γ ` σ[a 7→ ϕ′′] ⇔ σ[a 7→ ϕ′] ∈ κ′. We just need to show
that Γ ` σ[a 7→ ϕ] ⇔ σ[a 7→ ϕ′′] ∈ κ′. However, this result holds by lemma StepSubst1.

LEMMA 39 (StepSubst2). If GoodΓ and Γ, a:κ∆ ` σ  σ′ ∈ κ′ and Γ ` ϕ : κ, then Γ ∆ ` σ[a 7→ ϕ] ⇔ σ[a 7→ ϕ′] ∈ κ′.

Proof is by induction on σ, appealing to Application.

PROOF OF LEMMA 22 If GoodΓ and Γ, a:κ∆ ` σ  ∗ σ′ ∈ κ′ and Γ ` ϕ ∗ ϕ′ ∈ κ, then there is some Γ ∆ ` σ[a 7→ ϕ] ⇔ σ′[a 7→
ϕ′] ∈ κ′. :

Proof is by induction on the number of steps in Γ, a:κ∆ ` σ  ∗ σ′ ∈ κ′. If n = 0, then the result follows from StepSubstMany.
If n = m + 1, suppose Γ, a:κ∆ ` σ  σ′′ ∈ κ′ and Γ, a:κ∆ ` σ′′  ∗ σ′ ∈ κ′ in m steps. By induction, we have
Γ ∆ ` σ′′[a 7→ ϕ] ⇔ σ′[a 7→ ϕ′] ∈ κ′. We just need to show that Γ ` σ[a 7→ ϕ] ⇔ σ′′[a 7→ ϕ] ∈ κ′. However, this result
holds by lemma StepSubst2.

PROOF OF LEMMA 23 If GoodΓ and Γ ` γ : ϕ1 ∼ ϕ2 ∈ κ then Γ ` ϕ1 ⇔ ϕ2 ∈ κ. :

Proof is by induction on γ.

• γ = 〈ϕ〉. Trivial as ϕ1 = ϕ2.
• γ = γ1 γ2. Holds by induction and application lemma above.
• γ = ∀a :κ.γ′. Holds by induction and RALL.
• γ = c ψ where κ = η/R. We have ϕ1 = σ1[∆ 7→ ψ] and ϕ2 = υ[∆ 7→ ψ]. We also must have Γ ∆ ` σ1  υ ∈ η/R (by noting that

type variables are normal and instantiating c with variables in ∆.) The desired result holds by the substitution lemmas and transitivity.
• γ = sym γ′ Trivial.
• γ = γ1 ; γ2 Holds by determinacy of rewriting.
• γ = nth k γ′ By inversion we have Γ ` γ′ : T ϕ1 ∼ T ϕ2 ∈ η/T. We want to show that there is some ϕ such that,

Γ ` nth k ϕ1  
∗ ϕ ∈ nth k ∆ and Γ ` nth k ϕ2  

∗ ϕ ∈ nth k ∆.
By induction we have ϕ, such that Γ ` T ϕ1  

∗ ϕ ∈ η/T and Γ ` T ϕ2  
∗ ϕ ∈ η/T. By Constant Rewriting, we have ϕ = T ϕ′,

and Γ ` ϕ1  
∗ ϕ′ ∈ ∆/T and Γ ` ϕ2  

∗ ϕ′ ∈ ∆/T. By inversion of these two results, we get the appriate ϕ.
• γ = γ1@ψ By inversion we have Γ ` γ1 : ∀a : κ.σ1 ∼ ∀a : κ.σ2 ∈ ?/T and Γ ` ψ : κ. We want to show that there is some ϕ, such

that Γ ` σ1[a 7→ ψ]  ∗ ϕ ∈ ?/T and Γ ` σ2[a 7→ ψ]  ∗ ϕ ∈ ?/T. By induction, we know that there is some σ and ϕ′, such that
Γ ` ∀a :κ.σ1  ∗ ∀a :κ.σ ∈ ?/T and Γ ` ∀a :κ.σ2  ∗ ∀a :κ.σ ∈ ?/T . The substitution lemma and transitivity gives us the desired
result.
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