Higher Order Quotients
and their Implementation in Isabelle HOL

Oscar Slotosch*

Technische Universitdt Miinchen
Institut fiir Informatik, 80290 Miinchen, Germany
http://wwwé.informatik.tu-muenchen.de/~slotosch/
slotosch@informatik.tu-muenchen.de

Abstract. This paper describes the concept of higher order quotients
and an implementation in Isabelle. Higher order quotients are a gen-
eralization of quotients. They use partial equivalence relations (PERs)
instead of equivalence relations to group together different elements. This
makes them applicable to arbitrary function spaces. Higher order quo-
tients are conservatively implemented in the Isabelle logic HOL with a
type constructor and a type class for PERs. Ordinary quotients are a
special case of higher order quotients. An example shows how they can
be used in Isabelle.

1 Introduction

Quotients are used in mathematics to group together different elements. This is
done by defining an equivalence relation relating different elements. The quotient
is a structure (type) consisting of groups (sets) of equivalent elements, called
equivalence classes. Equivalent elements are in the same equivalence class. In
formal system and software engineering quotients are used in many ways. For
example to abstract from irrelevant details in the modelling of systems.

Due to the high complexity of systems and software, formal methods are
used to support the correctness proof of realizations of systems with respect to
the specification. Theorem provers are very useful in formal software develop-
ment since they are tools to prove the correctness of the realization with respect
to the specification. To prove abstract requirements we need theorem provers
supporting quotients.

Functional languages are well suited for the development of systems, since
they allow us to program in a clean and modular way. An important concept
of functional languages is A-abstraction which supports the formalization of ab-
stract and higher order programs, which are highly reusable (a small example is
the map functional). A higher order logic supports an adequate formalization of
higher order programs.

* This work is partially sponsored by the German Federal Ministry of Education and
Research (BMBF) as part of the compound project “KorSys”.

Isabelle is a generic theorem prover. One logic for Isabelle is HOL, a higher
order logic which goes back to [Chu40] and includes some extensions like poly-
morphism and type constructors of [GM93]. Isabelle HOL supports the definition
of higher order functions, but a quotient construction is not yet available. In this
work we define quotients and higher order quotients and give an implementation
in Isabelle HOL.

This papers is structured as follows: First a short overview over the relevant
concepts of Isabelle is given. It is described in Section 3 how quotients could
be implemented in Isabelle HOL. Section 4 defines PERs (partial equivalence
relations) and higher order quotients and describes an implementation of them
in Isabelle HOL. This implementation includes the simple quotients as a special
case. Theorems for higher order quotients are derived and compared to those
for quotients. In Section 5 a method is presented for the definition of different
quotients over the same type and an example is performed. Section 6 concludes
with a summary, future work and comparisons to some related work.

2 Isabelle HOL

This section shortly presents the used concepts of Isabelle, especially of the logic
HOL. For a more detailed description see [Pau94].

2.1 Defining Types

The logic HOL is strongly typed. Every type has to be non-empty?. The ax-
iomatic declaration of types with the types section and some rules cannot ensure
non-emptyness and therefore it can lead to inconsistent specifications®. Therefore
we use the following definition form of Isabelle HOL to define types conserva-
tively (like types in Gordon’s HOL system [GM93]).

PNAT = Nat +
typedef pnat = "{p::nat.0<p}" (PosNE)
end

In this example we introduce the type of positive natural numbers in a theory
called PNAT which uses the theory Nat. The type of positive natural numbers
(pnat) is defined to be (isomorphic to) the set of elements p of type nat (writ-
ten p::nat) which fulfil the predicate 0<p. The witness that the new type is
not empty (Ix.x€{p: :nat.0<p}) is proved in a theorem over natural numbers
before the type pnat is defined. This theorem is called PosNE. The typedef con-
struct introduces the type only if the representing subset can be proved to be
non-empty. With the given witness (PosNE) this proof is trivial.

2 For example this is ensured by the datatype construct for the definition of free
inductive data types (see [V5195]).
3 Inconsistent in the sense that it does not allow us to deduce False.

Isabelle HOL has no “real” subtyping, but subtypes may be introduced with
coercion functions abs and rep. These coercion functions can be used to define
functions on the subtype. For example pnat_plus = Ax y.Abs_pnat(Rep_pnat
x + Rep-pnat y). The typedef construct in the example PNAT is equivalent to
the following theory with explicit coercion functions:

PNAT = Nat + (x expanded typedef x)
consts (x signature of functions / constants #*)

pnat :: '"nat set"

Abs_pnat :: "nat set = pnat"

Rep_pnat :: "pnat = nat set"
defs (% definition of the subset *)

pnat_def "pnat = {p.0<p}"

rules (x coercion rules x)
Rep_pnat "Rep_pnat x € pnat"
Abs_pnat_inverse "y € pnat —> Rep_pnat(Abs_pnat y) = y"
Rep_pnat_inverse "Abs_pnat(Rep_pnat x) = x"

end

Axioms (names and rules) are declared in Isabelle after the keyword rules.
Definitions are special rules (with the defining equality =). The keyword defs
causes Isabelle to check whether a rule is a definition. Using only defs and
typedef we cannot introduce inconsistencies.

In Isabelle HOL we may also use polymorphic types and type constructors.
Type constructors can be seen as functions on types. For example 1ist takes a
type a and maps it into the type a list. Type constructors can also be defined
using typedef.

2.2 Axiomatic Type Classes

Type classes are used to control polymorphism. For example in ML there are two
main type classes (a and a=) to distinguish arguments of polymorphic functions
that do not permit equality tests from those that do. As in other type systems
(Haskell/Gofer [HIW92, Jon93]) Isabelle allows type classes to be defined with
a subclass hierarchy.

In Isabelle there are different possibilities to introduce type classes*. We focus
here on the defining form. This form is called aziomatic type classes in Isabelle
(see [Wen94, Wen95, Wen97] for more details).

Axiomatic type classes characterize a type class by some axioms. Instantiat-
ing a type into a type class requires to prove that these axioms hold for the type.
We explain the axiomatic type classes on the example of equivalence relations.

* Type classes are also called “sorts”.

ER = HOL 4+ (% theory of equivalence relations x*)

consts (x polymorphic (infix) constant)
Mot :: "a:iiterm = a = bool" (infixl 55)

axclass er < term
(% axioms for equivalence relations %)

ax_er_refl "X ~~ x"
ax_er_sym "X ~vv Yy =y ~~ X"
ax_er_trans "x ~~ sy A~ zZ] = x o~ 2"

To characterize the type class er of equivalence relations we introduced a con-
stant ~~, available on all types of the class term®. A type belongs to the class er,
if ~~ on that type satisfies the axioms ax_er refl,ax er_sym and ax_er_trans.
To show the instantiation of a type into a type class we define now a theory to
instantiate the type pnat into the class er (with the total equivalence relation
True).

PNAT2 = PNAT + ER +

defs (% concrete definition of ~~ on pnat %)
er_pnat_def "(op ~~) = (Ax y::pnat.True)"

end

For this theory we can trivially derive the following theorems:

er_refl pnat "(x::pnat) ~~ x"
er_sym pnat "(x::pnat) ~~ y = y ~~ x"
er_trans pnat "[(x::pnat) ~~ y; ¥y ~~ z2 | = x ~~ 2"

These theorems ensure that the type pnat belongs to the class er. The instan-
tiation of pnat needs these theorems as witnesses:

PNAT3 = PNAT2 + (% instance of pnat into er %)
instance pnat::er (er_refl _pnat,er_sym pnat,er_trans_pnat)
end

This instantiation makes all theorems for «: :er applicable to pnat.

Using axiomatic type classes is a conservative form to introduce type classes
and instances into the specifications. In contrast to the introduction of type
classes with the constructs classes and arities (see for example [Reg94]) ax-
iomatic type classes do not require to provide an instance as witness that the
type class is not empty®. However using axiomatic type classes in this way has a
small disadvantage: type checking cannot ensure that equivalence relations are
only applied to terms of types belonging to the class er. For example we are

® term is the universal class in Isabelle HOL to which all HOL types automatically
belong.

® In [Reg94] the correctness of instantiations is justified by extra-logical arguments
and therefore it is not checked by Isabelle.

allowed to write the term (n::nat) ~~ n, even if we fail to prove it, if nat is
not instantiated into er.

Therefore we introduce an additional constant into the specification ER, which
is only available on types of class er.

(x ER (continued) x)
consts (% characteristic constant for er x)
"t :: "ai:er = a = bool" (infixl 55)
defs
er_def "(op ~) = (op ~~)"
end

We call those constants characteristic constants and we can easily derive the
characteristic axioms for it.

er_refl "x ~ x"
er_sym "X v~y = y ~ x"
er_trans "Mx ~y; Yy ~z] = x ~ 2"

We can use ~ in all general proofs about equivalence relations. The constant
~~ is only used for the correct instantiation of types. To expand the definition
of ~ on pnat we derive the following instantiation rule:

inst_pnat.er "(op ~) = (MAx y::pnat.True)

With this rule we do not need the overloaded constant ~~ on pnat any more.

Using ~ instead of ~~ has the advantage that the type checker can prohibit
us from writing strange terms (like n: :nat~~n if on nat no concrete definition
of ~~ is given). Trying to prove (n::nat) ~ n would result in a type error, if
nat is not instantiated into the class er.

Since HOL has also type constructors for higher order types, the instantiation
rule allows us to describe the class of the result of a type constructor, provided
the arguments of the type constructor are of certain classes’. The statement:

instance list::(er)er (er_refl list,er_sym list,er_trans_list)

Instantiates all types a: :er list into the class er®. In other words: If we have
a concrete type with a concrete definition of the equivalence relation ~~, then
we also have a concrete definition of equivalence relation on the lists over this
type. Type constructors and type definitions are illustrated on the example in
the following section with more details.

" With the same restrictions as the arity declaration of Isabelle (see [Nip91] for more
details on Isabelle’s type system).

& We omitted the definition of the equivalence ~~ on lists and the witnesses here for
brevity.

3 Quotients in Isabelle HOL

This section shows how type definitions, type constructors and type classes can
be used to define a quotient constructor in Isabelle. The used techniques are the
same as in Section 4 for higher order quotients.

First we recall the definitions of equivalence relations and quotients:

Definition 1. Equivalence Relation
A relation ~ on a type R (~ C R x R) is called equivalence relation, iff

— REFLEXIVE: Vo € R.x ~ &
— SYMMETRIC: Vz,y € R.x ~ y implies y ~ z
— TRANSITIVE: Vx,y,2 € R.x ~ y and y ~ z implies z ~ z

Equivalence relations are formalized in Isabelle HOL in the theory ER in Section
2.2.

Definition 2. Quotient
Let ~ be an equivalence relation on S. Then the quotient (of S with respect to
~) is the set of all equivalence classes, defined by:

— QUOTIENT: S/, := {[z]~ | ® € S} where
— EQUIVALENCE CrLaASs: [z]., := {y € S |z~y} forallz € S

To implement quotients in Isabelle we define a type constructor quot which is
defined on elements of the class er. This is done in the following theory:

QUOT = ER +
typedef a quot = "{s.3Jr.Vy.y€s=y~r}" (QuotNE)

With this typedef the quotient type constructor quot is defined. The repre-
senting set of elements is defined as set of equivalence classes. It contains such
elements s for which a (representative) element r exists, such that all elements
in s are equivalent to this element r. The theorem QuotNE states that this set is
not empty. The non-emptyness does not depend on properties of ~.

As was mentioned in Section 2.1 the typedef construct introduces abstrac-
tion and representation functions (Abs_quot and Rep_quot), for quotients. With
these functions we can define the equivalence class operator and the operator
which picks a single element out of an equivalence class by®:

(* QUOT (continued) x)

consts
eclass :: "ai:er = «a quot"
any_in :: "a::er quot = "
defs
eclass_def "<[x]> = Abs_quot {y.y~x}"
any_in_def "any in f = Ox.<[x]|>=f"
end

9 For readability we omit here the definitions which cause Isabelle to use <[|> as
mixfix syntax.

For these operators we can derive a lot of useful theorems!'®, which make it easy
to use quotients in Isabelle HOL. The types of x and y are inferred automatically
to be a::er.

(x theorems for equality x*)
er_class_eql "x~y=><[x]>=<[y]>"
er_class_eqE "<[x|>=<[y]>=x~y"
er_class.eq "<[x]>=<[y]>=x~y"
(* theorems for inequality *)
er_class neql "-x~y=><[x|>#<[y]>"
er_class neqE "<[x|>#<[y]>=—x~y"
er_classneq "<[x|>#<[y]>=(-x~y)"
(¥ theorems for exhaustiveness and induction *)
er_class_exh "dx.q=<[x|>"
er_class_.all "Vx.P<[x]> = P q"
(x theorems for any_in %)
any_in_class "any_in <[x]> ~ x"
class_any_in "<[any.in q]> = q"

The theorem er_class_eql states that equivalent elements are in the same equiv-
alence class. With the quotient construction, the defined operations, and these
theorems we can lift theorems and operations from the representations to the
quotients easily. Using quotient types in Isabelle is now as easy as in mathemat-
ics:

1. Define a relation on the representing type.

2. Prove that it is an equivalence relation and instantiate the representing type
into the class er.

3. Build the quotient type with the quotient constructor

4. Define functions on the quotient with <[]> and any_in.

A more detailed example is the construction of rational numbers in Section 5.

4 Higher Order Quotients in Isabelle

This section defines higher order quotients, a generalization of quotients, and
gives an implementation in Isabelle HOL. Higher order quotients are called
higher order, since they can be applied to higher order functions, without ex-
plicitly defining an (partial) equivalence relation for this higher order types.
Quotients can be used on every type which belongs to the class er. Therefore
using quotients requires to have an equivalence relation on every representing
type. At the end of Section 2.2 we mentioned the possibility to define an equiv-
alence relation for lists, based on an equivalence relation of the elements. This

10 We present them here to show how quotients may be used. We will not apply all of
them in the rest of this paper.

instance is quite nice, since it allows us to build quotients over specific lists, with-
out explicitly defining the equivalence relation (for example with an equivalence
relation on pnat we can define types like types PLQ = pnat list quot).

In functional languages we have A-abstraction and we can program functions
of arbitrary higher order types. However we cannot build quotients over these
functions unless we defined an equivalence relation for every function type. The
reason is that, in contrast to lists, we cannot define an equivalence relation for
arbitrary functions, because in general equivalence relations on functions are not
reflexive (since z~y 4 f(z)~f(y))-

Higher order quotients use partial equivalence relations (PERs) instead of
equivalence relations to group together different elements. For PERs we can give
a general PER on functions, which defines a PER on the function space, provided
that domain and range of the functions belong to the class PER. It was already
observed in [Rob89] that PERs are closed under functional composition. With
higher order quotients we can also define types like types FQ = (pnat list
= pnat) quot.

4.1 PERs

Partial equivalence relations (PERs) are the basis for higher order quotients.
PERs are not necessarily reflexive. PERs have a domain on which they are
reflexive. Therefore they are called partial equivalence relations.

Definition 3. Partial Equivalence Relation
A relation ~ on a type R (~ C R x R) is called partial equivalence relation, iff

— SYMMETRIC: Vz,y € R.x ~ y implies y ~ x
— TRANSITIVE: Vx,y,2 € R.x ~ y and y ~ z implies z ~ z

The domain D of a PER is the set of values from R, on which ~ is reflexive:
— D:={z € Ra~x}

PERs are called partial equivalence relations, since they are, in contrast to equiv-
alence relations, reflexive only on the domain D.

From these axioms we can derive (by symmetry and transitivity) that all values
not in the domain D are not partially equivalent.

— x ~ y implies z,y € D
— € D implies z % y

The formalization of PERs in Isabelle HOL is similar to the formalization of
equivalence relations in Section 2.2. It uses a polymorphic definition and an
axiomatic type class. This definition includes equivalence relations as a special
case. This is expressed with the subclass relation. The advantage of this hierarchy
is that all theorems derived for types with partial equivalence relations are also
available on types with equivalence relations. Furthermore we can derive all
theorems of Section 3 by restricting the polymorphism to the types which have
an equivalence relation defined.

PERO = Set + (x PERs and ER x*)

consts (% polymorphic constant)

"o~

axclass per < term
ax_per_sym
ax_per_trans

axclass er < per
ax_er_refl

"o::term = « = bool" (infixl 55)

(* PERs *)
"y o~~~ y = y ~~ x"
HIIX ~~ Yy Y e Z]] = X ~~ Z"

(x ERs are a subclass of PERs x)

llX AU Xll

consts (% characteristic constant and Domain for per x)

"N

"a::per = a = bool" (infixl 55)

D :: "a::per set"

defs
per_def
Domain

"(Op ~) = (Op)M
"D = {x.x~x}"

(* define ~~ on function type = *)

fun_per_def
end

"fr~g = Vx y.xEDAYEDAX~Y — o x~g Y

This theory contains the definition of a PER on the function space. The following
theorems can be derived for PERs:

(x characteristic axioms for ~ x)

per_sym
per_trans

"X ~ y :> y- ~ X"
"Mx ~y; Yy ~zZ] = x ~ 2"

(x some theorems for ~ and the Domain D x)

sym2refll
sym2refl2
DomainD
DomainI
DomainEq

"X ~y = x ~ x"
"X~y =y ~y"
"x € D = x ~ x"
"x ~ x = x € D"
"x €D =x ~ x"

DomainI_ left "x ~y = x € D"
DomainI right "X ~y = y € D"
notDomainE1l "x ¢ D = " x ~y"
notDomainE2 "y ¢ D= - x~y"

(x theorems for equivalence relations *)
er_refl "(x::a::er) ~ x"
er_Domain "(x::a::er) € D"

(* witnesses for "=" ::(per,per)per x)

per_sym_fun

"(f::a::per = [::per)~~g — g~~1I"

per_trans_fun "[(f::a::per=p::per)~~g;g~~h]|=f~~h"

The last two theorems

allow us to instantiate the function space into the class

per in the following theory:

PER = PERO + (x instance for per x*)
instance fun :: (per,per)per (per_sym fun,per_trans_fun)

end

To expand the PER on functions without using ~~ we deduce the instantiation
rule:

inst_fun_per "f~g=(Vx y.x€DAyEDAx~y—f x~g y)"

4.2 Higher Order Quotients

This section defines higher order quotients and gives an implementation in Isa-
belle HOL which generalizes the quotient implementation. The goal is that we
can derive similar theorems for higher order quotients as for quotients and to
apply them to quotients as a special case!!.

Definition 4. Higher Order Quotient Let ~ be an partial equivalence relation
on S. Then the higher order quotient is the set of all partial equivalence classes,
defined by:

— HiGHER ORDER QUOTIENT: S, := {[z]~ |z € S} where
— PARTIAL EQUIVALENCE CLASS: [z]., = {y €S |z~y} forallz e S

In contrast to the definition of equivalence classes, partial equivalence classes
may be empty sets. To implement higher quotients is Isabelle we define a type
constructor quot which is defined on elements of the class per. This is done in
the following theory:

HQUOT = PER +
typedef a quot = "{s.3Jr.Vy.y€s=y~r}" (QuotNE)

With this typedef the quotient type constructor quot is defined. This type is
not empty, even if the PER is always false. In this case the type contains the
empty set as only element.

Asin the example of quotients we define the partial equivalence class operator
and the function any_in by:

(* HQUOT (continued) %)

consts
peclass :: "a::per = «a quot"
any_in :: "a::per quot = «a"
defs
peclass_def "<[x]> = Abs_quot {y.y~x}"
any_in_def "any_in f = 0x.<[x]>=f"
end

' Of course we can derive all theorems for quotients also for reflexive (higher order)
quotients.

Of course we can derive all theorems for quotients (see Section 3) also for reflexive
(higher order) quotients. The only difference is that we have to use the class er
for the type variables. For example:

er_class.eq <[(x::a::er)|>=<[y]>=x~y

Some theorems for higher order quotients are like those for quotients, but others
need an additional premise, since the concept is more general.

(x theorems for equality x*)
per_class_eql '"x~y = <[x]>=<[y]>"
per_class_eqE "[x€D; <[x]>=<[y|>] = x~y"
per_class.eq "x€D = <[x|>=<[y|>=x~y"

(x theorems for inequality)
per_classneql "[x€D;—x~y] = <[x|>#<[y]>"
per_classneqE "<[x]>#<[y]> = —x~y"
per_classmeq "x€D = <[x|>#<[y]>=(-x~y)"

(¥ theorems for exhaustiveness and induction *)
per_class_exh "Jx.q=<[x|>"
per_class_all "Vx.P<[x]> = P q"

(x theorems for any_in %)
per_any_in class "x€D = any_in <[x|> ~ x"
per_class_any_in "Vx::a::per.xeD —

<[any-in(q::a::per quot)]|>=q"

The additional premise x€D is required, since there may be different elements
which are not in relation to each other. All those elements would be represented
by the empty partial equivalence class. Therefore we cannot deduce from the
equality of equivalence classes that the elements are equivalent. This problem
can be solved, if we define the PER such that it is reflexive for all elements, except
for one element. Using L as the only element which is not reflexive integrates
our concept of PERs with the Scott-domains (see [Slo97] for more details).

With these polymorphic theorems we can transform theorems from repre-
sentations to quotients without schematically proving them again. The reason
for this is that the axiomatic type classes allow us to tailor the polymorphism
to our constructions. With axiomatic type classes we can justify the use of type
classes without extra-logical arguments and they allow us to prove all necessary
theorems within the system.

Comparing our construction with the schematic construction of quotients
shows us, beside the fact that we use PERs and higher order quotients, the ar-
gument, that we can instantiate a type only once into a type class and we can
therefore have at most one quotient over every type. This drawback is overcome
by an embedding method, presented in the following section. The method al-
lows us to reuse a basic type for multiple quotient definitions by schematically
constructing another type for the definition of the PER!2.

12 Note that we do not aim at the construction of value dependent (quotient) types,
like the integers modulo n which would exceed Isabelle’s type system. Therefore the
presented method suffices for “static types”.

5 Example: Rational Numbers

This section presents the application of (higher order) quotients on the frac-
tional representation of rational numbers. The intended quotient is to identify
terms like % with %. This example could also be treated with ordinary quotients,
however we selected it, since it is small, well-known, and suffices to illustrate
the method for using quotients. The emphasis lies not only in the simple task
of dealing with fractions, but also in the embedding method which allows us to
reuse a type as basis for several quotients. Higher order quotients can be applied
in the same way, for example to identify observational equivalent functions.

Our quotient constructor builds the quotient with respect to a fixed (partial)
equivalence relation. This relation is fixed for each type by the instance of this
type into the class per. Encoding the PER into the type class has the advantage,
that the operation <[]|> does not need an additional parameter for the PER
and that we may have a general type constructor for the construction of quotient
types. The drawback of this encoding is that on every type we have at most one
PER.

In our example we represent rational numbers by pairs of natural numbers
and positive natural numbers. However, if we have PERs on positive and natural
numbers, and a general PER for pairs (p ~~ q = (fst p ~ fst q A snd p
~ snd q)), then we have already a PER defined on pairs of natural numbers.
We could build quotients over it, but this is not the PER we need to identify
terms like % with %. In addition the Isabelle type system does not allow us to
instance the type (nat * pnat) directly into the class per, since it permits only
some special forms of arities!3.

To avoid these problems, we need an embedding. We define a new represent-
ing type with the typedef construct.

NPAIR = Arith + Prod 4+ PER + PNAT +
(x embedded representation: x)

typedef NP = "{n::nat*pnat.True}"

end
With this representing type we define the equivalence relation by:

(* NPAIR (continued) *)
defs per NP def " (op ~~) =
(Ax y.fst(RepNP x) * Rep_pnat(snd(RepNP y)) =
fst(Rep NP y) % Rep_pnat(snd(Rep NP x))) "

This definition might look quite technical, but with the theorems from the
typedef construction with the predicate True the embedding functions for NP
are isomorphisms and therefore they disappear in the proofs using the simplifier.

13 Arities are a very restricted form of schematic properties about type constructors.

Since we have no special multiplication for natural numbers with positive num-
bers, we use the representation function Rep_pnat, defined in Section 2.1. Elimi-
nating this representation function with the corresponding abstraction function
Abs_pnat requires that the argument is a positive natural number (see the fol-
lowing proof).

The next step is to prove that this relation is a PER. We prove:

per_sym_NP "(x::NP) ~~ y = § ~~ X"
per_trans NP "[(x::NP) ~~ y; y ~~ 2Z] = x ~~ 2"

We do not need to prove reflexivity, since we are using the higher order quotient
construct, which requires only a PER. To prove transitivity of this equivalence
relation was the only non-trivial task in this example.

After the instantiation of our representation into the class per we define the
the type fract as quotient of our representation.

FRACT = NPAIR + HQUOT +

instance NP::per (per_sym_NP,per_trans_NP)
(* now define fractions x)

types fract = NP quot
(x example for fractions x)

consts half :: "fract"
defs half _def "half = <[Abs_NP(1,Abs_pnat 2)]>"
end

We derive the instantiation rule for the representation:

inst NP per "(op ~)=(Ax y.fst(RepNP x)xRep_pnat(snd(Rep NP y))=
fst (Rep NP y)+Rep_pnat(snd(Rep NP x)))"

As an example for an application consider the proof of the following theorem:

> val prems = goalw thy [half def|
"0<n = half = <[Abs_NP(n,Abs_pnat(2n)) [>";
> by (cut_facts_tac prems 1);

Level 1
half = <[abs NP (n, 2 * n) |>
1.0 < n =
<[Abs.NP (1, Abs_pnat 2) |> =
<[Abs.NP (n, Abs_pnat (2 % n)) |>

(x derive that O<n+4n (=2xn) x*)
> by (dres_inst_tac [("m","n")] trans_less_add2 1);

Level 2
half = <[Abs.NP (n, Abs_pnat (2 * n)) |]>
1.0<n+n—=

<[Abs NP (1, Abs pnat 2) |> =
<[Abs NP (n, Abs pnat (2 * n)) |>

> fr per_class_eql;

Subgoal 1 selected
Level 3
half = <[Abs NP (n, Abs_pnat (2 * n)) |>
1.0<n +n—
Abs NP (1, Abs_pnat 2) ~
Abs NP (n, Abs_pnat (2 * n))

> by (simp_tac (!simpset addsimps [inst NP_per]) 1);
Level 4

half = <[AbsNP (n, Abs_pnat (2 % n)) |]>

No subgoals!

This proof shows how the equality between quotients is reduced to the equiva-
lence of the representations and that the embedding functions for the PER do not
harm. The embedding of positive natural numbers requires a proof step. With
the instantiation rule and some arithmetic knowledge the proof is completed
automatically.

This example shows how easy quotients can be applied, even if an embedding
is used for the representation.

6 Conclusion

In this work we used axiomatic type classes and type constructors to build a
quotient construction for Isabelle HOL. Using PERs instead of equivalence re-
lations allows us to build quotients over arbitrary functions and saves us from
proving reflexivity. Quotients can be used as a special case of higher order quo-
tients. Axiomatic type classes are applied to tailor the use of polymorphism
to a polymorphic construction which requires neither schematic proofs nor any
extra-logical justification.

Because partial equivalence classes can be empty, some theorems for higher
order quotients are not as general as those for quotients. However a combination
with Scott-domains provides a solution [Slo97]. The problem that type classes
do not allow us to have multiple PERs on one type is methodically avoided with
the embeddings presented in the example.

PERs are a very general concept in theoretical computer science. They are
used for example as models in type theory [BM92]. In the field of algebraic spec-
ifications PERs are used for the implementation of ADTs. The implementation
of ADTs consists of a restriction to a subtype, followed by a quotient step. Both
can be expressed by PERs (for a formalization of implementation of ADTs in
first order logic with PERs see for example [BH95]). PERs can also be used to

define a predicate to characterize observer functions and observability in a higher
order logic (see [Slo97]). There has also been some work on quotients in theorem
provers (for example in [Har96], or some work from T. Kalker presented at the
1990 HOL workshop without proceedings), but these approaches do not use the
advantages of polymorphism in combination with the axiomatic type classes and
they cannot build quotients over arbitrary function spaces.

An interesting application of quotients is to formalize the concept of states.
Consider a functional description of a software module. From an observational
point of view the module receives a stream of inputs and answers with a stream
of outputs. The variables in the specification and realization of this module can
be expressed as quotients over input histories. If the quotient over these possibly
infinite input streams is finite, model checking can be used to prove the correct-
ness of the module. So quotients can combine functional system descriptions with
states and model checking. The integration of quotients into a functional deve-
lopment method is described in [S1097], the combination with model checking is
ongoing work in our research project KORSYS.

With this work we integrated PERs and quotients into Isabelle HOL and can
use Isabelle now for formal development with quotients over arbitrary types.

Acknowledgments: I thank Tobias Nipkow for discussions on quotients
and their implementation in Isabelle. For many comments on draft versions of
this paper I thank Markus Wenzel and Jan Philipps. Furthermore I thank the
anonymous referees for their constructive comments.

References

[BH95] Michel Bidoit and Rolf Hennicker. Behavioural Theories and The Proof of
Behavioural Properties. Technical report, Paris, 1995.

[BM92] Kim Bruce and John C. Mitchell. PER models of subtyping, recursive types
and higher-order polymorphism. In Principles of Programming Languages
19, pages 316-327, Albequerque, New Mexico, 1992.

[Chu40] Alonzo Church. A formulation of the simple theory of types. J. Symbolic
Logic, 5:56-68, 1940.

[GM93] M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press, 1993.

[Har96] John Robert Harrison. Theorem Proving with the Real Numbers. PhD thesis,
University of Cambridge Computer Laboratory, New Museums Site, Pem-
broke Street, Cambridge, CB2 3QG, UK, 1996. Technical Report No 408.

[HIW92] P. Hudak, S. Peyton Jones, and P. Wadler, editors. Report on the Program-
ming Language Haskell, A Non-strict Purely Functional Language (Version
1.2). ACM SIGPLAN Notices, May 1992.

[Jon93] M. P. Jones. An Introduction to Gofer, August 1993.

[Nip91] T. Nipkow. Order-Sorted Polymorphism in Isabelle. In G. Huet, G. Plotkin,
and C. Jones, editors, Proc. 2nd Workshop on Logical Frameworks, pages
307-321, 1991.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
LNCS. Springer, 1994.

[Reg94]
[Rob89)]
[S1097]

[V&195]

[Wen94]

[Wen95]

[Wen97]

Franz Regensburger. HOLCF': FEine konservative Erweiterung von HOL um
LCF. PhD thesis, Technische Universitdt Miinchen, 1994.

Edmund Robinson. How Complete is PER? In Fourth Annual Symposium
on Logic in Computer Science, pages 106-111, 1989.

Oscar Slotosch. Refinements in HOLCF': Implementation of Interactive Sys-
tems. PhD thesis, Technische Universitdt Miinchen, 1997.

Norbert Volker. On the Representation of Datatypes in Isabelle/HOL. Tech-
nical Report 379, University of Cambridge Computer Laboratory, 1995. Pro-
ceedings of the First Isabelle Users Workshop.

Markus Wenzel. Axiomatische Typklassen in Isabelle. Master’s thesis, Insti-
tut fiir Informatik, TU Miinchen, 1994.

M. Wenzel.

Using aziomatic type classes in Isabelle — a tutorial, 1995. Available at
http://www4.informatik.tu-muenchen.de/ nipkow/isadist/axclass.dvi.gz.

M. Wenzel. Type Classes and Overloading in Higher-Order Logic. In Pro-
ceedings of Theorem Proving in Higher Order Logics, 1997. in this volume.

This article was processed using the ITEX macro package with LLNCS style

