
Higher Order Quotients

and their Implementation in Isabelle HOL

Oscar Slotosch�

Technische Universit�at M�unchen
Institut f�ur Informatik� ����� M�unchen� Germany

http���www��informatik�tu�muenchen�de��slotosch�

slotosch�informatik�tu�muenchen�de

Abstract� This paper describes the concept of higher order quotients
and an implementation in Isabelle� Higher order quotients are a gen�
eralization of quotients� They use partial equivalence relations �PERs	
instead of equivalence relations to group together di
erent elements� This
makes them applicable to arbitrary function spaces� Higher order quo�
tients are conservatively implemented in the Isabelle logic HOL with a
type constructor and a type class for PERs� Ordinary quotients are a
special case of higher order quotients� An example shows how they can
be used in Isabelle�

� Introduction

Quotients are used in mathematics to group together di�erent elements� This is
done by de�ning an equivalence relation relating di�erent elements� The quotient
is a structure �type� consisting of groups �sets� of equivalent elements� called
equivalence classes� Equivalent elements are in the same equivalence class� In
formal system and software engineering quotients are used in many ways� For
example to abstract from irrelevant details in the modelling of systems�

Due to the high complexity of systems and software� formal methods are
used to support the correctness proof of realizations of systems with respect to
the speci�cation� Theorem provers are very useful in formal software develop�
ment since they are tools to prove the correctness of the realization with respect
to the speci�cation� To prove abstract requirements we need theorem provers
supporting quotients�

Functional languages are well suited for the development of systems� since
they allow us to program in a clean and modular way� An important concept
of functional languages is ��abstraction which supports the formalization of ab�
stract and higher order programs� which are highly reusable �a small example is
the map functional�� A higher order logic supports an adequate formalization of
higher order programs�

� This work is partially sponsored by the German Federal Ministry of Education and
Research �BMBF	 as part of the compound project �KorSys��



Isabelle is a generic theorem prover� One logic for Isabelle is HOL� a higher
order logic which goes back to �Chu�	
 and includes some extensions like poly�
morphism and type constructors of �GM��
� Isabelle HOL supports the de�nition
of higher order functions� but a quotient construction is not yet available� In this
work we de�ne quotients and higher order quotients and give an implementation
in Isabelle HOL�

This papers is structured as follows
 First a short overview over the relevant
concepts of Isabelle is given� It is described in Section � how quotients could
be implemented in Isabelle HOL� Section � de�nes PERs �partial equivalence
relations� and higher order quotients and describes an implementation of them
in Isabelle HOL� This implementation includes the simple quotients as a special
case� Theorems for higher order quotients are derived and compared to those
for quotients� In Section � a method is presented for the de�nition of di�erent
quotients over the same type and an example is performed� Section � concludes
with a summary� future work and comparisons to some related work�

� Isabelle HOL

This section shortly presents the used concepts of Isabelle� especially of the logic
HOL� For a more detailed description see �Pau��
�

��� De�ning Types

The logic HOL is strongly typed� Every type has to be non�empty�� The ax�
iomatic declaration of types with the types section and some rules cannot ensure
non�emptyness and therefore it can lead to inconsistent speci�cations�� Therefore
we use the following de�nition form of Isabelle HOL to de�ne types conserva�
tively �like types in Gordon�s HOL system �GM��
��

PNAT � Nat �
typedef pnat � �fp��nat���pg� �PosNE�

end

In this example we introduce the type of positive natural numbers in a theory
called PNAT which uses the theory Nat� The type of positive natural numbers
�pnat� is de�ned to be �isomorphic to� the set of elements p of type nat �writ�
ten p��nat� which ful�l the predicate ��p� The witness that the new type is
not empty ��x�x�fp��nat���pg� is proved in a theorem over natural numbers
before the type pnat is de�ned� This theorem is called PosNE� The typedef con�
struct introduces the type only if the representing subset can be proved to be
non�empty� With the given witness �PosNE� this proof is trivial�

� For example this is ensured by the datatype construct for the de
nition of free
inductive data types �see �V�ol���	�

� Inconsistent in the sense that it does not allow us to deduce False�



Isabelle HOL has no �real� subtyping� but subtypes may be introduced with
coercion functions abs and rep� These coercion functions can be used to de�ne
functions on the subtype� For example pnat plus � �x y�Abs pnat�Rep pnat

x � Rep pnat y�� The typedef construct in the example PNAT is equivalent to
the following theory with explicit coercion functions


PNAT � Nat � �� expanded typedef ��
consts �� signature of functions � constants ��

pnat �� �nat set�

Abs pnat �� �nat set � pnat�

Rep pnat �� �pnat � nat set�

defs �� definition of the subset ��
pnat def �pnat � fp���pg�

rules �� coercion rules ��
Rep pnat �Rep pnat x � pnat�

Abs pnat inverse �y � pnat �� Rep pnat�Abs pnat y� � y�

Rep pnat inverse �Abs pnat�Rep pnat x� � x�

end

Axioms �names and rules� are declared in Isabelle after the keyword rules�
De�nitions are special rules �with the de�ning equality ��� The keyword defs

causes Isabelle to check whether a rule is a de�nition� Using only defs and
typedef we cannot introduce inconsistencies�

In Isabelle HOL we may also use polymorphic types and type constructors�
Type constructors can be seen as functions on types� For example list takes a
type � and maps it into the type � list� Type constructors can also be de�ned
using typedef�

��� Axiomatic Type Classes

Type classes are used to control polymorphism� For example in ML there are two
main type classes �� and ��� to distinguish arguments of polymorphic functions
that do not permit equality tests from those that do� As in other type systems
�Haskell�Gofer �HJW��� Jon��
� Isabelle allows type classes to be de�ned with
a subclass hierarchy�

In Isabelle there are di�erent possibilities to introduce type classes�� We focus
here on the de�ning form� This form is called axiomatic type classes in Isabelle
�see �Wen��� Wen��� Wen��
 for more details��

Axiomatic type classes characterize a type class by some axioms� Instantiat�
ing a type into a type class requires to prove that these axioms hold for the type�
We explain the axiomatic type classes on the example of equivalence relations�

� Type classes are also called �sorts��



ER � HOL � �� theory of equivalence relations ��

consts �� polymorphic �infix� constant ��
���� �� ����term � � � bool� �infixl ���

axclass er � term

�� axioms for equivalence relations ��
ax er refl �x �� x�

ax er sym �x �� y �� y �� x�

ax er trans ���x �� y� y �� z

 �� x �� z�

To characterize the type class er of equivalence relations we introduced a con�
stant ��� available on all types of the class term�� A type belongs to the class er�
if �� on that type satis�es the axioms ax er refl	ax er sym and ax er trans�
To show the instantiation of a type into a type class we de�ne now a theory to
instantiate the type pnat into the class er �with the total equivalence relation
True��

PNAT
 � PNAT � ER �
defs �� concrete definition of �� on pnat ��

er pnat def ��op ��� � ��x y��pnat�True��

end

For this theory we can trivially derive the following theorems


er refl pnat ��x��pnat� �� x�

er sym pnat ��x��pnat� �� y �� y �� x�

er trans pnat ��� �x��pnat� �� y� y �� z 

 �� x �� z�

These theorems ensure that the type pnat belongs to the class er� The instan�
tiation of pnat needs these theorems as witnesses


PNAT� � PNAT
 � �� instance of pnat into er ��
instance pnat��er �er refl pnat	er sym pnat	er trans pnat�

end

This instantiation makes all theorems for ���er applicable to pnat�
Using axiomatic type classes is a conservative form to introduce type classes

and instances into the speci�cations� In contrast to the introduction of type
classes with the constructs classes and arities �see for example �Reg��
� ax�
iomatic type classes do not require to provide an instance as witness that the
type class is not empty�� However using axiomatic type classes in this way has a
small disadvantage
 type checking cannot ensure that equivalence relations are
only applied to terms of types belonging to the class er� For example we are

� term is the universal class in Isabelle HOL to which all HOL types automatically
belong�

� In �Reg��� the correctness of instantiations is justi
ed by extra�logical arguments
and therefore it is not checked by Isabelle�



allowed to write the term �n��nat� �� n� even if we fail to prove it� if nat is
not instantiated into er�

Therefore we introduce an additional constant into the speci�cation ER� which
is only available on types of class er�

�� ER �continued� ��
consts �� characteristic constant for er ��

��� �� ����er � � � bool� �infixl ���

defs

er def ��op �� � �op ����
end

We call those constants characteristic constants and we can easily derive the
characteristic axioms for it�

er refl �x � x�

er sym �x � y �� y � x�

er trans ���x � y� y � z

 �� x � z�

We can use � in all general proofs about equivalence relations� The constant
�� is only used for the correct instantiation of types� To expand the de�nition
of � on pnat we derive the following instantiation rule


inst pnat er ��op �� � ��x y��pnat�True�

With this rule we do not need the overloaded constant �� on pnat any more�

Using � instead of �� has the advantage that the type checker can prohibit
us from writing strange terms �like n��nat��n if on nat no concrete de�nition
of �� is given�� Trying to prove �n��nat� � n would result in a type error� if
nat is not instantiated into the class er�

Since HOL has also type constructors for higher order types� the instantiation
rule allows us to describe the class of the result of a type constructor� provided
the arguments of the type constructor are of certain classes�� The statement


instance list���er�er �er refl list	er sym list	er trans list�

Instantiates all types ���er list into the class er�� In other words
 If we have
a concrete type with a concrete de�nition of the equivalence relation ��� then
we also have a concrete de�nition of equivalence relation on the lists over this
type� Type constructors and type de�nitions are illustrated on the example in
the following section with more details�

� With the same restrictions as the arity declaration of Isabelle �see �Nip��� for more
details on Isabelle�s type system	�

� We omitted the de
nition of the equivalence �� on lists and the witnesses here for
brevity�



� Quotients in Isabelle HOL

This section shows how type de�nitions� type constructors and type classes can
be used to de�ne a quotient constructor in Isabelle� The used techniques are the
same as in Section � for higher order quotients�

First we recall the de�nitions of equivalence relations and quotients


De�nition �� Equivalence Relation
A relation � on a type R �� � R�R� is called equivalence relation� i�

� Reflexive� �x � R�x � x
� Symmetric� �x� y � R�x � y implies y � x
� Transitive� �x� y� z � R�x � y and y � z implies x � z

Equivalence relations are formalized in Isabelle HOL in the theory ER in Section
����

De�nition �� Quotient
Let � be an equivalence relation on S� Then the quotient �of S with respect to
�� is the set of all equivalence classes� de�ned by


� Quotient� S�� 
� f�x
� j x � Sg where

� Equivalence Class� �x
� 
� fy � S j x�yg for all x � S

To implement quotients in Isabelle we de�ne a type constructor quot which is
de�ned on elements of the class er� This is done in the following theory


QUOT � ER �
typedef � quot � �fs��r��y�y�s�y�rg� �QuotNE�

With this typedef the quotient type constructor quot is de�ned� The repre�
senting set of elements is de�ned as set of equivalence classes� It contains such
elements s for which a �representative� element r exists� such that all elements
in s are equivalent to this element r� The theorem QuotNE states that this set is
not empty� The non�emptyness does not depend on properties of ��

As was mentioned in Section ��� the typedef construct introduces abstrac�
tion and representation functions �Abs quot and Rep quot�� for quotients� With
these functions we can de�ne the equivalence class operator and the operator
which picks a single element out of an equivalence class by�


�� QUOT �continued� ��
consts

eclass �� ����er � � quot�

any in �� ����er quot � ��
defs

eclass def ���x
� � Abs quot fy�y�xg�
any in def �any in f � �x���x
��f�

end

� For readability we omit here the de
nitions which cause Isabelle to use �� �� as
mix
x syntax�



For these operators we can derive a lot of useful theorems	
� which make it easy
to use quotients in Isabelle HOL� The types of x and y are inferred automatically
to be ���er�

�� theorems for equality ��
er class eqI �x�y����x
����y
��
er class eqE ���x
����y
���x�y�
er class eq ���x
����y
��x�y�

�� theorems for inequality ��
er class neqI �	x�y����x
�
���y
��
er class neqE ���x
�
���y
���	x�y�
er class neq ���x
�
���y
���	x�y��

�� theorems for exhaustiveness and induction ��
er class exh ��x�q���x
��
er class all ��x�P��x
� �� P q�

�� theorems for any in ��
any in class �any in ��x
� � x�

class any in ���any in q
� � q�

The theorem er class eqI states that equivalent elements are in the same equiv�
alence class� With the quotient construction� the de�ned operations� and these
theorems we can lift theorems and operations from the representations to the
quotients easily� Using quotient types in Isabelle is now as easy as in mathemat�
ics


�� De�ne a relation on the representing type�
�� Prove that it is an equivalence relation and instantiate the representing type

into the class er�
�� Build the quotient type with the quotient constructor
�� De�ne functions on the quotient with �� 
� and any in�

A more detailed example is the construction of rational numbers in Section ��

� Higher Order Quotients in Isabelle

This section de�nes higher order quotients� a generalization of quotients� and
gives an implementation in Isabelle HOL� Higher order quotients are called
higher order� since they can be applied to higher order functions� without ex�
plicitly de�ning an �partial� equivalence relation for this higher order types�

Quotients can be used on every type which belongs to the class er� Therefore
using quotients requires to have an equivalence relation on every representing
type� At the end of Section ��� we mentioned the possibility to de�ne an equiv�
alence relation for lists� based on an equivalence relation of the elements� This

�	 We present them here to show how quotients may be used� We will not apply all of
them in the rest of this paper�



instance is quite nice� since it allows us to build quotients over speci�c lists� with�
out explicitly de�ning the equivalence relation �for example with an equivalence
relation on pnat we can de�ne types like types PLQ � pnat list quot��

In functional languages we have ��abstraction and we can program functions
of arbitrary higher order types� However we cannot build quotients over these
functions unless we de�ned an equivalence relation for every function type� The
reason is that� in contrast to lists� we cannot de�ne an equivalence relation for
arbitrary functions� because in general equivalence relations on functions are not
re�exive �since x�y 
� f�x��f�y���

Higher order quotients use partial equivalence relations �PERs� instead of
equivalence relations to group together di�erent elements� For PERs we can give
a general PER on functions� which de�nes a PER on the function space� provided
that domain and range of the functions belong to the class PER� It was already
observed in �Rob��
 that PERs are closed under functional composition� With
higher order quotients we can also de�ne types like types FQ � �pnat list

� pnat� quot�

��� PERs

Partial equivalence relations �PERs� are the basis for higher order quotients�
PERs are not necessarily re�exive� PERs have a domain on which they are
re�exive� Therefore they are called partial equivalence relations�

De�nition �� Partial Equivalence Relation
A relation � on a type R �� � R�R� is called partial equivalence relation� i�

� Symmetric� �x� y � R�x � y implies y � x
� Transitive� �x� y� z � R�x � y and y � z implies x � z

The domain D of a PER is the set of values from R� on which � is re�exive


� D 
� fx � R�x�xg

PERs are called partial equivalence relations� since they are� in contrast to equiv�
alence relations� re�exive only on the domain D�

From these axioms we can derive �by symmetry and transitivity� that all values
not in the domain D are not partially equivalent�

� x � y implies x� y � D
� x 
� D implies x 
� y

The formalization of PERs in Isabelle HOL is similar to the formalization of
equivalence relations in Section ���� It uses a polymorphic de�nition and an
axiomatic type class� This de�nition includes equivalence relations as a special
case� This is expressed with the subclass relation� The advantage of this hierarchy
is that all theorems derived for types with partial equivalence relations are also
available on types with equivalence relations� Furthermore we can derive all
theorems of Section � by restricting the polymorphism to the types which have
an equivalence relation de�ned�



PER� � Set � �� PERs and ER ��

consts �� polymorphic constant ��
���� �� ����term � � � bool� �infixl ���

axclass per � term �� PERs ��
ax per sym �x �� y �� y �� x�

ax per trans ���x �� y� y �� z

 �� x �� z�

axclass er � per �� ERs are a subclass of PERs ��
ax er refl �x �� x�

consts �� characteristic constant and Domain for per ��
��� �� ����per � � � bool� �infixl ���

D �� ����per set�

defs

per def ��op �� � �op ����
Domain �D � fx�x�xg�

�� define �� on function type � ��
fun per def �f��g � �x y�x�D�y�D�x�y 
� f x�g y�

end

This theory contains the de�nition of a PER on the function space� The following
theorems can be derived for PERs


�� characteristic axioms for � ��
per sym �x � y �� y � x�

per trans ���x � y� y � z

 �� x � z�

�� some theorems for � and the Domain D ��
sym
refl
 �x � y �� x � x�

sym
refl
 �x � y �� y � y�

DomainD �x � D �� x � x�

DomainI �x � x �� x � D�

DomainEq �x � D � x � x�

DomainI left �x � y �� x � D�

DomainI right �x � y �� y � D�

notDomainE
 �x �� D �� 	 x � y�

notDomainE
 �y �� D �� 	 x � y�

�� theorems for equivalence relations ��
er refl ��x�����er� � x�

er Domain ��x�����er� � D�

�� witnesses for ��� ���per	per�per ��
per sym fun ��f�����per � ���per���g �� g��f�
per trans fun ����f�����per����per���g�g��h

��f��h�

The last two theorems allow us to instantiate the function space into the class
per in the following theory




PER � PER� � �� instance for per ��

instance fun �� �per	per�per �per sym fun	per trans fun�

end

To expand the PER on functions without using �� we deduce the instantiation
rule


inst fun per �f�g���x y�x�D�y�D�x�y
�f x�g y��

��� Higher Order Quotients

This section de�nes higher order quotients and gives an implementation in Isa�
belle HOL which generalizes the quotient implementation� The goal is that we
can derive similar theorems for higher order quotients as for quotients and to
apply them to quotients as a special case		�

De�nition �� Higher Order Quotient Let � be an partial equivalence relation
on S� Then the higher order quotient is the set of all partial equivalence classes�
de�ned by


� Higher Order Quotient� S�� 
� f�x
� j x � Sg where

� Partial Equivalence Class� �x
� 
� fy � S j x�yg for all x � S

In contrast to the de�nition of equivalence classes� partial equivalence classes
may be empty sets� To implement higher quotients is Isabelle we de�ne a type
constructor quot which is de�ned on elements of the class per� This is done in
the following theory


HQUOT � PER �
typedef � quot � �fs��r��y�y�s�y�rg� �QuotNE�

With this typedef the quotient type constructor quot is de�ned� This type is
not empty� even if the PER is always false� In this case the type contains the
empty set as only element�

As in the example of quotients we de�ne the partial equivalence class operator
and the function any in by


�� HQUOT �continued� ��
consts

peclass �� ����per � � quot�

any in �� ����per quot � ��
defs

peclass def ���x
� � Abs quot fy�y�xg�
any in def �any in f � �x���x
��f�

end

�� Of course we can derive all theorems for quotients also for re�exive �higher order	
quotients�



Of course we can derive all theorems for quotients �see Section �� also for re�exive
�higher order� quotients� The only di�erence is that we have to use the class er
for the type variables� For example


er class eq ���x�����er�
����y
��x�y

Some theorems for higher order quotients are like those for quotients� but others
need an additional premise� since the concept is more general�

�� theorems for equality ��
per class eqI �x�y �� ��x
����y
��
per class eqE ���x�D� ��x
����y
�

 �� x�y�
per class eq �x�D �� ��x
����y
��x�y�

�� theorems for inequality ��
per class neqI ���x�D�	x�y

 �� ��x
� 
���y
��
per class neqE ���x
� 
���y
� �� 	x�y�
per class neq �x�D �� ��x
�
���y
���	x�y��

�� theorems for exhaustiveness and induction ��
per class exh ��x�q���x
��
per class all ��x�P��x
� �� P q�

�� theorems for any in ��
per any in class �x�D �� any in ��x
� � x�

per class any in ��x�����per�x�D ��
��any in�q�����per quot�
��q�

The additional premise x�D is required� since there may be di�erent elements
which are not in relation to each other� All those elements would be represented
by the empty partial equivalence class� Therefore we cannot deduce from the
equality of equivalence classes that the elements are equivalent� This problem
can be solved� if we de�ne the PER such that it is re�exive for all elements� except
for one element� Using � as the only element which is not re�exive integrates
our concept of PERs with the Scott�domains �see �Slo��
 for more details��

With these polymorphic theorems we can transform theorems from repre�
sentations to quotients without schematically proving them again� The reason
for this is that the axiomatic type classes allow us to tailor the polymorphism
to our constructions� With axiomatic type classes we can justify the use of type
classes without extra�logical arguments and they allow us to prove all necessary
theorems within the system�

Comparing our construction with the schematic construction of quotients
shows us� beside the fact that we use PERs and higher order quotients� the ar�
gument� that we can instantiate a type only once into a type class and we can
therefore have at most one quotient over every type� This drawback is overcome
by an embedding method� presented in the following section� The method al�
lows us to reuse a basic type for multiple quotient de�nitions by schematically
constructing another type for the de�nition of the PER	��

�� Note that we do not aim at the construction of value dependent �quotient	 types�
like the integers modulo n which would exceed Isabelle�s type system� Therefore the
presented method su�ces for �static types��



� Example� Rational Numbers

This section presents the application of �higher order� quotients on the frac�
tional representation of rational numbers� The intended quotient is to identify
terms like 	

�
with �

�
� This example could also be treated with ordinary quotients�

however we selected it� since it is small� well�known� and su�ces to illustrate
the method for using quotients� The emphasis lies not only in the simple task
of dealing with fractions� but also in the embedding method which allows us to
reuse a type as basis for several quotients� Higher order quotients can be applied
in the same way� for example to identify observational equivalent functions�

Our quotient constructor builds the quotient with respect to a �xed �partial�
equivalence relation� This relation is �xed for each type by the instance of this
type into the class per� Encoding the PER into the type class has the advantage�
that the operation �� 
� does not need an additional parameter for the PER
and that we may have a general type constructor for the construction of quotient
types� The drawback of this encoding is that on every type we have at most one
PER�

In our example we represent rational numbers by pairs of natural numbers
and positive natural numbers� However� if we have PERs on positive and natural
numbers� and a general PER for pairs �p �� q � �fst p � fst q � snd p

� snd q��� then we have already a PER de�ned on pairs of natural numbers�
We could build quotients over it� but this is not the PER we need to identify
terms like 	

�
with �

�
� In addition the Isabelle type system does not allow us to

instance the type �nat � pnat� directly into the class per� since it permits only
some special forms of arities	��

To avoid these problems� we need an embedding� We de�ne a new represent�
ing type with the typedef construct�

NPAIR � Arith � Prod � PER � PNAT �
�� embedded representation� ��

typedef NP � �fn��nat�pnat�Trueg�

end

With this representing type we de�ne the equivalence relation by


�� NPAIR �continued� ��
defs per NP def � �op ��� �

��x y�fst�Rep NP x� � Rep pnat�snd�Rep NP y�� �
fst�Rep NP y� � Rep pnat�snd�Rep NP x��� �

This de�nition might look quite technical� but with the theorems from the
typedef construction with the predicate True the embedding functions for NP
are isomorphisms and therefore they disappear in the proofs using the simpli�er�

�� Arities are a very restricted form of schematic properties about type constructors�



Since we have no special multiplication for natural numbers with positive num�
bers� we use the representation function Rep pnat� de�ned in Section ���� Elimi�
nating this representation function with the corresponding abstraction function
Abs pnat requires that the argument is a positive natural number �see the fol�
lowing proof��

The next step is to prove that this relation is a PER� We prove


per sym NP ��x��NP� �� y �� y �� x�

per trans NP ����x��NP� �� y� y �� z

 �� x �� z�

We do not need to prove re�exivity� since we are using the higher order quotient
construct� which requires only a PER� To prove transitivity of this equivalence
relation was the only non�trivial task in this example�

After the instantiation of our representation into the class per we de�ne the
the type fract as quotient of our representation�

FRACT � NPAIR � HQUOT �
instance NP��per �per sym NP	per trans NP�

�� now define fractions ��
types fract � NP quot

�� example for fractions ��
consts half �� �fract�

defs half def �half � ��Abs NP�
	Abs pnat 
�
��
end

We derive the instantiation rule for the representation


inst NP per ��op �����x y�fst�Rep NP x��Rep pnat�snd�Rep NP y���
fst�Rep NP y��Rep pnat�snd�Rep NP x����

As an example for an application consider the proof of the following theorem


� val prems � goalw thy �half def

���n �� half � �� Abs NP�n	Abs pnat�
�n�� 
���

� by �cut facts tac prems 
��

Level 


half � �� abs NP �n	 
 � n� 
�

� � � n ��

�� Abs NP �
	 Abs pnat 
� 
� �
�� Abs NP �n	 Abs pnat �
 � n�� 
�

�� derive that ��n�n ��
�n� ��
� by �dres inst tac ���m�	�n��
 trans less add
 
��

Level 


half � �� Abs NP �n	 Abs pnat �
 � n�� 
�

� � � n � n ��



�� Abs NP �
	 Abs pnat 
� 
� �
�� Abs NP �n	 Abs pnat �
 � n�� 
�

� fr per class eqI�

Subgoal 
 selected

Level �

half � �� Abs NP �n	 Abs pnat �
 � n�� 
�

� � � n � n ��

Abs NP �
	 Abs pnat 
� �
Abs NP �n	 Abs pnat �
 � n��

� by �simp tac ��simpset addsimps �inst NP per
� 
��

Level �

half � �� Abs NP �n	 Abs pnat �
 � n�� 
�
No subgoals�

This proof shows how the equality between quotients is reduced to the equiva�
lence of the representations and that the embedding functions for the PER do not
harm� The embedding of positive natural numbers requires a proof step� With
the instantiation rule and some arithmetic knowledge the proof is completed
automatically�

This example shows how easy quotients can be applied� even if an embedding
is used for the representation�

� Conclusion

In this work we used axiomatic type classes and type constructors to build a
quotient construction for Isabelle HOL� Using PERs instead of equivalence re�
lations allows us to build quotients over arbitrary functions and saves us from
proving re�exivity� Quotients can be used as a special case of higher order quo�
tients� Axiomatic type classes are applied to tailor the use of polymorphism
to a polymorphic construction which requires neither schematic proofs nor any
extra�logical justi�cation�

Because partial equivalence classes can be empty� some theorems for higher
order quotients are not as general as those for quotients� However a combination
with Scott�domains provides a solution �Slo��
� The problem that type classes
do not allow us to have multiple PERs on one type is methodically avoided with
the embeddings presented in the example�

PERs are a very general concept in theoretical computer science� They are
used for example as models in type theory �BM��
� In the �eld of algebraic spec�
i�cations PERs are used for the implementation of ADTs� The implementation
of ADTs consists of a restriction to a subtype� followed by a quotient step� Both
can be expressed by PERs �for a formalization of implementation of ADTs in
�rst order logic with PERs see for example �BH��
�� PERs can also be used to



de�ne a predicate to characterize observer functions and observability in a higher
order logic �see �Slo��
�� There has also been some work on quotients in theorem
provers �for example in �Har��
� or some work from T� Kalker presented at the
���	 HOL workshop without proceedings�� but these approaches do not use the
advantages of polymorphism in combination with the axiomatic type classes and
they cannot build quotients over arbitrary function spaces�

An interesting application of quotients is to formalize the concept of states�
Consider a functional description of a software module� From an observational
point of view the module receives a stream of inputs and answers with a stream
of outputs� The variables in the speci�cation and realization of this module can
be expressed as quotients over input histories� If the quotient over these possibly
in�nite input streams is �nite� model checking can be used to prove the correct�
ness of the module� So quotients can combine functional system descriptions with
states and model checking� The integration of quotients into a functional deve�
lopment method is described in �Slo��
� the combination with model checking is
ongoing work in our research project KorSys�

With this work we integrated PERs and quotients into Isabelle HOL and can
use Isabelle now for formal development with quotients over arbitrary types�

Acknowledgments� I thank Tobias Nipkow for discussions on quotients
and their implementation in Isabelle� For many comments on draft versions of
this paper I thank Markus Wenzel and Jan Philipps� Furthermore I thank the
anonymous referees for their constructive comments�

References

�BH��� Michel Bidoit and Rolf Hennicker� Behavioural Theories and The Proof of
Behavioural Properties� Technical report� Paris� �����

�BM��� Kim Bruce and John C� Mitchell� PER models of subtyping� recursive types
and higher�order polymorphism� In Principles of Programming Languages
��� pages �������� Albequerque� New Mexico� �����

�Chu��� Alonzo Church� A formulation of the simple theory of types� J� Symbolic
Logic� �������� �����

�GM��� M� Gordon and T� Melham� Introduction to HOL� A Theorem Proving Envi�
ronment for Higher Order Logic� Cambridge University Press� �����

�Har��� John Robert Harrison� Theorem Proving with the Real Numbers� PhD thesis�
University of Cambridge Computer Laboratory� New Museums Site� Pem�
broke Street� Cambridge� CB� �QG� UK� ����� Technical Report No ����

�HJW��� P� Hudak� S� Peyton Jones� and P� Wadler� editors� Report on the Program�
ming Language Haskell� A Non�strict Purely Functional Language �Version
����� ACM SIGPLAN Notices� May �����

�Jon��� M� P� Jones� An Introduction to Gofer� August �����

�Nip��� T� Nipkow� Order�Sorted Polymorphism in Isabelle� In G� Huet� G� Plotkin�
and C� Jones� editors� Proc� �nd Workshop on Logical Frameworks� pages
�������� �����

�Pau��� Lawrence C� Paulson� Isabelle� A Generic Theorem Prover� volume ��� of
LNCS� Springer� �����



�Reg��� Franz Regensburger� HOLCF� Eine konservative Erweiterung von HOL um
LCF� PhD thesis� Technische Universit�at M�unchen� �����

�Rob��� Edmund Robinson� How Complete is PER� In Fourth Annual Symposium
on Logic in Computer Science� pages �������� �����

�Slo��� Oscar Slotosch� Re	nements in HOLCF� Implementation of Interactive Sys�
tems� PhD thesis� Technische Universit�at M�unchen� �����

�V�ol��� Norbert V�olker� On the Representation of Datatypes in Isabelle�HOL� Tech�
nical Report ���� University of Cambridge Computer Laboratory� ����� Pro�
ceedings of the First Isabelle Users Workshop�

�Wen��� Markus Wenzel� Axiomatische Typklassen in Isabelle� Master�s thesis� Insti�
tut f�ur Informatik� TU M�unchen� �����

�Wen��� M� Wenzel�
Using axiomatic type classes in Isabelle 
 a tutorial� ����� Available at
http���www��informatik�tu�muenchen�de��nipkow�isadist�axclass�dvi�gz�

�Wen��� M� Wenzel� Type Classes and Overloading in Higher�Order Logic� In Pro�
ceedings of Theorem Proving in Higher Order Logics� ����� in this volume�

This article was processed using the LATEX macro package with LLNCS style


