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olle
ts a variety of binding forms found in the wild, together with a few arti�
ial examples.There seems to be no obvious upper bound for the desirable expressiveness of a notion of binding algebra {it is always possible to invent a more wa
ky example { so our fo
us here is on exploring the limits of whatpeople a
tually want to use. Any additions would be very wel
ome!One might use these to understand and 
ompare proposals for binding syntax { to see how they would be dealtwith in the various obvious 
andidates (Twelf/HOAS, De Bruijn/Coq, Nominal datatypes/Isabelle-HOL,...),and to assess the level of "en
oding noise" involved.For most of them they are des
ribed here using the metalanguage pro
essed by the ott prototype. Examples
agged [*℄ 
annot be expressed in that as it stands.We think we need to be able to express 1{19, perhaps 20, and are not 
on
erned with 21{22.First, a series of ML-style let binders, of in
reasing fan
iness. Weirder things follow afterwards.1) Single binders - simple lambda 
al
ulussort termvarvar X :: termvarexp ::= Xj � X : exp bind X in expj exp exp0Examples: x � x : x y and � x : x � x : � y : x y2) Pattern binders - lambda 
al
ulus with pairs and pair patternssort termvarvar X :: termvarexp ::= Xj � X : exp bind X in expj exp exp0j ( exp ; exp0 )j let pat = exp in exp0 bind binders(pat) in exp0pat ::= X binders = Xj binders = fgj ( pat ; pat 0 ) binders = binders(pat) [ binders(pat 0)names(binders(pat))# names(binders(pat 0))Example: let ( x ; y ) = z in x y with its pat subterm ( x ; y )Here we use an auxiliary `binders' to 
olle
t the binding o

urren
es of a pattern (`binders' is not a keyword,and some examples need more than one auxiliary.).The names(binders(pat)) denotes the set of names at those o

urren
es in pat.1



There is a potential 
on
i
t between multiple o

urren
es of the same identi�er in a pattern. Informally, weusually impose a 
ondition that the identi�ers are all distin
t. Whether that is built into the de�nition ofabstra
t syntax up to alpha varies (it need not be involved in the de�nition of alpha equivalen
e - instead itjust de�nes well-formedness predi
ates, on both raw and quotiented terms).3) Multiple bindings in a single produ
tion - fun
tion let with an expli
it argumentsort termvarvar X :: termvarexp ::= Xj � X : exp bind X in expj exp exp0j ( exp ; exp0 )j let X pat = exp in exp0 bind binders(pat) in expbind X in exp0names(X )# names(binders(pat))pat ::= X binders = Xj binders = fgj ( pat ; pat 0 ) binders = binders(pat) [ binders(pat 0)names(binders(pat))# names(binders(pat 0))Examples: � x : let f ( x ; y ) = x in f ( x ; y ) and � x : � y : y x.Here (not mu
h of a di� from the previous one) a single produ
tion has two independent bind 
lauses, bindingdi�erent binders in di�erent subterms.4) List forms in patterns - fun
tion let with expli
it arguments, and tuple patterns [*℄exp ::= ... | let X pat1 .. patn = exp in exp'or pat ::= ... | (pat1,..,patn) n>=0Typi
ally one would formalise with new synta
ti
 
ategories for the list forms, but .. forms 
ould be supportedmore dire
tly (
f the EBNF examples later).5) Re
ursive binders - single letre
sort termvarvar X :: termvarexp ::= Xj ( exp ; exp0 )j letre
 X = exp in exp0 bind X in expbind X in exp0Here the s
ope of a binder is two distin
t subterms.Example: letre
 X = ( X ; Y ) in ( X ; Y )6) Re
ursive binders - single letre
 with expli
it argument
2



sort termvarvar X :: termvarexp ::= Xj ( exp ; exp0 )j letre
 X pat = exp in exp0 bind X in expbind X in exp0bind b(pat) in expnames(X )# names(b(pat))pat ::= X b = Xj ( pat ; pat 0 ) b = b(pat) [ b(pat 0)names(b(pat))# names(b(pat 0))Example: letre
 f ( x ; y ) = ( f ; ( a ; ( x ; y ) ) ) in ( f ; ( b ; ( x ; y ) ) )Here there is a potential 
on
i
t between the X and pat binders, whi
h 
ould resolve - as here - by requiringthem to be distin
t. It's perhaps more intuitive to have the pat s
ope shadow the X s
ope in exp if pat
ontains any Xs, by introdu
ing an intermediate synta
ti
 
ategory for the X pat = exp form (as below).7) Multiple re
ursive binders - multiple letre
sort termvarvar X :: termvarexp ::= Xj ()j ( exp ; exp0 )j letre
 lrbs in exp bind b(lrbs) in lrbsbind b(lrbs) in expdistin
tnames(b(lrbs))lrb ::= X = exp b = Xlrbs ::= lrb b = b(lrb)j lrb and lrbs b = b(lrb) [ b(lrbs)Example: letre
 f = ( g ; ( f ; x ) ) and g = ( g ; ( f ; x ) ) in ( f ; g ) with its subtermf = ( g ; ( f ; x ) )Just like (5), though the Xs on the left of a lrbs should usually all be distin
t.Note that the "bind b(lrbs) in lrbs" binds in all parts of the lrbs; there's nothing saying "bind only in theright-hand sides". That might seem strange at �rst sight, but we think it's not a problem. In fa
t, on
eyou've quotiented by alpha, the binding o

urren
e has no spe
ial status.8) Multiple re
ursive binders - multiple letre
 with multiple 
lauses for ea
h fun
tion (prompted by JamesCheney's MERLIN talk)For example something like this:let re
 f ((),y) = g (y,y,()) 3



| f (y,z) = g (y,(),z)and g ((),y,z) = f (y,z)| g (x,y,z) = f ((),())in ...where ea
h blo
k de�nes a fun
tion (f and g), with potentially many 
lauses, but ea
h fun
tion is de�ned byat most one blo
k, and ea
h blo
k 
onsists only of 
lauses for that fun
tion.sort termvarvar X :: termvarexp ::= Xj ()j ( exp ; exp0 )j ( exp )j exp exp0j let re
 lrbs in exp bind b(lrbs) in lrbsbind b(lrbs) in expfn
lause ::= X pat = exp b = Xbind bpat(pat) in expnames(X )# names(bpat(pat))fn
lauses ::= fn
lause b = b(fn
lause)bheads = b(fn
lause)j fn
lause jj fn
lauses b = b(fn
lause) [ b(fn
lauses)bheads = b(fn
lause)names(b(fn
lause)) = names(b(fn
lauses))lrb ::= fn
lauses b = b(fn
lauses)bheads = bheads(fn
lauses)lrbs ::= lrb b = b(lrb)bheads = bheads(lrb)j lrb and lrbs b = b(lrb) [ b(lrbs)bheads = bheads(lrb) [ bheads(lrbs)names(bheads(lrb))# names(bheads(lrbs))pat ::= X bpat = Xj () bpat = fgj ( pat ; pat 0 ) bpat = bpat(pat) [ bpat(pat 0)Here: b 
olle
ts the re
ursive binders - all o

urren
es of f,g et
 bheads 
olle
ts the �rst of ea
h of these -the �rst f, the �rst g, et
 - to state the (*) distin
tness 
ondition. This is not used to de�ne binding. bpat
olle
ts the binders of a patternFor example let re
 f x = g ( f x ) jj f ( a ; b ) = g ( f ( a ; x ) ) and g y = g ( f x ) in ( f ; g ), with itssubterm f x = g ( f x ).At present this doesn't ex
lude 4



let re
 x () = () and y x = x in ( x ; y )and neither does OCaml 3.07+2, but neither identify the x's: - : (unit -> unit) * ('a -> 'a) = (<fun>, <fun>).Depending on the exa
t de�nition of alpha one might have all the x's above alpha-vary together, whi
hwould be wrong. Our de�nition of alpha gives the intended binding, be
ause bpat is not propagated outsidethe fn
lause produ
tion.If we did want to impose distin
tness, how would we say it? In letre
 lrbs in exp we have, for all pat o

urringin lrbs,names(b(lrbs)) interse
t names(bpat(pat))Add set-of-sets of o

urren
es to the auxiliaries?9) Let sequen
e, with ea
h binding in the next [*?℄sort termvarvar X :: termvarexp ::= Xj ()j 0j 1j 2j 3j exp + exp0j let lets in exp bind b(lets) in expdistin
tnames(b(lets))lets ::= alet b = b(alet)j alet and lets b = b(alet) [ b(lets)bind b(alet) in letsalet ::= X = exp b = XFor example: let x = y and y = x in x + yNote that here it would be ni
e not to require distin
tness, eg to admitlet x=0 and x=1+x and x=2+x in xYou might regard this as synta
ti
 sugar for iterated single lets, but suppose you wanted to express it dire
tly,with a grammar
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sort termvarvar X :: termvarexp ::= Xj ()j 0j 1j 2j 3j exp + exp0j let lets in exp bind b(lets) in explets ::= alet b = b(alet)j alet and lets b = b(alet) [ b(lets)bind b(alet) in letsalet ::= X = exp b = XAt present the standard semanti
s doesn't support this, identifying all the x's inlet x = 0 + x and x = 1 + x and x = 2 + x and x = 3 + x in 0and in its lets subterm x = 0 + x and x = 1 + x and x = 2 + x and x = 3 + xIt's possible that the de�nition 
ould be benignly 
hanged to not do this. With the variant_
_x_semanti
sswit
h the x's in the lets subterm are all unequated (ex
ept the last two, whi
h is an artifa
t of the fa
t thatthe grammar 
lause for lets ::= alet does not have an annotation (+ bind b(alet) in nothing +) ). However,in the full term they are all identi�ed again - by exa
tly the me
hanism that means that or-patterns andjoin patterns work 
orre
tly.10) Dependent re
ord patternsFor 
on
reteness, this is loosely based on the Pi
t 4.1 grammar. (here we use multiple sorts of identi�ers,and do not have <empty> produ
tions).
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sort typevarsort termvarsort LABELvar X :: typevarvar x :: termvarvar Label :: LABELPro
 ::= xj [ X ; Pro
 ℄j ( Pro
 ; Pro
0 )j let De
 in Pro
 bind b1(De
) in Pro
De
 ::= val Pat = Val bind b1(Pat) in Valb1 = b1(Pat)Pat ::= x : Type b1 = xj [ ℄ b1 = fgj [ Pats ℄ b1 = b1(Pats)Pats ::= Label = FieldPat b1 = b1(FieldPat )j Label = FieldPat Pats b1 = b1(FieldPat ) [ b1(Pats)bind b2(FieldPat) in Patsnames(b1(FieldPat))# names(b1(Pats))FieldPat ::= Pat b1 = b1(Pat)b2 = fgj # X < Type b1 = Xb2 = XType ::= intj unitj topj Type � Type 0j XVal ::= ()j xb1 
olle
ts all the binders of a 
omplex patternb2 
olle
ts just the binders that bind to the right of a parti
ular (type) �eld(several b1 and b2 de�nition 
lauses might be omitted if the default-union rule is used, though we wouldthen want to give the types of b1:Pat,Pats,FieldPat and b2:FieldPat expli
itly somewhere)For example, 
onsiderlet val [ l1 = # X < top l2 = x : X ℄ = w in [ X ; ( x ; y ) ℄and its De
 subterm 7



val [ l1 = # X < top l2 = x : X ℄ = wand the De
val [ l1 = # X < top l2 = [ l2a = x : X l2b = # Y < top ℄ l3 = y : X � Y ℄ = wwhere the Y in l3 is free.11) OCaml or-patterns. From the manual:The pattern pattern1 | pattern2 represents the logi
al \or" of the two patterns pattern1 and pattern2.A value mat
hes pattern1 | pattern2 either if it mat
hes pattern1 or if it mat
hes pattern2. The twosub-patterns pattern1 and pattern2 must bind exa
tly the same identi�ers to values having the same types.Mat
hing is performed from left to right. More pre
isely, in 
ase some value v mat
hes pattern1 | pattern2,the bindings performed are those of pattern1 when v mat
hes pattern1. Otherwise, value v mat
hes pattern2whose bindings are performed.For our binding spe
i�
ations to 
apture this we might add equality 
onstraints on name sets, egpattern ::= ...| (pattern1 | pattern2) b = b(pattern1) union b(pattern2)names(b(pattern1)) = names(b(pattern2))Note that in the 
onstraint the names(b(pattern1)) and names(b(pattern2)) denote the sets of identi�ers,not the underlying sets of o

urren
es of identi�ers.In the b = b(pattern1) union b(pattern2) 
lause we mean the union of the sets of o

urren
es, though (asusual), to ensure they alpha 
onvert together. For example,let f ((None,Some x)|(Some x,None)) = x in f (None,Some 2);;=alphalet f ((None,Some y)|(Some y,None)) = y in f (None,Some 2);;Think this is ok for deeply nested or and non-or patterns, eg:sort termvarvar x :: termvarexp ::= xj ( exp ; exp0 )j let pat = exp in exp0 bind b(pat) in exp0pat ::= ( pat ; pat 0 ) b = b(pat) [ b(pat 0)names(b(pat))# names(b(pat 0))j ( pat jj pat 0 ) b = b(pat) [ b(pat 0)names(b(pat)) = names(b(pat 0))j Some x b = xj None b = fglet ( ( None ; Some x ) jj ( Some x ; None ) ) = w in ( x ; x )12) Join 
al
ulusJoin 
al
ulus de�nitions have several interesting aspe
ts. Here is a raw syntax extra
ted from the JoCamlmanual of January 8, 2001, with binding spe
 made up by PS.
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sort namesvar name :: namespro
ess ::= de
laration in pro
ess bind b(de
laration) in pro
essj 0j name expressionj pro
ess jj pro
ess 0de
laration ::= let def automata de�nition b = b(automata de�nition)bind b(automata de�nition) in automata de�nitionautomata de�nition ::= automaton b = b(automaton)j automaton and automata de�nition b = b(automaton) [ b(automata de�nition)names(b(automaton))# names(b(automata de�nition))automaton ::= join pattern = pro
ess b = b(join pattern)bind b(join pattern) in pro
essbind b2(join pattern) in pro
essj join pattern = pro
ess or automaton b = b(join pattern) [ b(automaton)bind b2(join pattern) in pro
essjoin pattern ::= 
hannel de
l b = b(
hannel de
l)b2 = b2(
hannel de
l)j 
hannel de
l jj join pattern b = b(
hannel de
l) [ b(join pattern)b2 = b2(
hannel de
l) [ b2(join pattern)names(b2(
hannel de
l))# names(b2(join pattern))
hannel de
l ::= name OCaml pattern b = nameb2 = bindings(OCaml pattern)expression ::= namej ( expression ; expression 0 )OCaml pattern ::= name bindings = namej ( name ) bindings = namej () bindings = fgj ( OCaml pattern ; OCaml pattern 0 ) bindings = bindings(OCaml pattern) [ bindings(OCaml pattern 0)names(bindings(OCaml pattern))# names(bindings(OCaml pattern 0))Note:- it would be rather ni
er to give the raw grammar in an extended BNF (as the JoCaml de�nition does),with optional 
lauses in [..℄ The binding spe
i�
ation language would need to follow suit.- the di�erent or-
lauses of an automaton and |-
lauses of a join-pattern do not ne
essarily have distin
tbinders. For example, 9



let def x () jj x () = a ( x ; y ) or x () jj y () = b ( x ; y ) in 
 ( x ; ( y ; z ) )with two is just �ne, binding x and y in P, Q, and R. This is alpha equivalent tolet def x 0 () jj x 0 () = a ( x 0 ; y 0 ) or x 0 () jj y 0 () = b ( x 0 ; y 0 ) in 
 ( x 0 ; ( y 0 ; z ) )but not tolet def x 0 () jj x 0 () = a ( x 0 ; y 0 ) or x 00 () jj y 0 () = b ( x 00 ; y 0 ) in 
 ( x 0 ; ( y 0 ; z ) )- the identi�ers within the 
olle
tion of OCaml-patterns in a join pattern, on the other hand, presumablyshould all be distin
t, and should be distin
t from all the names. For example,let def 
(x) | d(x) = P in Randlet def x(x) = P in Rshould not be allowed, whereaslet def 
 ( x ) jj d ( y ) = p ( 
 ; ( d ; ( x ; y ) ) ) or 
 ( x ) = q ( 
 ; ( d ; x ) ) in r ( 
 ; d )should.13) Multiple binding sorts (and the POPLmark example)In languages with multiple name sorts, eg of type and term names, we want to ensure that a binder of onesort does not bind o

urren
es of another. For example, we might writelet f = Lambda X:Type => lambda ((x:X),(f:X->X)) => f x in ...but let f = Lambda x:Type => lambda ((x:x),(f:x->x)) => f x in ...should either be forbidden or it should be understood that the x type binder binds only the o

urren
es ofx in type positions.
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The Fsub-with-re
ords example illustrates thissort typevarsort termvarsort labelvar X :: typevarvar x :: termvarvar l :: labelT ::= Xj Topj T ! T 0j 8 X <: T : T 0 bind X in T 0j f gj f T re
body gT re
body ::= l : Tj l : T ; T re
bodyt ::= xj � x : T : t bind x in tj t t 0j � X <: T : t bind X in tj t [ T ℄j f gj f t re
body gj t : lj let p = t in t 0 bind bo(p) in t 0t re
body ::= l = tj l = t ; t re
bodyp ::= x : T bo = xj f g bo = fgj f p re
body g bo = bo(p re
body)p re
body ::= l = p bo = bo(p)j l = p ; p re
body bo = bo(p) [ bo(p re
body)G ::= empty dom = fgj G ; X <: T dom = dom(G) [Xnames(dom(G))# names(X )j G ; x : T dom = dom(G) [ xnames(dom(G))# names(x)J ::= G ` T <: T 0j G ` t : Tj t �! t 0Gb ::= empty dom = fgj Gb ; X <: T dom = dom(Gb) [Xbind dom(Gb) in Tnames(dom(Gb))# names(X )j Gb ; x : T dom = dom(Gb) [ xbind dom(Gb) in Tnames(dom(Gb))# names(x)Jb ::= Gb ` T <: T 0 bind dom(Gb) in Tbind dom(Gb) in T 0j Gb ` t : T bind dom(Gb) in tbind dom(Gb) in Tj t �! t 0
11



Here we have three sorts of names (but no lexi
al distin
tion between them); bo(pattern) only 
olle
ts theterm names of a pattern; and in Lambda X<:T.term the X binds throughout the term, in
luding in any typesin patterns it may 
ontain. Potential monsters su
h as� y <: Top : let x : X = y in x(with the y binding and bound) are ex
luded only by the sort distin
tion, whi
h ensures that the two y'sare di�erent.We 
ould add another auxiliary and 
onditions to ensure that the labels in a re
ord are distin
t.One 
ould have binding spe
s that make expli
it use of the sorts (as the new Fresh does), eg...| let pattern = term in term' bind termvar(pattern) in term'If you have the ma
hinery for de�ning arbitrary name-o

urren
e auxiliaries (su
h as the bo here) it's not
lear that this is useful, though. But having multiple sorts is - parti
ularly when you 
ome to 
on
rete terms.When we say "bind MSE in NN" that really means "bind all o

urren
es of identi�ers in positions of the
orresponding sort (as in MSE) in NN".For judgements, one might have the domain of a type environment G binding in the remainder of thejudgement (as in Jbinding) or not (as in J). Note that we are not restri
ting auxiliaries (eg dom(..) ) to besets of o

urren
es of variables of the same sort. Example::J empty ; X <: Top ; Y <: X ! X ; x : X ; y : Y ` y x : X:Jb empty ; X <: Top ; Y <: X ! X ; x : X ; y : Y ` y x : XIn the latter 
ase the Gb has a non-trivial o::Gb empty ; X <: Top ; Y <: X ! X ; x : X ; y : Y14) S
oping without bindingLabels, ML 
onstru
tor names, and so on. Various 
lasses of identi�ers have s
opes, and are subje
t todistin
tness 
onditions, but do not alpha-vary.Whether this is something one wants to address in the abstra
t syntax is un
lear, but the distin
tness
onditions we use elsewhere perhaps would suÆ
e. (Though if you introdu
e o

urren
e auxiliaries just forthat, that are not identifying binders, the de�nition of alpha equivalen
e should not pay attention to them.)15) Forbidding shadowing [?℄Java lo
al de
larations are not permitted if they would shadow. This is maybe best treated as a distin
tness
ondition, but with or without binding?16) Store [*, but should℄store ::= lo
ation -->_{finite,partial} value
onfig ::= store; expr dom(store) binds in storedom(store) binds in exprThe binding here is just like letre
s - the only interesting thing is that the syntax is not free, but either:- with �nite partial fun
tion spa
es and dom() provided as primitive, or - subje
t to asso
iative, 
ommutative,idempoten
y equations and with a 
ondition saying ea
h lo
ation o

urs at most on
e on the left.In A
ute we had 
on�gurations with both a store typing and a store, together with running pro
esses.Really, the store typing and store should simultaneously bind (the identi�ers in their domains, whi
h shouldbe identi
al) in the store range and the pro
esses. (In the a
tual de�nition we had neither bind, as thatseemed a bit baroque.)17) Internal/external names in module systems 12



ML-style module system semanti
s often use both `external' names, whi
h don't alpha-vary, and `internal'names, whi
h do. For example, inmodule M = stru
ttype tt_t = intval xx_x : t = 3endlet y = M.xxthe tt and xx are external names, used in `dot notation' proje
tions in the s
ope of the de�nition of M,whereas the t and x are binders, binding in the suÆx of the stru
ture.Here the t and x are just 
onventional binders, and this lies in the notes1 de�nition. One 
an also have a
ombined form, in two 
avours, as in "Names with auxiliary data".18) Binding spe
s in grammars of 
ontexts(eg the lambda-r example)let x=e in _ . e'Generally our 
ontexts are 
on
rete gadgets, at least on the path to the hole, but one 
ould do thingsdi�erently.19) Type environments and inferen
e rulesNothing very new here, in fa
t, but there are several 
hoi
es as to what binding you have, and very di�erenten
odings in di�erent provers.Type envs 
an bind internally and in the other parts of judgements or not - matter of taste; one should alloweither. This is shown in the POPLmark example above.Type envs 
an be either on the left or the right - a stylisti
 
hoi
e only:E ::= empty| X,E X bind in E| x:T,Eor (on the right)E ::= empty b={}| E,X b=b(E) union X| E,x:T b=b(E) b(E) bind in T(and sometimes , is asso
iative).Have to do a type formation judgement - depending on the 
hoi
es above, either:J ::= E |- T Type b(E) bind in T| E |- okor J ::= E |- T Type| E |- okE |- okE |- T Type E |- ok----------- -------------- --------------empty |- ok E,x:T ok E,X okQuestion: where do we impose distin
tness of names in an E. We 
ould say13



names(b(E)) interse
t names(X)) = {}names(b(E)) interse
t names(x)) = {}in the two produ
tions of the E grammar, or we 
ould saydistin
t(names(b(E))in one or both produ
tions of the J grammar, or we 
ould sayx notin dom(E)X notin dom(E)in the ok-ness typing rules, or we 
ould have built in that to the de�nition of , (in whi
h 
ase it's not amatter for us, it's just something the proof assistant knows about).Note that we might be using distin
t(names(...)) for non-binders, eg as here with the "E don't bind" 
hoi
e.20) Names with auxiliary data [*, not 
lear whether or not this should be supported℄(from Mi
hael Norrish) HOL and Isabelle implement types of terms where the variables are stored with theirtypes. Thus\ (x:num). (x:num) + f (x:bool)is a valid term. The (x:bool) is not bound.In some sense, the 
ombination of "x" and "num" is the binding unit, but when you alpha 
onvert, you areonly given li
en
e to 
hange the "x", not the type. The above is thus alpha-equal to\ (y:num). (y:num) + f (x:bool)Similar binding was used in the A
ute de�nition for module external/internal name pairs. Module nameswere of the form MM_M where MM is an external name (non binding) and M is an internal (subje
t to binding,but only for o

urren
es asso
iated with the same external name). Keeping both parts was needed to supportrebinding. As far as I re
all the alternative approa
h, of having the M be a simple binder, was te
hni
allysuÆ
ient but seemed less intuitive.Perhaps we should generalise sorting to support this, allowing arbitrary term stru
ture in sorts - though ifwe allow names (or, worse, names and binding) in sorts things would be more 
omplex.Examples whi
h we don't think we need to express21) First-mat
h patterns [*℄ [not something we want to do℄O

asionally one has patterns in whi
h the �rst o

urren
e of an x is a binding o

urren
e and later o

ur-ren
es are equality-patterns. This 
ropped up in a 
omposite-event language (Ri
hard Hayton, Cambridge).Stephanie Weiri
h mentioned something in Perl?? Olin Shivers ICFP talk had binding dependent on 
ontrol
ow.When things get this wierd, maybe one would just be using an environment semanti
s in any 
ase, and sonot need syntax up to alpha.22) Brian's triplet [not a natural example℄Overlapping s
opes that are not in
luded in ea
h other, eg
14



sort termvarvar X Y Z :: termvarP ::= WeirdBind X ; Y in ( P ; P 0 ; P 00 ) bind X in Pbind X in P 0bind Y in P 0bind Y in P 00j Xj ( P ; P 0 )WeirdBind X ; Y in ( ( X ; Y ) ; ( X ; Y ) ; ( X ; Y ) )We don't know a natural example like this (is there one?), but it 
an be spe
i�ed in this metalanguage.
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