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Abstract

We introduce Systerfic, which extends System F with support for non-syntactic
type equality. There are two main extensions: (i) explicitnasses for type
equalities, and (ii) open, non-parametric type functiarigen meaning by top-
level equality axioms. Unlike SystemIF¢ is expressive enough to serve as a tar-
get for several different source-language features, dioyHaskell'snewtype,
generalised algebraic data types, associated typesjdaoattiependencies, and
perhaps more besides.
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Abstract

We introduce Systentr'c, which extends System F with support
for non-syntactic type equality. There are two main extensi (i)
explicit witnesses for type equalities, and (ii) open, mpamametric
type functions, given meaning by top-level equality axiotuslike
System FF¢ is expressive enough to serve as a target for several
different source-language features, including Haskelkstype,
generalised algebraic data types, associated types,jdoattde-
pendencies, and perhaps more besides.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guage¥ Formal Definitions and Theory—Semantics; F.3.8¢-
ics and Meanings of PrografhsStudies of Program Constructs—
Type structure

General Terms Languages, Theory
Keywords Typed intermediate language, advanced type features

1. Introduction

The polymorphic lambda calculus, System F, is popular aglay
expressive typed intermediate language in compilers fioctional
languages. However, language designers have begun tdrarpér
with a variety of type systems that are difficult or impossiltd
translate into System F, such as functional dependencigsden-
eralised algebraic data types (GADTS) [44, 31], and assetia
types [6, 5]. For example, when we added GADTs to GHC, we
extended GHC'’s intermediate language with GADTs as wedinev
though GADTs are arguably an over-sophisticated additmma t
typed intermediate language. But when it came to associgped,
even with this richer intermediate language, the transteltiecame
extremely clumsy or in places impossible.

In this paper we resolve this problem by presenting SydteitX),

a super-set of F that is bothore foundationahnd more powerful
than addingad hocextensions to System F such as GADTS or as-
sociated typedic(X) uses explicit type-equality coercions as wit-
nesses to justify explicit type-cast operations. Like gjmmercions
are erased before running the program, so they are guachtdee
have no run-time cost.

This single mechanism allows a very direct encoding of dssoc
ated types and GADTSs, and allows us to deal with some exotic
functional-dependency programs that GHC currently rgjectthe
grounds that they have no System-F translatk#).(Our specific
contributions are these:
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¢ We give a formal description of Systefr, our new intermedi-
ate language, including its type system, operational séosan
soundness result, and erasure properfj@s [here are two dis-
tinct extensions. The first, explicit equality witnesseiseg a
system equivalent in power to System F + GAD8.2); the
second introduces non-parametric type functions, and swlals
stantial new power, well beyond System F + GAD$3.8).

e A distinctive property ofF'c’s type functions is that they are
open(§3.4). Here we use “open” in the same sense that Haskell
type classes are open: just as a newly defined type can be
made an instance of an existing class, s&'inwe can extend

an existing type function with a case for the new type. This

property is crucial to the translation of associated types.

The system is very general, and its soundness requireshinat t
axioms stated as part of the program text emasisten{§3.5).
That is why we call the systerfic(X): the “X” indicates that

it is parametrised over a decision procedure for checking co
sistency, rather than baking in a particular decision pioce.
(We often omit the “(X)” for brevity.) Conditions identifieth
earlier work on GADTSs, associated types, and functional de-
pendencies, already define such decision procedures.

e A major goal is thaft"c should be gractical compiler inter-
mediate language. We have paid particular attention torgmgsu
thatF ¢ programs are robust to program transformati¢. g).

It must obviously bepossibleto translate the source language
into the intermediate language; but it is also highly dédea
that it be straightforward We demonstrate thdfc has this
property, by sketching a type-preserving translation o0b tw
source language idioms, namely GADTs (Section 4) and as-
sociated types (Section 5). The latter, and the correspgndi
translation for functional dependencies, are more gerbeal

all previous type-preserving translations for these feztu

SystenF ¢ has no new foundational content: rather, it is an intrigu-
ing and practically-useful application of techniques thate been
well studied in the type-theory community. Several othdcua
exist that might in principle be used for our purpose, buytpen-
erally do not handle open type functions, are less robugiattst
formation, and are significantly more complicated. We dafeom-
parison with related work unti6.

To substantiate our claim thBt: is practical, we have implemented
it in GHC, a state-of-the-art compiler for Haskell, incladiboth
GADTs and associated (data) types. This is not just a progoty
Fc nowis GHC's intermediate language.

F¢ does not strive to do everything; rather we hope that it sfrik
an elegant balance between expressiveness and comp\&xiife

our motivating examples were GADTs and associated types, we
believe thafc may have much wider application as a typed target
for sophisticated HOT (higher-order typed) source langsag



2. Thekeyideas

No compiler usesgpure System F as an intermediate language,
because some source-language constructs can only be desuga
into pure System F by very heavy encodings. A good example is
the algebraic data types of Haskell or ML, which are made more
complicated in Haskell because algebraic data types catureap
existential type variables. To avoid heavy encoding, mostpilers
invariably extend System F by adding algebraic data typat d
constructors, andase expressions. We will us€'a to describe
System F extended in this way, where the data constructers ar
allowed to have existential components [24], type varigioien be

of higher kind, and type constructor applications can béigdar

Over the last few years, source languages (notably Hadkelig
started to explore language features that embwmaly-syntacticor
definitionaltype equality. These features include functional depen-
dencies [16], generalised algebraic data types (GADTS) 344,
and associated types [6, 5]. All three are difficult or implolesto
translate into System F — and yet the alternative of simply ex
tending System F by adding functional dependencies, GABAG,
associated types, seems wildly unattractive. Where wautcstop?

In the rest of this section we informally present SystBm, an
extension of System F that resolves the dilemma. We show tow i

which must be given when the constructor is applied, and kwhic
are brought into scope by pattern matching. The"“is syntac-
tic sugar, and we sloppily omitted the kind of the quantifigpet
variables, so the type dfero is really this:

Zero : Y a:*.¥(co:a~ Int). Exp a

Herea ranges ovetypes of kind x, while co ranges ovecoercions

of kind a ~ Int. An important property of our approach is that
coercions are typesand henceequalitiesm ~ 72 are kinds.An
equality kindm; ~ 72 categorises all coercion types that witness
the interchangeability of the two types and .. So, our slogan is
propositions as kindgndproofs as (coercion) types.

Coercion types may be formed from a set of elementary coer-
cions that correspond to the rules of equational logic; kameple,

Int : (Int ~ Int) is an instance of the reflexivity of equality and
sym co : (Int ~ a), with co : (a ~ Int), is an instance of symme-
try. A call of the constructoZero must be given a type (to instan-
tiatea) and a coercion (to instantiate), thus for example:

Zero Int Int : Exp Int

As indicated above, regular types likeit, when interpreted as
coercions, witness reflexivity.

Just like value arguments, the coercions passed to a cotwstru

can serve as a target for each of the three examples. Thelformaynen it is built are made available again by pattern matctirege,

details are presented §3. Throughout we useypewriter font
for source-code, anitalics for Fc.
21 GADTs

Consider the following simple type-safe evaluator, oftsadias the
poster child of GADTSs, written in the GADT extension of Hakke
supported by GHC:

data Exp a where

Zero :: Exp Int

Succ :: Exp Int -> Exp Int

Pair :: Exp b -> Exp ¢ -> Exp (b, c¢)
eval :: Exp a -> a

0
eval e + 1
(eval x, eval y)

eval Zero
eval (Succ e)
eval (Pair x y)

eval (Pair (Succ Zero) Zero)

The key point about this program, and the aspect that is ard t
express in System F, is that in thero branch ofeval, the type
variablea is the same asnt, even though the two are syntactically
quite different. That is why the in the Zero branch is well-typed

in a context expecting a result of type

Rather than extend the intermediate language with GADTimthe
selves — GHC's pré*c “solution” — we instead propose a gen-
eral mechanism of parameterising functions wighe equalities
written o1 ~ o2, witnessed byoercionsCoercion types are passed
around using System F’s existing type passing facilitiesemable
representing GADTSs by ordinary algebraic data types endaps
ing such type equality coercions.

Specifically, we translate the GADAxp to an ordinary algebraic
data type, where each variant is parametrised by a coercion:

data Ezp : * — x where

Zero : Ya.(a~Int) = Ezpa

Succ : Ya.(a~Int) = Ezp Int — Ezpa

Pair : Yabe. (a~ (b,c)) = Expb — Ezpc — Ezpa
So far, this is quite standard; indeed, several authorseptes
GADTs in the source language using a syntax involving explic
equality constraints, similar to that above [44, 10]. HoarevYor us
the equality constraints are extra type arguments to thetnaetor,

main

then, is the code afval in F¢:

eval = Aa:x.)e: FExp a.
case ¢ of
Zero (co:a ~ Int) —
0 » sym co
Suce (co:a ~ Int) (e': Ezp Int) —
(eval Int ¢’ + 1) » sym co
Pair (b:%) (c:x) (co:a ~ (b, c))
(er:Exp b) (e2:Exp c) —
(eval b e1, eval ¢ e2) » sym co
The form Aa:x.e abstracts over types, as usual. In the first al-
ternative of thecase expression, the pattern binds the coercion
type argument oZero to co. We use the symmetry of equality
in (sym co) to get a coercion fronint to « and use that to cast the
type of0 to a, using thecast expressiof » sym co. Cast expres-
sions have nmperationaleffect, but they serve to explain to the
type system when a value of one type (hér¢) should be treated
as another (here), and provide evidence for this equivalence. In
general, the forme » g has typetz if e : t; andg : (4 ~ &).
So, eval Int (Zero Int Int)) is of type Int as required byeval's
signature. We shall discuss coercion types and their kimaisdre
detail in§3.2.

In a similar manner, the recently-proposed extended atgeblata
types [41], which add equality and predicate constrainGA®TSs,
can be translated B¢.

2.2 Associated types

Associated types are a recently-proposed extension todHask
type-class mechanism [6, 5]. They offer open, type-indeypés
that are associated with a type class. Here is a standardpecam

class Collects c where

type Elem c -- associated type synonym
empty :: C
insert :: Elem ¢ -> ¢ -> ¢

The classCollects abstracts over a family of containers, where
the representation type of the containerdefines (or constrains)
the type of its elementBlen c. Thatis,Elem is a type-level func-
tion that transforms the collection type to the element tyhest
asinsert is non-parametric — its implementation varies depend-
ing on ¢ — so isElem. For example, a list container can contain



elements of any type supporting equality, and a bit-setainat
might represent a collection of characters:

instance Eq e => Collects [e] where
{type Elem [e] = e; ...}
instance Collects BitSet where

{type Elem BitSet = Char; ...}

Generally, type classes are translated into System F [1{])dwrn-
ing each class into a record type, called a dictionary, ¢onta
ing the class methods, (2) converting each instance intoca di
tionary value, and (3) passing such dictionaries to whiehev
function mentions a class in its signature. For example,re-fu
tion of type negate :: Num a => a -> a Wwill translate to
negate : NumDict a — a — a, whereNumDict is the record
generated from the clagism.

A record only encapsulates values, so what to do about associ
ated types, such aBlem in the example? The system given in
[6] translates each associated type into an additional pgram-
eter of the class’s dictionary type, provided the class astiince
declarations abide by some moderate constraints [6]. Fample,

the clas<ollects translates to dictionary typ€ollectsDict c e,
where e representsiem ¢ and where all occurrences dflem ¢

of the method signatures have been replaced by the new type
parametere. So, the (System F) type famsert would now be
CollectDict ce — e — ¢ — c. Therequired type transforma-
tions become more complex when associated types occur én dat
types; the data types have to be rewritten substantialingtrans-
lation, which can be a considerable burden in a compiler.

Type equality coercions enable a far more direct transtatitere
is the translation ofollects into F¢:

type Elem : x — %
data CollectsDict ¢ =

Collects {empty : c; insert : Elemc¢ — ¢ — c}

The dictionary type is as in a translation without assodiaypes.
The type declaration inF¢ introduces a newype function An
instance declaration f@tollects is translated to (a) a dictionary
transformer for the values and (b) an equality axiom thatdess
(part) of the interpretation for the type functid#iem. For example,
here is the translation intB¢ of theCollects Bitset instance:

axiom elemBS : Elem BitSet ~ Char
dCollectsBS : CollectsDict Bitset
dCollectsBS = ...

Theaxiom definition introduces a new, namedercion constant,
elemBS, which serves as a witness of the equality asserted by
the axiom; here, that we can convert between types of the form
Elem BitSet and Char. Using this coercion, we catnsert the
character ’'b’ into aBitSet by applying the coerciorelemBS
backwards to 'b’, thus:

(b’ » (sym elemBS)) : Elem BitSet

This argument fits the signature dfsert.

In short, Systeni'c supports a very direct translation of associated
types, in contrast to the clumsy one described in [6]. Whatdse,
there are several obvious extensions to the latter papecémaot

be translated into System F at all, even clumsily, &dsupports
them too, as we sketch in Section 5.

2.3 Functional dependencies

Functional dependencies are another popular extensionsKetl's
type-class mechanism [21]. With functional dependeneiescan
encode a function over typ&sas a relation, thus

class Fab | a->b
instance F Int Bool

However, some programs involving functional dependeneies
impossible to translate into System F. For example, a usgdiforn
in type-level programming is to abstract over the co-donddia
type function by way of an existential type, thén this example:

data T a = forall b. F a b => MkT (b -> b)

In this Haskell declaratiokT is the constructor of typ®, captur-
ing an existential type variabte One might hope that the following
function would type-check:

combine :: Ta ->Ta->Ta
combine (MkT f) (MkT f’) = MkT (£ . £’)

After all, since the typea functionally determines®, £ and £’
must have the same type. Yet GHC rejects this program, becaus
it cannot be translated into SysteR, becausef and £’ each
have distinct, existentially-quantified types, and therad way to
express their (non-syntactic) identity ity .

It is easy to translate this example irffe;, however:

type F'1 : x — «
data FDict : x — * — x where
F :Vab.(b~Fla) = FDictab
axiom fIntBool : F1 Int ~ Bool
data T : x — x» where
MkT : VYab.FDictab — (b — b) — Ta

combine : Ta — Ta — Ta
combine (MkT b (F (co : b~ F1a))
(MET b (F (co’ : b" ~ F1a))
= MkT ab(F abco)(f.(f »d))
where
di 2 (b ~b) co’ o sym co
d: (b = b~b—b=d — d

The functional dependency is expressed as a type fungtigmith

one equality axiom per instance. (In general there might baym
functional dependencies for a single class.) The dictipfarclass

F includes a witness that indeéds equal toF'1 a, as you can see
from the declaration of constructdr. When pattern matching in
combine, we gain access to these witnesses, and can use them to
castf’ so that it has the same type As(To construct the witness

d; we use the coercion combinatesan - and- o -, which represent
symmetry and transitivity; and fromd, we build the witnesgs.)

Even in the absence of existential types, there are reakosaixrce
programs involving functional dependencies that have reiey F
translation, and hence are rejected by GHC. We have encednte
this problem in real programs, but here is a boiled-down gtam
using the same clagsas before:

)
/)

class D a where { op :: Fab=>a->b}
instance D Int where { op _ = True }

The crucial point is that the contekt a b of the signature obp
constrains the parameter of the enclosing type ciasthis be-
comes a problem when typing the definitionogfin the instanc®
Int. InD’'s dictionary DDict, we haveop : ¥6.C ab — a — b
with b universally quantified, but in the instance declaration, we
would need to instantiatiewith Bool. The instance declaration for
D cannot be translated into System F. Usifg, this problem is
easily solved: the coercion in the dictionary foenables the result
of op to be cast to typé as required.

To summarise, a compiler that uses translation into Systdor F
Fa) must reject some reasonable (albeit slightly exotic) pots
involving functional dependencies, and also similar paogs in-
volving associated types. The extra expressiveness oe@yst
solves the problem neatly.



2.4 Trandating newtype

Fc is extremely expressive, and can support language fedberes
yond those we have discussed so far. Another example aresHask
98'snewtype declarations:

newtype T = MkT (T -> T)

In Haskell, this declareB to be isomorphic ta@->T, but there is no
good way to express that in System F. In the past, GHC hasédtnd|
this with anad hochack, butF¢ allows it to be handled directly,
by introducing a new axiom

axiom CoT : (T - T)~T

25 Summary

In this section we have shown that System F is inadequate a
a typed intermediate language for source languages thabaymb
non-syntactic type equality — and Haskell has developeédraév
such extensions. We have sketchily introduced Sysfemas a
solution to these difficulties. We will formalise it in thextesection.

3. System F¢(X)

The main idea irF'c¢(X) is that we pass around explicit evidence
for type equalities, in just the same way that System F pagpes
explicitly. Indeed, inFc the evidencey for a type equalityis a
type; we use type abstraction for evidence abstraction, tgpel
application for evidence application. Ultimately, we exadl types
before running the program, and thereby erase all typeliggua
evidence as well, so the evidence passing has no run-tinte cos
However, that is not the only reason that it is better to regne
evidence as typerather than as term, as we discuss i§3.10.

Figure 1 defines the syntax of Systém, while Figures 2 and 3
give its static semantics. The notatiafi (wheren > 0) means
the sequence; - - - a,; the “n” may be omitted when it is unim-
portant. Moreover, we use comma to mean sequence exterssion &
follows: @, an+1 £ @', We usefu(z) to denote the free vari-

ables of a structure, which may be an expression, type term, or

environment.

3.1 Conventional features

SystemF¢ is a superset of System F. The syntax of types and
kinds is given in Figure 1. Like H'c is impredicative, and has
no stratification of types into polytypes and monotypes. ifieta-
variablesy, p, o, 7, v, and~ all range over types, and hence
also over coercions. However, we adopt the convention theat w
use p, o, 7, and v in places where we can only have regular

Symbol Classes

a,b,c,co —  (type variablé

x, —  (term variable

C —  (coercion constait

T —  (value type constructor
Sh — (n-ary type function

K — (data constructor
Declarations

pgm — decl; e

decl — dataT:R — xwhere

K:VarVb:r.—Ta
| typeSn:R" —¢
|  axiom C: o1~ o2

Sortsand kinds
) — TY|cCO
K, L — *|I€1—>I€2|O'1NO'2

Sorts
Kinds

Typesand Coercions
d

— al|T Atom of sortTy

g c|C Atom of sortco

Py P,0, T, U, Y - a|C|T|¢14p2|Sn¢"|Vanap

| sym«y|7y1072 | y@p | left v | righty
~ ~ | rightcy | leftcy | v » v

We usep, o, 7, andv for regular typessy for coercions, ana for both.

—

Syntactic sugar
Types k=0 = V_ik.o
Terms
u — z|K Variables and data constructors
e — u Term atoms
| Aa:k.e|lep Type abstraction/application
| Az:o.e|ere Term abstraction/application
| letz:oc=e1ines
| casee; of p— ez
| ewy Cast
p — Kb KTo Pattern

Environments

' - €|l uio|T,d:k|,g:5 |, Sn:k
A top-level environmerttinds only type constructors,
T, S,, data constructor&’, and coercion constan{s.

types (i.e., no coercions), and we ugédn places where we can
only have coercion types. We ugefor types that can take either
form. This choice of meta-variables is only a conventionitbthe
reader; formally, the coercion typing and kinding rulesaeoé the
appropriate restrictions.

Our system allows types of higher kind; hence the type aptitino
form 1 2. However, like Haskell but unliké&'w, our system has no
type-level lambda, and type equality is syntactic idenfiityodulo
alpha-conversion). This choice has pervasive conseqeagiigd/es

Figure 1. Syntax of Systenk'c(X)

sometimes use the following syntactic sugar:

P = or
va".p

= QY1 == Pn — Pr

= VYai---Voan.p

An algebraic data typéel’ is introduced by a top-levalata dec-
laration, which also introduces itkata constructorsThe type of a

a remarkable combination of economy and expressiveness, bu data constructoK takes the form

leaves some useful higher-kinded types out of reach. Fanpba
there is no way to write the type constructowa. Either a Bool).

Value type constructor® range over (a) the built-in function type
constructor, (b) any other built-in types, such/as, and (c) alge-
braic data types. We regard a function type— o2 as the curried
application of the built-in function type constructor todvargu-
ments, thug—) o1 o2. Furthermore, although we give the syntax
of arrow types and quantified types in an uncurried way, we als

K:Yar."Vb:1.G — Ta"
The firstn quantified type variableg appear in the same order in
the return typel’ a. The remaining quantified type variables bind

either existentially quantified type variables, or (as wallskee)
coercions.

Types are classified bkinds «, using the+, judgement in Fig-
ure 2. Temporarily ignoring the king; ~ o2, the structure of kinds



d:kel FI—.;C/@:TY (TyApp) I'byor:k1 — ke Dby ook
F}_Tyd./‘i

TyVar
(y ) F}—Tyo'lcfzilfz

(Sn:F*—1) el T'kyoir" Ta:kbrwo:x Dhgk:d adful)

(TySCon) (TyAll)

by Sna”ie I'ty Va:k.o:x
a:kel Thpr:TY gio~T€ED
CoRefl CovVar) ——— ———
( ) Fl—coa:awa ( ) chog:UNT
lakbcoy:io~T I'Feov:Va:k.o~Vb:k. T
(CoAIIT) Pk r:TY a¢fvl) (ColnstT) Tkyov:k
I'keoVaik.y:Va:k.o ~Va:k. T I Feoy@u : [v/alo ~ [v/blT
. _ T'Feovyi o1 ~o2
NFeodio~7" Tk SnT" ik NrFecoy:io~T
SCom Sym Trans I'k+ Do~
( p) Pl_co Snﬁnsn EnNsnFn ( y ) F}_CO sym-«y :T~0 ( ) co 2 : 92 g3

I'Feoyiovy2:01~o3

I'Feoviioi~m Dhecoyr:ioa~me

Fl_ : ~ . F}— : ~
(Comp) T by o109t (Left) — 07919271 T2 (Right) 07 9192~ T1 72
Theolefty:or~11 ' Feoright v : 02 ~ T2
I'Feoviye 0102 ~71 T2
F}—CO’YIH1NI€2 F}—CO’y':U1~02 K1 = 01 K1 = 01
'+ : ~ . 'k : ~
(CompC) I'Fy k1 :CO (LeftC) T S o (RightC) 7 e S o
Theoy =7 : (k1 = 01) ~ (k2 = 02) T Feoleftey : k1 ~ Ka T Feo rightcy : 01 ~ 02
(N) F}—CO’Y1:O'1NT1 F}—co’yQ:O'QNTQ (CastC) Fl—co’yl:li Fl—co’YQZ,HNH/
Fl—co’Y1N’yQZ(O’lNO'Q)N(TlNTQ) F}—co’hb’m:n
u:o€el I'tee:o T'kpp—oeio—T I'kteer:0o1 T'x:o1beex:og
var) ———— Case P Let !
(Var) I'Feu:o ( ) I'Fecaseeof p—e: 7 (Let) I'kteletz:01 =e1ines : 09
by op i % I'teer:09 — 01
I'keoe: '+ 1o~
(Cast) ,erclr_ »Cojy 97 (Abs) Tz:ogxbce:o (App) T'keex:oz
c W YT T'keXMr:0z.e:0, — 0 T'kFeerez:or
Ia:kkee:o Ther:6 agfvl) I'tee:Va:ko Thryr:0 Thrse:k
AbsT AppT
( ) IP'te Aa:k.e:Va:k.o (AppT) I'keep:olp/al
IFI—pp—>e:a—>T|
(Al K:VarVb:g —Taecl 0=[v/a] T,b:00),2:0(0)Fce:T
Pkp Kb:0(t) z:0(0) »e:TT— 1
(Data) by o x b s:TY _
't (dataT:x where K:0) : (T:k,K:0) Fl_ded:g'd_(f';:ro’rd
by ke TY Tty k2 CO (Pgm) To T decl <
(Type) L (Coerce) k2 o decl; e:o

I'F (type S :k):(S:k) I'F (axiom C : k) : (C:k)

Figure 2: Typing rules for Systenir'c(X)




Star) ——
( ) Dbk x:TY

e w1 :TY Dhg ko TY
FunK
( ) I'Fr k1 — Kot TY
F|_Tyo'1:/'€ F}_Tya'Q::‘ﬁ
EgT
(qy) 't o1~o02:CO
' :co I'k : CO
(EqCo) E Y1 E Y2

F}—k’le’yQ:CO

Figure 3: Kinding rules for Systenir'c(X)

is conventionalx is the kind of proper types (that is, the types that
a term can have), while higher kinds take the form— k2. Kinds
guide type application by way of Rule (TyApp). Finally, thdes
for judgements of the forni" - ~ : §, given in Figure 3, ensure
the well-formedness of kinds. Hedes eitherTy for kinds formed
from arrows andk, or co for coercion kinds of formry, ~ 2. The
conclusions of Rule (EqTy) and (EqCo) appear to overlap aout
actual implementation can deterministically decide whigle to
apply, choosing (EqCo) iff; has the formp; ~ .

The syntax of terms is largely conventional, as are theie types
which take the formI't-. e: 0. As in F, every binder has an
explicit type annotation, and type abstraction and apfiinsare
also explicit. There is @aase expression to take apart values built
with data constructors. The patterns of a case expressioftear—
there are no nested patterns — and bind existential typahlas,
coercion variables, and value variables. For example,cagp

K :Va*xVbixa —b— (b—Int)— T a
Then acase expression that deconstrudiswould have the form
case e of K (b:x) (v:a) (z:b) (f:b — Int) — €

Note that only the existential type varialdlés bound in the pattern.
To see why, one need only realise tf#ék type is isomorphic to:

K :Vax(3b:x(a, b, (b = Int)))— T a

3.2 Typeequality coercions

We now describe the unconventional features of our system. T
begin with, consider the fragment of Systdfa that omits type
functions (i.e.,type and axiom declarations). This fragment is
sufficient to serve as a target for translating GADTSs, andssof i
interest in its own right. We return to type functions§i. 3.

The essential addition to plain F (beyond algebraic datasygnd
higher kinds) is an infrastructure to construct, pass, qpilyetype-
equality coercionsIn F¢, a coercion;y, is a special sort of type
whose kind takes the unusual form ~ o2. We can use such a
coercion to cast an expressien: o1 to type o2 using thecast
expression e » 7); see Rule (Cast) in Figure 2. Our intuition for
equality coercions is aextensionabne:

~: 01 ~ o9 IS evidence that a value of typa can be used
in any context that expects a value of type, and vice
versa.

By “can be used”, we mean that running the program after type
erasure will not go wrong. We stress that this is only an tranj

the soundness of our system is proved without appealing yo an
semantic notion of what; ~ o2 “means”. We use the symbol

~" rather than “=", to avoid suggesting that the two types are
intensionally equal.

Coercions are types — some would call them “constructors; 12]
since they certainly do not have kird— and hence the term-level
syntax for type abstraction and applicatioha(e ande ) also
serves for coercion abstraction and application. Howegercions
have their own kinding judgemehto, given in Figure 2. The type
of a term often has the forivico: (o1 ~ o2).¢, wherep does not
mentionco. We allow the standard syntactic sugar for this case,
writing it thus: (o1 ~ 02) = ¢ (see Figure 1). Incidentally, note
that although coercions are types, they do not classifyegllihis

is standard inF,,; for example, there are no values whose type has
kind x — x.

More complex coercions can be built by combining or transfor
ing other coercions, such that every syntactic form cowadp to
an inference rule of equational logic. We have the reflexieit
equality for a given type (witnessed by the type itself), symme-
try * sym~’, transitivity ‘v, o 72’, type composition 4; ~2’, and
decomposition left v' and ‘right+’. The typing rules for these
coercion expressions are given in Figure 2.

Here is an example, taken fro§2. Suppose a GADFExpr has a
constructorSucc with type

Succ : YV a:*. (a~ Int) = FEzpInt — Expa

(notice the use of the syntactic sugar= o). Then we can con-
struct a value of typeEzp Int thus: Succ Int Int e. The sec-
ond argumentint is a regular type used as a coercion witness-
ing reflexivity — i.e., we havdni : (Int ~ Int) by Rule (CoRefl).
Rule (CoRefl) itself only covers type variables and constns;
but in combination with Rule (Comp), the reflexivity of corapl
types is also covered. More interestingly, here is a fumctioat
decomposes a value of tygerp a:

foo : Ya:x. Expa — a — a
= Aa:x. Xe:Exp a. \x:a.
case ¢ of
Suce (co:a ~ Int) (e': Ezp Int) —
(foo Int €' 0 + (x » co)) » sym co

The case pattern binds the coerciotv, which provides evidence
thata and Int are the same type. This evidence is needed twice,
once to cast : a to Int, and once to coerce that result back to

a, via the coercior(sym co).

Coercion composition allows us to “lift” coercions throughbi-
trary types, in the style of logical relations [1]. For exdmpif
we have a coerciory: (o1 ~ o2) then the coerciorilree v is ev-
idence thatTree o1 ~ Tree o2, using rules (Comp) and (CoRefl)
and (CoVar). More generally, our system has the followingoth
rem.

THEOREM1 (Lifting). If TV Fco v : 01 ~ o2 andT F ¢ : K,
thenl” Fco [y/aly : [o1/ale~][o2/a]p, for any typep, including
polytypes, wher® = I/, a: &’ such thaiz does not appear iii”.

PROOF The first task is to show thdt Fco ¢ : @ ~ (1) for
all (well-formed) typesp (proof by induction onp). Then, we can
derivel’ Fco [y/ale : [o1/alp ~ [o2/a]e from the derivation for
(1) by replacing each (CoRefl) step with the derivation steps
FFco’YIUlNUQ. O

For example, ify : o1 ~ o2 then
Vb.y — Int : (Vb.or — Int)~(Vb.o2 — Int)

Dually decomposition enables us to take evidence apartefkor
ample, assume: Tree o1 ~ Tree o2; then, (right ) is evidence
thatoi ~ o2, by rule (Right). Decomposition is necessary for the
translation of GADT programs t&'c, but is problematic in ear-
lier approaches [3, 9]. The soundness of decompositiopsetif



course, on algebraic types being injective; iBe¢e o1 = Tree o2
iff o1 = o2. Notice, too, thatTree by itself is a coercion relating
two types of higher kind.

Similarly, one can compose and decompose equalities ovgr po
types, using rules (CoAllT) and (ColnstT). For example,

~v:(Va.a — Int) ~ (Va.a — b)
Fco y@Bool : (Bool — Int) ~ (Bool — b)

This simply says that if the two polymorphic functions aréem
changeable, then so are their instantiationBadi.

Rules (CompC), (LeftC), and (RightC) are analogous to (Comp
(Left), and (Right): they allow composition and decompiositof
a type of formx = ¢, wherex is a coercion kind. These rules are
essential to allow us to validate this consequence of Tihedre
B Int - o1~ Int = Tree o1

. ~ ~ = : ~
vioL~ozteo (v " ree ) oo ~ Int = Treeos
Even thoughx = ¢ is is sugar folv_: k. ¢, we cannot generalise
(CoAIIT) to cover (CompC) because the former insists thatttto
kinds are identical.

We will motivate the need for rules~) and (CastC) when dis-
cussing the dynamic semantié8(7).

3.3 Typefunctions

Our last step extends the power Bf: by addingtype functions
and equality axiomswhich are crucial for translating associated
types, functional dependencies, and the like. A type fonct,,

is introduced by a top-levdlype declaration, which specifies its
kind * — ¢, but says nothing about iteterpretation The index

n indicates thearity of S. The syntax of types requires that,
always appears applied to its full complementiafrguments§3.6
explains why). The arity subscript should be considereti gfethe
name of the type constructor, although we will often eligeviiting
Elem o rather thanElem; o, for example.

A type function is given its interpretation by one or more alify

the cases fog at the moment we introduc& For example, imag-
ine that a library module contains the definition of thellects
class §2.2). Then a clientimports this module, defines a new type
(thereby adding a new constant to the extensible kindnd wants
to makeT an instance o€ollects. In F¢ this is easy by simply
writing in the client module

import CollectsLib
instance Collects T where {type Elem T = E; ...}

where we assume thatis the element type of the collection type
T. In short, open type functions are absolutely required fgpsut
modular extensibility.

We do not argue thatll type functions should be open; it would
certainly be possible to exteritt: with non-extensible kind decla-
rations and closed type functions. Such an extension wailgsk-
ful; consider the well-worn example of lists parametrisegutioeir
length, which we give in source-code form to reduce clutter:

kind Nat = Z | S Nat

data Seq a (n::Nat) where

Nil :: Seq a Z
Cons :: a -> Seq an -> Seq a (S n)
app :: Seq an -> Seq am -> Seq a (Plus n m)
app Nil ys = ys
app (Cons x xs) ys = Cons x (app xs ys)
type Plus :: Nat -> Nat -> Nat
Plus Z b=">
Plus (S a) b = S (Plus a b)

Whilst we can translate this intB¢, we would be forced to give
Plus the kindx — * — «, which allows nonsensical forms like
Plus Int Bool. Furthermore, the non-extensibility ofat would
allow induction, which is not available if'c precisely because
kind % is extensible.

axioms. Each axiom introduces a coercion constant, whose kind other closely-related languages support closed type ifumetfor

specifies the types between which the coercion convertss:Thu
axiom elemBitSet : Elem BitSet ~ Char

introduces the named coercion constamBitSet. Given an
expressiore : Elem BitSet, we can use the axiom via the coercion
constant as in the casty elemBitSet, which is of typeChar.

We often want to state axioms involving parametric typessth
(Ve:x. Elem [e]) ~ (Ve:x. €)

This is the axiom generated from the instance declaration fo
Collects [e] in §2.2. To use this axiom as a coercion, say, for lists of
integers, we need to apply the coercion constant to a typeragt:

elemList Int : (Elem [Int] ~ Int)

which appeals to Rule (ColnstT) of Figure 2. We have alrezéyns
the usefulness of (ColnstT) towards the encs®f2, and here we
simply re-use it. It may be surprising that we use one quantifi
on each side of the equality, instead of quantifying overehgre
equality as in

Va:*. (Elem [a] ~ a) -- Not well-formedF¢!

One could add such a construct, but it is simply unneces¥dey.
already have enough machinery, and when thought of as aalogic
relation, the form with a quantifier on each side makes perfec
sense.

axiom elemList :

3.4 Typefunctionsareopen

A crucial property of type functions is that they apen or exten-
sible A type functions may take an argument of kind(or x — x,
etc), and, since the kind is extensible, we cannot write out all

example LH [25], LX [12], and2mega [37]. In this paper, however,
we focus on open-ness, since it is onekaf’'s most distinctive
features and is crucial to translating associated types.

3.5 Consistency

In SystemFc(X), we refine the equational theory of types by
giving non-standard equality axiom&o what is to prevent us
declaring unsound axiomsRor example, one could easily write
a program that would crash, using the coercion constartdoged
by the following axiom:

Int ~ Bool

(wherelnt and Bool are both algebraic data types). There are many
ad hocways to restrict the system to exclude such cases. The most
general way is this: we require that the axioms, taken tagetre
consistentWe essentially adapt the standard notion of consistency
of sets of equations [13, Section 3] to our setting.

axiom utterlybogus :

DEFINITION 1 (Value type).Atypeo is avalue typef it is of form
Ya.vorT v.

DEFINITION 2 (Consistency)I is consistentff

1. fTFeoy: T T ~wv,andvis avalue type, then =T 7.

2. Feo v
v=Va:k.T.

: Ya:k.0 ~ v, and v is a value type, then

That is, if there is a coercion connecting twalue types — al-
gebraic data types, built-in types, functions, or forallsthen the
outermost type constructors must be the same. For exanhgles t



can be no coercion of typBool ~ Int. It is clear that the consis-

is either aplain valuewv (an abstraction or saturated constructor

tency ofT" is necessary for soundness, and it turns out that it is also application), or it is a value wrapped in a single cast, thus ~

sufficient §3.7).

Consistency is only required of thep-levelenvironment, however
(Figure 1). For example, consider this function:

f=Xg:Int~ Bool).1+ (Truew g)

It uses the bogus coercignto cast anint to a Bool, so f would
crash if called. But there is no problem, becattse function can
never be callegto do so, one would have to produce evidence that
Int and Bool are interchangeable. The proof§B.7 substantiates
this intuition.

Nevertheless, consistency is absolutely required for tpelevel
environment, but alas it is an undecidable property. Thatig we
call the systemF ¢ (X)": it is parametrised by a decision procedure
X for determining consistency. There is no “best” choice Xg1so
instead of baking a particular choice into the language, aeeh
left the choice open. Each particular source-program coaisthat
exploits type equalities comes with its own decision proaced—
or, alternatively, guaranteds/ constructiorto generate only con-
sistent axioms, so that consistency need never be checKeticA
applications we have implemented so far take the lattercambr.
For example, GADTSs generate no axioms at all (Section 4)-new
types generate exactly one axiom per newtype; and assotyqtes
are constrained to generate a non-overlapping rewritesyéfec-
tion 5).

3.6 Saturation of typefunctions

We remarked earlier that applications of type functidfis are
required to be saturated. The reason for this insistencagin,
consistency. We definitely want to allow abstract types tobwe-
injective; for example:

axiom cl : S7 Int ~ Bool
axiom c¢2 : S1 Bool ~ Bool

Here, bothS; Int and S: Bool are represented by thBool type.
But now we can form the coerciofrl o (symc¢2)) which has
type S1 Int ~ S1 Bool, and from that we must not be able to de-
duce (viaright) that Int ~ Bool, because that would violate con-
sistency! Applications of type functions are thereforetagtically
distinguished so thafght andleft apply only to ordinary type ap-
plication (Rules (Left) and (Right) in Figure 2), and not {apé-
cations of type functions. The same syntactic mechaniswepts
a partial type-function application from appearing as atgpgu-
ment, thereby instantiating a type variable with a partgileation
— in effect, type variables of higher-kind range only ovgeitive
type constructors.

However, it is perfectly acceptable for a type function tedan
arity of 1, say, but a higher kind 6f — x — %. For example:

type HS1 : x — x — %
axiom cl : HSy Int ~ ]
axiom c2 : HS) Bool ~ Maybe

An application of HS to one type is saturated, although it has kind
* — x and can be applied (via ordinary type application) to anothe
type.

3.7 Dynamic semantics and soundness

The operational semantics &fc is shown in Figure 4. In the
expression reductions we omit the type annotations on bénite
save clutter, but that is mere abbreviation.

An unusual feature of our system, which we share with Crary’s
coercion calculus for inclusive subtyping [11], is thatued are
stratified intocvaluesandplain values their syntax is in Figure 4.
Evaluation reduces a closed term towalug or diverges. A cvalue

(Figure 4). The latter form is needed because we cannot esduc
term to a plain value without losing type preservation; feample,
we cannot reduce True » vy), where v: Bool ~ S any further
without changing its type frony to Bool.

However, there are four situations when a cvalue will not do,
namely as the function part of a type, coercion, or functipn a
plication, or as the scrutinee ofcase expression. Rules (TPush),
(CPush), (Push) and (KPush) deal with those situationsyblipg
the coercion inside the term, turning the cast into a plalnezeNo-
tice that all four rules leave theontext(the application or case ex-
pression) unchanged; they rewrite the function or casdiseire-
spectively. Nevertheless, the context is necessary tagtee that
the type of the rewritten term is a function or data type retipely.

Rules (TPush) and (Push) are quite straightforward. RuRugéb)

is rather like (Push), but at the level of coercions. It is thile that
forces us to add the form@y: ~ ~2), (71 » 72), (leftcv) , and
(rightc ) to the language of coercions. We will shortly provide an
example to illustrate this point.

The final rule, (KPush), is more complicated. Here is an examp
stripped of thecase context, whereCons : Va.a — [a] — [a],
and~ : [Int] ~ [S Bool]:

(Cons Int ey ez)»y — Cons (S Bool) (e1 » right )
(e2 > ([]) (right))

The coercion wrapped around the applicatiorofis is pushed in-
side to wrap each of its components. (Of course, an impleatient
does none of this, because types and coercions are erabedy)oE
preservation of this rule relies on Theorem 1 in Section ®l#ch

guarantees that; » 0(p;) has the correct type.

The rule is careful to cast theoercionarguments as well as the
valuearguments. Here is an example, taken from Section 2.3:

F Vab.(b~Fla)= FDictab
v :  FDict Int Bool ~ FDict c d
@ : Bool~ F1 Int

Now, stripped of thecase context, rule (KPush) describes the
following transition:

(F Int Bool o) »~y — Fcd(ew» (y2~F1 7))

where~y; = right (left v) and~2 = right . The coercion argu-
menty is cast by the strange-looking coercign~ F'1 1, whose
kind is (Bool ~ F1 Int) ~ (d ~ F1 ¢). That is why we need rule
(~) in Figure 2, so that we can type such coercions.

We derived all three “push” rules in a systematic way. Fonepiz,
for (Push) we asked what (involving e and~y) would ensure that
((Az.e) » v) = Ay.€’. The reader may like to check that if the
left-hand side of each rule is well-typed (in the top-levehtext)
then so is the right-hand side.

When a data constructor has a higher-rank type, in which the
argument types are themselves quantified, a good deal of- book
keeping is needed. For example, suppose that

K Va:*. (a~Int =a— Int) > Ta
Yy : TO‘lNTO'2
e : (o1~Int)= o1 — Int

Then, according to rule (KPush) we find (as before we striphaf
case context)

(Kore)wy — Kozlewrqy)

where v/ = (righty ~ Int) = right v — Int, which is ob-
tained by substitutingright~y/a] in (a ~ Int) = a — Int.



Values:
Plain values v

Cvalues cv
Evaluation contexts:
e — ¢
B — B T

Expression reductions:

(TBeta) (Aa.e) ¢ —

(Beta) (A\z.e) e —

(Case) case (Kgpe)of ... Kb — ¢ —

(Comb) (v w 1) P72 —

(TPush) ((Aa:k.e)»7)p —

where v : (Va:k.01) ~ (Vb:k.02)

—_—

where v : (k = o) ~ (k' = o)

(Push)

—_—

where 1 = sym (right (left 7))

—

(KPush) case (KG@ew ) of p— rhs

wherey: To~TT

[]|Ee|ET|Ew»~|case E of p— rhs

Aae|ze| Koge
vy |

(Aa:k. (e y@a)) ¢

(Ad’:r". (([(a" > 1) /ale) > 72)) @

— coercion for argument
— coercion for result

~v1 = sym (leftc )
Y2 = rightcy

- ([(y > ) /zle» 72)) _
— coercion for argument
Yo = right y — coercion for result
case (K7 ¢ €) of p— rhs

K :VarVbir.p—Ta"
r_ ©wi » 9(1)1 ~ ’Ug)
Pi ©i
e = ei > 0(pi)
0 = [vi/ai, pi/bi]
~; = right (left . .. (left v))
~————

If bi L U1~ V2
otherwise

n—i

Figure 4: Operational semantics

Now suppose that we later reduce the (sub)-expression

(e» )y

wheree = A b: (o1 ~ Int). A z:01. z » b. Before we can apply
rule (CPush) we have to determine the kinchéflt is straightfor-
ward to deduce that

"

v i (o1~ Int = o1 — Int) ~ (02~ Int = o2 — Int)

Hence, via (CPush) we find that

((Ab: (o1 ~ Int). Az:01. 2> b) ') 7"
(Ac: (o2~ Int). Az:or.z» (c» 1)) > v2) ¥

—

wherey; = sym (leftcy’), v1 : (01 ~ Int) ~ (o2 ~ Int), 72 =
rightcy’ andyz : (o1 — Int) ~ (02 — Int).

Notice that formgy; ~ 72), (71 » 72), (leftcy) , and(rightcy)
only appear during the reduction d&fc programs. In case we
restrictF¢ types to be rank 1 none of these forms are necessary.

THEOREMZ2 (Progress and subject reductio®uppose that a top-
level environment' is consistent, and' . e : o. Then eithek is
acvalue, ore — ¢’ andI' - ¢’ : o for some terne’.

PrROOF By structural induction ore. The interesting case is for
application. SUpposSE +. e; e2 : 0. ThenT' ¢ e1 : 7 — o and
T' k. ez : 7. Then there are three well-typed possibilities for

1. e; isnot a cvalue. Then by the induction hypothesiscan take
a (type-preserving) step.

2. ey isis a plain value which, to be well typed, must be of form
Az.e3. Hence we can take a (Beta) step.

3. e1 isv » 7. By consistency must have a function type. Since
v is a value,v must be of form\z.e3, SO we can take a type-
preserving step using (Push).

The other cases can be proved in a similar way. For example,
supposel’ . case e of p—e : 7. ThenT' . e : ¢ and

'+, p—e:0— 7. As before, we can distinguish among the

following three well-typed possibilities for case expliess:

1. e is not a cvalue. Then by the induction hypothesisan take
a (type-preserving) step.
2. e is a plain value which, to be well typed, must be of form

K o’ 3 ¢’. Hence we can take a (Case) step (we assume that
case expressions have exhaustive alternatives).

3. eisvpywherey: T o/ ~T 7/ (i.e.0c = T 7/). By consistency
and sincev is a value,v must be of formK o’ % ¢’ where
K :VaTr.¥b:.. 5 — T @. Itis straightforward to verify that
K77’ e is of typeT 7/ where

;o (pibe(lh N'UQ) ifbil’UlN’UQ
Y= o otherwise
ei =e;» 0(p;)

0 = [vi/as, pi/bi]
~v; = right (left . .. (left ~))
~————

n—i



Hence, we can take a type-preserving step using (KPush).

]

COROLLARY 1 (Syntactic Soundnessl)et I' be consistent top-
level environment and . e : o. Then eithere —* cv and
I' ke cv : o for some cvaluew, or the evaluation diverges.

We give a call-by-name semantics here, but a call-by-vadueas-
tics would be equally easy: simply extend the syntax of etia
contexts with the formv E/, and restrict the argument of rule (Beta)
to be a cvalue.

In general, evaluation affecéxpressionsnly, not types. Since co-
ercions are types, it follows that coercions are not evalligither.
This means that we can completely avoid the issue of noratadis
of coercions, what a coercion “value” might be, and so on.

3.8 Robustnessto transformation

One of our major concerns was to make it easy for a compiler to
transform and optimise the program. For example, consiklir t
fragment:

y+1lin.; ...}

A good optimisation might be to float the let-binding out oéth
lambda, thus:

letz = y+1linAz.casezof { T1 — ..; ... }

Az.casezof { T1 — letz

But suppose that : Ta andy : a, and that the pattern match
on T1 refinesa to Int. Then the floated form is type-incorrect,

because the let-binding is now out of the scope of the pattern

match. This is a real problem for any intermediate languamge i
which equality is implicit. InF¢, however,y will be cast toInt
using a coercion that is bound by the pattern match7on So
the type-incorrect transformation is prevented, becaedinding
mentions a variable bound by the match; and better still, are c
perform the optimisation in a type-correct way by abstragtover
the variable to get this:

let 2’ = Ag.(y»g) + 1
in\z.casezof { T1g — letz

2 gin..; ...}

The inner let-binding obviously cannot be floated outsiceduse
it mentions a variable bound by the match.

Another useful transformation is this:

(casez of p; — e;) arg case z of p; — e arg

This is valid inF¢, but not in the more implicit language LH, for
example [25].

In summary, we believe that:'s obsessively-explicit form makes
it easy to write type-preserving transformations, whed@iag so
is significantly harder in a language where type equality ®en
implicit.

3.9 Typeand coercion erasure

SystemF¢ permits syntactic type erasure much as plain System
F does, thereby providing a solid guarantee that coerciopose
absolutely no run-time penalty. Like types, coercions $ynguo-
vide a statically-checkable guarantee that there will beumetime
crash.

Formally, we can define an erasure functigh which erases all
types and coercions from the term, and prove the standastirera
theorem. Following Pierce [32, Section 23.7] we erase a glpe
straction to a trivial term abstraction, and type applimatio term
application to the unit value; this standard device presener-
mination behaviour in the presence sq, or with call-by-value
semantics. The only difference from plain F is that we alsaser
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casts.
° = =z (Az:p.e)® = Az.e°
K° = K (61 62)0 = e1%3°
(Aa:k.e)® = Ma.e® ery)° = ¢€°
(ed)® = ¢€°() (Karzip)® = KazT

let x = €1° in e2°
case e1° of p° — e2°

(let 7:0 =1 in e2)°
(case e; of p— €3)°

THEOREM3. Suppose that a top-level environméris consistent,
andI' . e; : 0. Then, (a) eithee; is a cvalue anc; ° is a value
or (b) we havee; — es and eithere1® — e2° ore;° = e2°.

PROOF Proof by structural induction oa. It is straightforward to
verify that if e is a cvalue thar® is a value. Hence, we only need
to focus on case (b).

The interesting case is application. Suppose we Rave e; es : o
ande; e — es (in one step). Then either (&) can take a step
(in which case the result follows by induction), or da)is a cvalue.
The latter has two sub-cases: either (lzi)s a plain value or (b.2)
it is of form (vy » 7).

In case (b.1), since can take a step;; must be of form\z.e}

so thate; e; can take a (Beta) step. But thée; e2)° can also
take a (Beta) step. We need an auxiliary substitution lenhad,
[e2°/z]et® = [e2/x]€}°, and then we are done.

In case (b.2)¢; is of form (v1 » «), and by consistency; must
have a function type, and hence must be of the fanre;. Hence

e1 ez can take a (Push) step. Taking a (Push) step leaves theerasur
of the term unchanged, modulo alpha conversion, which gives
result.

The other cases can be proved in a similar way. For example,
supposel’ . case e of p—e : 7. ThenT' . e : ¢ and
T'tkp, p— e: o0 — 7. As before, the only interesting case iifs

a cvalue, otherwise, the result follows by induction. Themeeagain

two sub-cases to consider: (bélis a plain value or (b.23 is of the
from (v » 7).

In case (b.1)e must be of the formK & % ¢/, since thecase
expression can take a step. But themse ¢ of p — e° can take a
(Case) step and we are done.

In case (b.2), by consistency we find thas of the formK & @ e/»
~. Then, we can take a (KPush) step. This leaves the erasure of t
term unchanged and we are dore.

COROLLARY 2 (Erasure soundnesdjor an well-typed System
o

Fc termes, we havee; —™ eq iff 1° —* e2°.

The dynamic semantics of Figure 4 makes all the coercionisan t
program bigger and bigger. This is not a run-time concernabse
of erasure, but it might be a concern for compiler transfdromes.
Fortunately there are many type-preserving simplificatithrat can
be performed on coercions, such as:

symo = o
left (Tree Int) = Tree
ero = e

and so on. The compiler writer is free (but not obliged) to sigeh
identities to keep the size of coercions under control.

In this context, it is interesting to note the connection ye-
equality coercions to the notion of proof objects in machine
supported theorem proving. Coercion terms are essenpatipf
objects of equational logic and the above simplificatioresulas
well the manipulations performed by rules, such as (Pushét),
respond to proof transformations.



3.10 Summary and observations

Fc is an intensional type theory, like F: that é&jery term encodes
its own typing derivationThis is bad for humans (because the
terms are bigger) but good for a compiler (because type ¢hgck
is simple, syntax-directed, and decidable). An obviousstjae is
this: could we maintain simple, syntax-directed, decidatype-
checking forF¢ with less clutter? In particular, a coercion is an
explicit proof of a type equality; could we omit the coercipn
retaining only their kinds, and reconstructing the proaigfee fly?

No, we could not. Previous work showed that such proofs can in
deed be inferred for the special case of GADTs [44, 35, 39 dBu
setting is much more general because of our type functiohghw

in turn are necessary to support the source-language @tsnse
seek. Reconstructing an equality proof amounts to uniboatiod-
ulo an equational theory (E-unification), which is undebigaven

in various restricted forms, let alone in the general cakdrizhort,
dropping the explicit proofs encoded by coercions woulddezn
type checking undecidable (see Appendix B for a formal proof

Why do we express coercions Bges rather than aterms The
latter is more conventional; for example, GADTs can be used t
encode equality evidence [37], via a GADT of the form

data Eq a b where { EQ :: Eq a a }

Fc turns this idea on its head, instead using equality evidémce
encode GADTSs. This is good for several reasons. Hitstis more
foundational than System F plus GADTSs. SecoRd, expresses
equality evidence iypes which permit erasure; GADTs encode
equality evidence asalues and these values cannot be erased.
Why not? Because in the presence of recursion, the merepgist
of an expression of typeg a b is not enough to guarantee thas
the same as, becausel has any type. Instead, one mestluate
evidence before using it, to ensure that it converges, erpiavide

a meta-level proof that asserts that the evidence alwayseoges.

In contrast, our language of types deliberately lacks igoatr and
hence coercions can be trusted simply by virtue of being-well
kinded.

4. Trandlating GADTs

With F¢ in hand, we now sketch the translation of a source lan-
guage supporting GADTSs intBc. As highlighted in§2.1, the key
idea is to turn type equalities into coercion types. Thisrapph
strongly resembles the dictionary-passing translatioowknfrom
translating type classes [17]. The difference is that we alcturn
type equalities into values, rather, we turn them into types

We do not have space to present a full source language sugport
GADTs, but instead sketch its main features; other papessfgil
details [44, 10]. We assume that the GADT source languagthbas
following syntax of types:

Polytypes m — n|Vax
Constrainedtypesn — 7| 7~7 =17
Monotypes T — al|lt—7|TT7T

We deliberately re-us&'c's syntaxm; ~ 7o to describe GADT
type equalities. These equality constraints are used irsdhece-
language type of data constructors. For example,Stihe: con-
structor from§2.1 would have type

Succ : Va.(a ~ Int) = Int — Expa

Notice that this alreadis anF type.

To keep the presentation simple, we use a non-syntax-ddect
translation scheme based on the judgement

C:Tkgapre:m~ ¢
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We read it as “assuming constrai6t and type environment’,

the source-language expressiohas typer, and translates to the
Fc expressiore’”. The translation scheme can be made syntax-
directed along the lines of [31, 35, 39]. The constraihtonsists

of a set of named type equalities:

C — €|Cicmi~T

The most interesting translation rules are shown in Figuretere
we assume for simplicity that all quantified GADT variables a
of kind x. The Rules (Var), Y-Intro), and §-Elim), dealing
with variables and the introduction and elimination of paoby-
phic types, are standard for translating Hindley/MilneiSgstem
F [19]. The introduction and elimination rules for constred
types, Rules (C-Intro) and (C-Elim), relate to the standsyk-
class translation [17], but where class constraints indvedee
abstraction and application, equality constraints indtyge ab-
straction and application.

The translation of pattern clauses in Rule (Case) is as eged/e
replace each GADT constructor by an approprigite constructor
which additionally carries coercion types representing @ADT
type equalities. We assume that source patterns are alfisady

Rule (Eq) applies the cast construct to coerce types. Fey we
need a coerciory witnessing the equality of the two types, and we
simply re-use thé&'c judgement’ Fco v : 71 ~ 72 from Figure 2.

In this context;y is an “output” of the judgement, a coercion whose
syntactic structure describes the proofref~ 2. In other words,

C Fco v : 71 ~ 12 represents the GADT condition that the equality
context ‘C impliest; ~ 72"

Finding a~ is decidable, using an algorithm inspired by the uni-
fication algorithm [23]. The key observation is that the eta¢nt
“C implies 1 ~ 2" holds if 8(71) = 0(72) wheref is the most
general unifier ofC. W.l.0.g., we neglect the case th@thas no
unifier, i.e.C is unsatisfiable. Program parts which make use of
unsatisfiable constraints effectively represent deaacod

Roughly, the type coercion construction procedure prosezsl
follows. Given the assumption sét and our goalr; ~ ™ we
perform the following calculations:

Step 1 : We normalise the constraint§ = c: 7/ ~ 7/ to the
solvedform ¥ a~7w wherea; < a;+1 andfv(a) Nfv(o) = 0
by decomposing with Rule (Right) (we neglect higher-kinded
types for simplicity) and applying Rule (Sym) and (Transe W
assume some suitable ordering among variables witand
disallow recursive types.

Step 2 : Normalisec’ : 71 ~ 12 Wherec’ is fresh to the solved form
v o’ ~v' wherea) < ali;.

Step 3 : Match the resulting equations from Step 2 against equa-
tions from Step 1.

Step 4 : We obtainry by reversing the normalisation steps in Step 2.

Failure in any of the steps implies th@t co v : 71 ~ 72 does
not hold for any~. A constraint-based formulation of the above
algorithm is given in [40].

To illustrate the algorithm, let's considét = {c; :
b=c}andes : [a] ~ ], witha < b < c.

Step 1: Normalising”' yields {rightci : a ~b,c2 : b = c} inan
intermediate step. We apply rule (Trans) to obtain the sbfeem
{(rightc1) oca:a~c,c2 : b=c}

Step 2: Normalisings : [a] ~ [¢] yields (right ¢3) : a ~ c.

Step 3: We can matalight cs : a~cagainstright c1 ocz) : a~c.
Step 4: Reversing the normalisation steps in Step 2 yields-
[right 1 0 c2], astco [] : [] ~[]-

The following result can be straightforwardly proven by tiction
over the derivation.

[a] ~[b],c2 :



C;Tkgapre:m~¢

(x:m) el
CiTkFgaprz:m~z

CiTtrgapre:T~ée Cley:T~T

(Var) (Ea)

C;Thkgapre:7 ~ e »ry

C;Tkgapre:m~e a¢gfv(CT)
C;T Fgapr e :Va.m ~ Aa:*. €

C,e:mi~712; T'lgapre:n~¢€

(V-Intro) (C-Intro)

C;Tkgapre:Ti~m2 =1~ Alciti ~ ). €

C;T Fgapr e :Ya.m ~ € CiTkgapre:mi~me=>n~e Chreoy:m~T

(v-Elim) (C-Elim)

C;T kgapr e:[t/a]m ~ €' T C;Ttgapre:n~ce'y

|C;F|—GADTP—>6I7T—>7TWP/—>€,|

K :Vabr ~7"=7—=Ta anb=0 WNF,7,77) =1a,b) 0=[v/ad]
(Alt) C,c:0(r") ~0(1"); T,2:0(1) Faapr e : 7'~ €  Efresh
C;Troapr KT —e:TT— 1"~ K (b:%) (c:0(7') ~0(7")) (x:0(1)) — €

Figure5: Type-Directed GADT tdc Translation (interesting cases)

LEMMA 1 (Type Preservationlet C;0) Fgapr e : t ~ €. 5.2 Trandating class predicates
Then,C' . e’ : t.

In the standard translation, predicates are translatetctodaries

In §3.5, we saw that only consistefitz programs are sound. It by a judgementC' I-p D 7~ v. In the presence of associated
is not hard to show that this the case for GAIDE programs, as types, we have to handle the case where the type argument to a
GADT programs only make use of syntactic (a.k.a. Herbrayjo t predicate contains an associated type. For example, diedass

equality, and so, require no type functions at all. class Collects c where

THEOREM4 (GADT Consistency)lf dom(I") contains no type type Elem c —- associated type synonym
variables or coercion constants, afdd Fco v : 01 ~ 02, then ?mPtY e c
o1 = o2 (i.e. the two are syntactically identical). insert :: Elem ¢ -> ¢ -> ¢

tolList :: ¢ -> [Elem c]

The proof is by induction on the structure gf Consistency is an

immediate corollary of Theorem 4. Hence, all GABE programs we might want to define

are sound. From the Erasure Soundness Corollary 2, we cae-imm sumColl :: (Collects c, Num (Elem c))
diately conclude that the semantics of GADT programs remain => ¢ -> Elem ¢
unchanged (where® is e after type erasure). sumColl c = sum (tolist c)
LEMMA 2. Let 00 Foapr e : ¢ ~ ¢’ Then,e’ —" w iff which sums the elements of a collection, provided these erésn
e® —" v wherev is some base value, e.g. integer constants. are members of th#um class; i.e., provided we havam (Elem
c). Here we have an associated type as a parameter to a class
5. Translating Associated Types constraint. Wherever the functiotum Coll is used, we will have

) ) . to check the constraiftum (Elem c), which will require a cast
In §2.2, we claimed thaf ¢ permits a more direct and more general  f the resulting dictionary if: is instantiated. We achieve this by

type-preserving translation of associated types thanréimesiation adding the following rule:
to plain System F described in [6]. In fact, the translatidras-

sociated types t&'c is almost embarrassingly simple, especially Clkp D11~ w Cryy:Dni=Dm

given the translation of GADTs t&'¢ from §4. In the following, (Subst) Clrp D1y~ w7y

we outline the additions required to the standard trarwsiaf type .

classes to System F [17] to support associated types. It permits to replace type class arguments by equal typesravh
the coerciony witnessing the equality is used to adapt the type of

5.1 Translating expressions the dictionaryw, which in turn witnesses the type class instance.

To translate expressions, we need to add three rules toahdastd
system of [17], namely Rules (Eq), (C-Intro), and (C-Elingrh
Figure 5 of the GADT translation. Rule (Eq) permits casting e

pression with types including associated types to equaistyghere 53 Trandating declarations

the associated types have been replaced by their defin8tantly Strictly speaking, we also have to extend the translatidesrtor
speaking, the Rules (C-Intro) and (C-Elim) are used in a rgere class and instance definitions, as these can now declarecéing d
eral setting during associated type translation than quBADT associated types. However, the extension is so small thatimie
translation. Firstly, the set’ contains not only equalities, but both  the formal rules for space reasons. In summary, each déolara
equality and class constraints. Secondly, in the GADT tedion of an associated type in a type class turns into the dedarai
only GADT data constructors carry equality constraints ereas a type function inF¢, and each definition of an associated type
in the associated type translation, any function can cagnakty in an instance turns into an equaliixiom in Fc. We have seen

constraints. examples of this ig2.2.
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Interestingly, we need this rule also for the translatiorsasn as
we admit qualified constructor signatures in GADT declaragi



5.4 Observations

In the translation of associated types, it becomes clear Wy
includes coercions over type constructors of higher kinoh<ider
the following class of monads with references:

class Monad m => RefMonad m where
type Ref m :: * -> %
newRef :: a -> m (Ref m a)
readRef :: Ref ma -> m a
writeRef :: Refma ->a ->m ()

This class may be instantiated for th@ monad and th6T monad.
The associated typeef is of higher-kind, which implies that the
coercions generated from its definitions will also be higtiaded.

The translation of associated types to plain System F ingptge
restrictions on the formation of well-formed programs §5.1],
namely (1) that equality constraints for anparameter type class
must have type variables as the firsarguments to its associated
types and (2) that class method signatures cannot consaén
class parameters. Both constraints can be lifted in thelation to
Fc.

5.5 Guaranteeing consistency for associated types

How do we know that the axioms generated by the source-pmogra
associated types and their instance declarations arestentst The
answer is simple. The source-language type system for iassdc
types only makes sense if the instance declarations obégirter
constraints, such as non-overlap [6]. Under those comdifid is
easy to guarantee that the axioms derived from the sourggaro
are consistent. In this section we briefly sketch why thisésdase.

The axiom generated by an instance declaration for an agedci
type has the forh C' : (Va*.S 01) ~ (Va:%.02). where (a)

o1 does not refer to any type function, (b)(s1) = a, and (c)
fv(o2) C a. This is an entirely natural condition and can also be
found in [5]. We call an axiom of this form eewrite axiom and a
set of such axioms defines a rewrite system among types.

Now, the source language rules ensure that this rewritesys
confluentand terminating using the standard meaning of these
terms [2]. We writeo1 | o2 to mean that; can be rewritten to
o2 by zero or more steps, wheee is a normal form. Then we
prove that each type has a canonical normal form:

THEOREM5 (Canonical Normal Forms).et I be well-formed,
terminating and confluent. TheR, Fco v : 01 ~ o2 iff 01 | o}
ando | o4 such thato] = o5.

Using this result we can decide type equality via a canomicahal
form test, and thereby prove consistency:

COROLLARY 3 (AT Consistency)lIf T" contains only rewrite ax-
ioms that together form a terminating and confluent rewrjtgtem,
thenI is consistent.

For example, assume tco v : 11 71 ~ T2 o2. Then, we find
T 51 | o1 andT: 73 | o3 such thab = o5. None of the rewrite
rules affectl’ or T:. Henceg; must have the shap® o/ andos

the shapel: 0. Immediately, we find thai, = 7> and we are

done.

We can state similar results for type functions resultiranfrfunc-
tional dependencies. Again, the canonical normal form @ryps
the key to obtain consistency. While sufficient the candmca-
mal form property is not a necessary condition. Considemtire
confluent but consistent environmdht= {c : S1 [Int]~S2,cz :
(Va:%.S1 [a])~(Va:*.[S1 a])}. Wefind thafl Fco v : S [Int]~
Sz. But there existsS; [Int] | [S1 Int] andS2 | S2 where

1For simplicity, we here assume unary associated types thabtirange
over higher-kinded types.

13

[S1 Int] # S2. Similar observations can be made for ill-formed,
consistent environments.

6. Related Work

System F with GADTs. Xi et al. [44] introduced the explicitly
typed calculus\z,q, together with a translation from an implicitly
typed source language supporting GADTSs. Their calculusties
typing rules for GADTSs built in, just like Pottier & Régisi@nas’s
MLGI [35]. This is the approach that GHC initially tookc is the
result of a search for an alternative.

Encoding GADTsin plain System F and F,,. There are several
previous works [3, 9, 30, 43, 7, 40] which attempt an encoding
of GADTSs in plain System F with (boxed) existential types. We
believe that these primitive encoding schemes are not ipahct
and often non-trivial to achieve. We discuss this in moreiiét
Appendix A.

An encoding of a restricted subset of GADT programs in plain
System E can be found in [33], but this encoding only works for
limited patterns of recursion.

Intentional type analysisand beyond. Harper and Morrisett’s vi-
sionary paper on intensional type analysis [20] introduttedcal-
culus AM”, which was already sufficiently expressive for a large
range of GADT programs, although GADTSs only became popular
later. Subsequently, Crary and Weirch’'s language LX [12]age
alised the approach significantly by enabling the analylsé®orce
language types in the intermediate language and by prayidin
type erasure semantics, among other things. LX’s type aisaly
sufficiently powerful to expresslosedtype functions which must
be primitive recursive. This is related, but differenttte (X), where
type functions ar@penand need not be terminating (see also Ap-
pendix B).

Trifonov et al. [42] generalise in a different direction than
LX, such that they arrived at a fully reflexive calculus; j.ene
that can analyse the type of any runtime value of the calclitus
particular, they can analyse types of higher kind, an attitiat was
also crucial in the design &f(X). However, Trifonov et al.’s work
corresponds ta M and LX in that it applies talosed primitive-
recursive type functions.

an

Calculi with explicit proofs. Licata & Harper [25] introduced
the calculus LH to represent programs in the style of Depende
ML. LH’s type terms include lambdas, and its definitional alify
therefore includes a beta rule, wheréass definitional equality is
simpler, being purely syntactic. LH’s propositional eqtya¢nables
explicit proofs of type equality, much as H(X). These explicit
proofs are the basis for the definitionretyping functionghat play
a similar role to our cast expressions. In contrast, FC'ppsdional
equality lacks some of LH'’s equalities, namely those inicigater-
tain forms of inductive proofs as well as type equalities sdnce-
typings have a computational effect. The price for LH’s atldg-
pressiveness is that retypings — even if they amount to tee-id
tity on values — can incur non-trivial runtime costs and @tiger
with LH types) cannot be erased without meta-level prooés #s-
sert that particular forms of retypings are guaranteed tmlbmtity
functions.

Another significant difference is that in LH, as in LX, typenf
tions areclosedand must b@rimitive recursivewhereas irf'c (X),
they are open and need not be terminating. These propertes a
very important in our intended applications, as we argue8én-
tion 3.4. Finally,Fc(X) admits optimising transformations that are
not valid in LH, as we discussed in Section 3.8.

Shao et al.'s impressive work [36] illustrates how to integran en-
tire proof system into typed intermediate and assemblydaggs,
such that program transformations preserve proofs. Thpé tan-



guage TL resembles the calculus of inductive construct{@i€)
and, among other things, can express retypings witnessexx-by
plicit proofs of equality [36, Section 4.4], not unlike LH.LTis
much more expressive and complex th&(X) and, like LH, does
not support open type functions.

Coercion-based subtyping. Mitchell [29] introduced the idea of
inserting coercions during type inference for an ML-likadmages.
However, Mitchell’s coercion are not identities, but penfocoer-
cions between different numeric types and so forth. A moceme
proposal of the same idea was presented by Kiel3ling and 2]o [2
Subsequently, Mitchell [28] also studied coercions that @per-
ationally identities to model type refinement for type igfece in
systems that go beyond Hindley/Milner.

Much closer toF¢ is the work by Breazu-Tannen et al. [4] who
add a notion of coercions to System F to translate languagesrf
ing inheritance polymorphism. In contrast K, their coercions
model a subsumption relationship, and hence are not syrumnetr
Moreover, their coercions are values, not types. Neveztglthey
introduce coercion combinators, as we do, but they don’sictar
decomposition, which is crucial to translating GADTSs. Theus

of their paper is the translation of an extended version afi€lé

& Wegner’s Fun, and in particular, the coherence properfehat
translation.

Similarly, Crary [11] introduces a coercion calculus foclusive
subtyping. It shares the distinction between plain valug$ @o-
ercion values with our system, but does not require quaatifin
over coercions, nor does it consider decomposition.

I ntuitionistic type theory, dependent types, and theorem provers.
The ideas from Mitchell’s work [29, 28] have also been trensd
to dependently typed calculi as they are used in theoremepspv
e.g., based on the Calculus of Constructions [8]. Generaliyco-
ercion terms are a simple instance of the proof terms of higic
frameworks, such as LF [18], or generally the evidence iuifian-
istic type theory [26]. This connection indicates seveietations
for extending the presented system in the direction of moregp-
ful dependently typed languages, such as Epigram [27].

Translucency and singleton kinds. In the work on ML-style
module systems, type equalities are represented as sindlietds,
which are essential to model translucent signatures [1dteRt
work [15] demonstrated that such a module calculus can septe

a wide range of type class programs including associateestyp
Hence, there is clearly an overlap wittv(X) equality axioms,
which we use to represent associated types. Neverthetessut-
rent formulation of modular type classes covers only a sutiftbe
type class programs supported by Haskell systems, such & GH
We leave a detailed comparison of the two approaches toefutur
work.

7. Conclusionsand further work

We showed that explicit evidence for type equalities is aveaient
mechanism for the type-preserving translation of GADTspam-
tive types, and functional dependencies. We implemehte(X)
in its full glory in GHC, a widely used, state-of-the-artghly op-
timising Haskell compiler. At the same time, we re-impleteeh
GHC'’s support fomewtypes and GADTSs to work as outlined in
§2 and added support for associated (data) types. Conséyguieist
implementation instantiates the decision procedure fosistency,
“X”, to a combination of that described in Section 4 and 5. Fhe
version of GHC is nowthemain development version of GHC and
supports our claim th& ¢ (X) is a practical choice for a production
system.

An interesting avenue for future work is to find good sourae la
guage features to expose more of the powdr@to programmers.
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A. Primitive Trandation of GADTs

We attempt a primitive translation (encoding) of GADTSs tosSy
tem F with (boxed) existential types (for convenience wd usk
Haskell extended with rank-n types and existentials). VWige
evidence that such an encoding is sometimes hard to achieve.

The gist of the primitive encoding idea is to model type eifyal
a ~ b via safe coercion functions. Effectively, a pair of embed-
ding/projection functions. Each type cas# ¢ is then turned into
the function applicatiorny e. To ensure correctness of this encod-
ing scheme, we need to guarantee that at run-time each operci
evaluates to the identity.

There are two approaches known in the literature to encode su
coercion functions. One approach, employed in [3, 9, 30, 4$s
“Leibniz” equality

newtype EQ a b =

Proof { apply :: forall £ . fa ->f b}
refl :: EQ a a
refl = Proof id
newtype Flip f a b = Flip { unFlip :: £ b a }
symm :: EQ a b ->EQ b a
symm p = unFlip (apply p (Flip refl))
trans :: EQ a b -> EQ b c -> EQ a c
trans p q = Proof (apply q . apply p)
newtype List f a = List { unList :: £ [a] }
list :: EQ ab -> EQ [a] [b]
list p = Proof (unList . apply p . List)

We also provide a few sample type coercion functions. Astedin
outin [7], the trouble with this approach is that it seemsasgible
to define “decomposition” functions such as

:: EQ [a] [b] -> EQ a b
The alternative method is to represent type equality asvial

type EQ a b = (a->b,b->a)

refl :: EQ a a

refl = (id,id)

sym :: EQ ab ->EQ b a

sym (f,g) = (g,f)

trans :: EQ a b ->EQ bc -> EQ ac
trans (f1,gl) (£2,g2) = (£f2.f1,gl.g2)
list :: EQ a b -> EQ [a] [b]

list (f,g) = (map f, map g)

The advantage is that decomposition is possible for somestipt
not for all as will see at the end of this section. Though, m@hy
not all) realistic GADT programs can be translated basedha t
encoding [40]. On the other hand, the (serious) disadvanéthis
representation is that it may incur a severe run-time pgn@lbn-
sider the definition ofiist where we have to apply the coercion
functions to each element.

Let's attempt an encoding of the trie example found in [10}ri&
is a finite map from keys to values whose structure dependbeon t
type of keys, here encoded as products and sums in GADT ¥srian

data Either a b where
Left :: a -> Either a b
Right :: b -> Either a b
data Trie k v where

decompList



TUnit ::
Maybe v
TSum : forall ki1 k2.
Trie k1 v -> Trie k2 v -> Trie (Either ki1 k2) v
TProd :: forall k1 k2.
Trie k1 (Trie k2 v) -> Trie (k1, k2) v

A trie for a unit type is maybe one value, a trie for a sum is a
product of tries, and a trie for a product is a compositionrigfst

An important operation on tries is the merging of two mapshwit
the same domain and co-domain.

-> Trie () v

merge :: (v -> v -> v)
-> Trie k v => Trie k v -> Trie k v

merge ¢ (TUnit Nothing ) (TUnit Nothing ) =
TUnit Nothing

merge ¢ (TUnit Nothing ) (TUnit (Just v’)) =
TUnit (Just v’)

merge ¢ (TUnit (Just v)) (TUnit Nothing ) =
TUnit (Just v)

(TUnit (Just v)) (TUnit (Just v’))
TUnit (Just (c v v?))

merge ¢ (TSum ta tb) (TSum ta’ tb’)
TSum (merge c ta ta’) (merge c tb tb’)

merge c (TProd ta) (TProd ta’)
TProd (merge (merge c) ta ta’)

merge c

The second two last equations are interesting. The pattefins
the first and second argument constrriito Either k1 k2 and
Either k1’ k2’, respectively. Hence, we have

Either k1 k2 = k = Either k1’ k2’

from which we can followk1 = k1’ andk2 = k2. The point is
that to translate the above s, we need to construct a coercion
that witness these equalities, we need decomposition.

To encode the trie example, we need (among others) a function
EQ (Either a b) (Either c d) -> EQ a b

But it seems impossible to define such a function if we usenigib
equality.

Let’s consider the “other” type equality representation.ehsure
correctness of the encoding scheme, we need to maintaimthe i
variant that for any type coercion functiatberce :: EQ a b

-> EQ ¢ d we have thatcoerce applied to a pair of identity
functions yields another pair of identity functions. We anere
lucky here, a functiodecomp:: EQ (Either a b) (Either c

d) -> EQ a c with the above property is actually definable.

For simplicity, we only give parts of the definition 6&comp.

(Either a b -> Either c d) -> (a->c)
=\ a -> case (f (Left a)) of
Left ¢ > ¢

decomp ::

decompl ::
decompl f

We inject thea value into theEither data type, apply the incoming
coercing function and then extract thevalue. It is easy to verify
that the invariant is satisfied.

There are many other examples which can be translated uséng t
“other” type equality representation [40]. In fact, it alstcseems
that all practical examples can be encoded. Though, notyever
decomposition function is definable. Here is the (contfjwzdical
example.

data Foo a where
K :: Foo a
data Erk a b c where
I :: c->FErkaac
f :: Erk (Foo a) (Foo Int) a -> a
f (Ix)=x+1
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I'btee:o Theoyio~T

(Cast) Fke(ew{o~T})~ (emy):T

I'ktee:Va:ko T'hpr:TY Thyv 7k

AppT-
(APPT™) Ite(eT)~ (eT):o[r/d]
IF'Fee:Va:(r~v).o
(AppTeo) Ty (r~v):cO0 T'keop:T~w

T (e {r~0)) = (cp) : ole/al

Figure 6: Modified typing rules for Systefic,

First, we convince ourselves that the above program is typkd.
The patternI x in combination with the type annotation implies
thatFoo a = Foo Int. By decomposition, we conclude that=
Int. Thus, the program text + 1 can be given typé&nt. Hence,
the above is well-typed. To translate the above, we needftoale
a function of typeEQ (Foo a) (Foo Int) -> EQ a Int. We
claim it is impossible to define such a function with satisties
invariant. It suffices to show that a function

decompFoo :: (Foo a->Foo Int)->(a->Int)

with the property thatlecompFoo ( x->x) evaluates tx->x is
not definable.

The problem here is that a value of typeannot be injected into a
value of typeFoo a. So, clearly the incoming function of typeo
a->Foo Int is useless. Effectively, we could omit the function
parameter altogether. Parametricity tells us that anytfanof type
a->Int must be a constant function. HendecompFoo applied to
any function of typeFoo a->Foo Int yields a constant function.
Hence, an encoding of the above critical example is imptessib

In fact, the “decomposition” problem is hardly surprisingen that
similar issues arise when translating type class programis [

class Foo a where foo :: a->Int
instance Foo a => Foo [a] where

foo [] =1
foo _ =2
bar :: Foo [a] => a->Int

bar = foo

Based on the System F-style translation scheme descrit{adlin
we are unable to translate functibar. The program text demands
adictionary forFoo a but the annotation only supplies a dictionary
for Foo [al. This is the wrong way around. The instance declara-
tion tells us how to construdtoo [a] givenFoo a but the other
direction does not hold in general.

B. Complexity of Type Checking

Previous calculi for GADTSs, such ag, ¢, [44] and MLGX [35],
did not pass evidence for coercions explicitly, but dedutiesl
equality between types at coercion points implicitly dgritype
checking. We call such calcutilculi with implicit evidenceThis
raises the question whether it is necessary to constructpasd
evidence explicitly inF'c, or whether we could not have made it
into an implicit calculus. To answer this question, we defame
implicit variant of F¢, which we callF¢, and show that type
checking forFc¢, is undecidable. More precisely, we show that
reconstructing explicit coercion terms, which amount toqfs
justifying coercions, is undecidable b, .

The difference betweeFc andF ¢, is simply the following: wher-
everF¢ has a coercion type of kind o1 ~ o2, Fc, only gives the
equality kind in curly braces; i.e{o1 ~ o2}. Hence,



e castse » yturnintoe » {o1 ~ o2} and problem for A-ground theories, but is still sufficient foatrslating
GADTs, associated types, functional dependencies, andrtuo f
Given the range of FD programs supported by GHC and the anal-

It's obviously straight forward to turn alic program into arFc, ysis of properties of FD programs in [38], this is not a viahfe
program. The converse, recovering Ba program fromFc,, re- proach.

quires a type-directed translation, that we obtain fromtthpng
rules of Figure 2 by turning the expression typing rules indmsla-
tion rules. We replace the Rules (AppT) and (Cast) by thoségn
ure 6; for all other rules, the translation is the identitiieTmodified
Rules (Cas) and (AppTco) use the judgemenit -co v : 0 ~ T 10
re-computey. As we will see next, computing from a kindo ~
is, in the general case, undecidable.

o type applicationg « turn intoe {o1 ~ o2}.

THEOREM6 (Undecidability of coercion reconstruction kit ).
Given an environmerif and anFc, expressiore, computing the
correspondingF ¢ expressiore’ and its types as determined by
I'k. e~ e :oisnotdecidable.

PrROOF We show that the reconstruction of coercion types for
Fc, expressions includes the word problem for A-ground therie
which is long known to be undecidable [34]. An A-ground theigr
defined over a signatutg including the binary symbaPius and a
set of F-equationsE that are all ground (i.e, variable-free), except
for the associativity ofPlus. More concretely, we have

F={S:F1 =% ..., 8y %™ =«

Plus : x — * — }

wherex® — x indicates thas; is k-ary. Furthermore, we have

E:{0'1:7‘1, ey Om = Tm,

Plus (Plus a b) ¢) = Plus a (Plus b ¢))}
where ther; andr; are terms ovef-.
We represenft and E in F¢'s type language as follows:
type S1 : ¥ — x

type S, : ¥ — %
type Plus : ¥ — x — %
data Term : x* — x where
Sw :vah.Nata" — Nat (81 @)

Sv, : Va*™. Nat 2™ = Nat (S Ek’”)
Plusv : Ya b. Nat a — Nat b — Nat (Plus a b)

axiomar; : 01 =71

axiom azx,, : Om = Tm
axiom assoc :

(Ya b c. Plus (Plus a b) ¢) ~ (Va b c. Plus a (Plus b c))

The data typeTerm enables us to construct any (groursjterm
by reflection from the structurally identicdlc expression using
Term’s constructors. For example, §; and S, are nullary, we
have thatPlusv Svi Svz : Term (Plus S1 S2). If o is anF-term,
we denote the structurally identicBt expression witte and have
o : Termo.

The word problem for the A-ground theofy over the signaturg~
amounts to testing for two arbitrat¥-termso andr whethero =

7 underE. We represent this as dft, type checking problem by
typing the cast expressian» {o ~ 7} in the context of the above
Fc declarations corresponding 6 and E. The undecidability of
the word problem implies the undecidability B, typing, or more
precisely, that the judgement co v : o ~ 7 in the premise
of Fc,’s Rule (Casf) cannot be realised by an effective decision
procedure wher is unknown. O

It remains the question whether there exists a restrictioir'g,
equality axioms that excludes encoding problems, sucheasdind
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