
Leicester, 23. November 2011 – p. 1/32

General Binding Structures
in Nominal Isabelle 2

Christian Urban

joint work with Cezary Kaliszyk

Leicester, 23. November 2011 – p. 1/32

Binding in Old Nominal
the old Nominal Isabelle provided a reasoning
infrastructure for single binders

Lam [a].(Var a)

but representing
∀{a1, . . . , an}. T

with single binders and reasoning about it is a
major pain; take my word for it!

Leicester, 23. November 2011 – p. 2/32

for example
a # Lam [a]. t
Lam [a]. (Var a) = Lam [b]. (Var b)
Barendregt-style reasoning about bound variables
(variable convention can lead to faulty reasoning)

Bob Harper
(CMU)

Frank Pfenning
(CMU)

published a proof in
ACM Transactions on
Computational Logic,
2005, ∼31pp

Andrew Appel
(Princeton)

relied on their proof in a
security critical
application

(I also found an error in my Ph.D.-thesis about cut-
elimination examined by Henk Barendregt and Andy Pitts.)

Leicester, 23. November 2011 – p. 3/32

Bob Harper
(CMU)

Frank Pfenning
(CMU)

published a proof in
ACM Transactions on
Computational Logic,
2005, ∼31pp

Andrew Appel
(Princeton)

relied on their proof in a
security critical
application

(I also found an error in my Ph.D.-thesis about cut-
elimination examined by Henk Barendregt and Andy Pitts.)

Leicester, 23. November 2011 – p. 3/32

Bob Harper
(CMU)

Frank Pfenning
(CMU)

published a proof in
ACM Transactions on
Computational Logic,
2005, ∼31pp

Andrew Appel
(Princeton)

relied on their proof in a
security critical
application

(I also found an error in my Ph.D.-thesis about cut-
elimination examined by Henk Barendregt and Andy Pitts.)

Leicester, 23. November 2011 – p. 3/32

Binding in Old Nominal

but representing
∀{a1, . . . , an}. T

with single binders and reasoning about it was a
major pain; take my word for it!

Leicester, 23. November 2011 – p. 4/32

New Types in HOL

.

.
α-

classes
.

α-eq.
terms

.

existing
type

(sets of raw terms).
non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Leicester, 23. November 2011 – p. 5/32

New Types in HOL

.

.
α-

classes
.

α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Leicester, 23. November 2011 – p. 5/32

New Types in HOL

.

.
α-

classes
.

α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Leicester, 23. November 2011 – p. 5/32

New Types in HOL

..
α-

classes
.

α-eq.
terms

.

existing
type
(sets of raw terms).

non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Leicester, 23. November 2011 – p. 5/32

New Types in HOL

.

.
α-

classes

.
α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Leicester, 23. November 2011 – p. 5/32

New Types in HOL

..
α-

classes
.

α-eq.
terms

.

existing
type
(sets of raw terms).

non-empty
subset

.

new
type

.
isomorphism

define α-equivalence

Leicester, 23. November 2011 – p. 5/32

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Leicester, 23. November 2011 – p. 6/32

∗ x, y, z are assumed to be distinct

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Leicester, 23. November 2011 – p. 6/32

∗ x, y, z are assumed to be distinct

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Leicester, 23. November 2011 – p. 6/32

∗ x, y, z are assumed to be distinct

Binding Sets of Names

binding sets of names has some interesting
properties:

∀{x, y}. x → y ≈α ∀{y, x}. y → x

∀{x, y}. x → y ̸≈α ∀{z}. z → z

∀{x}. x → y ≈α ∀{x, z}. x → y

provided z is fresh for the type

Leicester, 23. November 2011 – p. 6/32

∗ x, y, z are assumed to be distinct

..
For type-schemes the order of bound
names does not matter, and
α-equivalence is preserved under
vacuous binders.

Other Binding Modes

alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x = 3 and y = 2 in x − y end

let y = 2 and x = 3 in x − y end

Leicester, 23. November 2011 – p. 7/32

Other Binding Modes

alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x = 3 and y = 2 in x − y end
≈α let y = 2 and x = 3 in x − y end

Leicester, 23. November 2011 – p. 7/32

Other Binding Modes

alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x = 3 and y = 2 in x − y end
̸≈α let y = 2 and x = 3 and z = loop in x − y end

Leicester, 23. November 2011 – p. 7/32

Even Another Binding Mode

sometimes one wants to abstract more than one
name, but the order does matter

let (x, y) = (3, 2) in x − y end
̸≈α let (y, x) = (3, 2) in x − y end

Leicester, 23. November 2011 – p. 8/32

Three Binding Modes

the order does not matter and alpha-equivelence
is preserved under vacuous binders (restriction)

the order does not matter, but the cardinality of
the binders must be the same (abstraction)

the order does matter (iterated single binders)

bind (set+) bind (set) bind

Leicester, 23. November 2011 – p. 9/32

Three Binding Modes

the order does not matter and alpha-equivelence
is preserved under vacuous binders (restriction)

the order does not matter, but the cardinality of
the binders must be the same (abstraction)

the order does matter (iterated single binders)

bind (set+) bind (set) bind

Leicester, 23. November 2011 – p. 9/32

Specification of Binding
nominal_datatype trm =

Var name
| App trm trm
| Lam name trm

bind x in t

| Let assns trm

bind bn(as) in t

and assns =
ANil

| ACons name trm assns

binder bn where
bn(ANil) = []

| bn(ACons a t as) = [a] @ bn(as)

Leicester, 23. November 2011 – p. 10/32

Specification of Binding
nominal_datatype trm =

Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assns t::trm bind bn(as) in t

and assns =
ANil

| ACons name trm assns

binder bn where
bn(ANil) = []

| bn(ACons a t as) = [a] @ bn(as)

Leicester, 23. November 2011 – p. 10/32

Specification of Binding
nominal_datatype trm =

Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assns t::trm bind bn(as) in t

and assns =
ANil

| ACons name trm assns
binder bn where

bn(ANil) = []
| bn(ACons a t as) = [a] @ bn(as)

Leicester, 23. November 2011 – p. 10/32

Alpha-Equivalence

lets first look at pairs

(as, x)

≈ (bs, y)

Leicester, 23. November 2011 – p. 11/32

as is a set of names…the binders
x is the body (might be a tuple)
≈set is where the cardinality of the
binders has to be the same

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set (bs, y)

Leicester, 23. November 2011 – p. 11/32

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set (bs, y)

Leicester, 23. November 2011 – p. 11/32

def
=

∃π.

fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) = y

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set (bs, y)

Leicester, 23. November 2011 – p. 11/32

def
= ∃π. fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) = y

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set (bs, y)

Leicester, 23. November 2011 – p. 11/32

def
= ∃π. fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) = y

∧ π·as = bs

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ list (bs, y)

Leicester, 23. November 2011 – p. 11/32

def
= ∃π. fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) = y

∧ π·as = bs

∗ as and bs are lists of names

Alpha-Equivalence

lets first look at pairs

(as, x) ≈ set+(bs, y)

Leicester, 23. November 2011 – p. 11/32

def
= ∃π. fv(x) − as = fv(y) − bs

∧ fv(x) − as #∗ π

∧ (π·x) = y

/////∧ //////////////π·as = bs

Examples

lets look at type-schemes:

(as, x) ≈ set (bs, y)

fv(x) = {x}
fv(T1 → T2) = fv(T1) ∪ fv(T2)

Leicester, 23. November 2011 – p. 12/32

Examples

lets look at type-schemes:

(as, x) ≈ set (bs, y)

fv(x) = {x}
fv(T1 → T2) = fv(T1) ∪ fv(T2)

Leicester, 23. November 2011 – p. 12/32

Examples

lets look at type-schemes:

(as, x) ≈ set (bs, y)

fv(x) = {x}
fv(T1 → T2) = fv(T1) ∪ fv(T2)

Leicester, 23. November 2011 – p. 12/32

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

Examples

({x, y}, x → y) ≈? ({x, y}, y → x)

≈set+, ≈set

Leicester, 23. November 2011 – p. 13/32

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

Examples

([x, y], x → y) ≈? ([x, y], y → x)

≈set+, ≈set, ̸≈list

Leicester, 23. November 2011 – p. 13/32

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

Examples

({x}, x) ≈? ({x, y}, x)

≈set+, ̸≈set, ̸≈list

Leicester, 23. November 2011 – p. 14/32

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

Examples

≈set+, ̸≈set, ̸≈list

Leicester, 23. November 2011 – p. 14/32

..
set+:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y

..
set:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..
list:

∃π. fv(x) − as = fv(y) − bs
∧ fv(x) − as #∗ π
∧ π · x = y
∧ π · as = bs

..

α-equivalences coincide when a
single name is abstracted
in that case they are equivalent to
“old-fashioned” definitions of α

Our Specifications
nominal_datatype trm =

Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assns t::trm bind bn(as) in t

and assns =
ANil

| ACons name trm assns
binder bn where

bn(ANil) = []
| bn(ACons a t as) = [a] @ bn(as)

Leicester, 23. November 2011 – p. 15/32

Binder Clauses
We need to have a ‘clear scope’ for a bound
variable, and bound variables should not be free
and bound at the same time.

shallow binders
Lam x::name t::trm bind x in t
All xs::name set T::ty bind xs in T
Foo x::name t1::trm t2::trm bind x in t1, bind x in t2
Bar x::name t1::trm t2::trm bind x in t1 t2

Leicester, 23. November 2011 – p. 16/32

Binder Clauses
We need to have a ‘clear scope’ for a bound
variable, and bound variables should not be free
and bound at the same time.

deep binders
Let as::assns t::trm bind bn(as) in t
Foo as::assns t1::trm t2::trm

bind bn(as) in t1, bind bn(as) in t2

×Bar as::assns t1::trm t2::trm
bind bn1(as) in t1, bind bn2(as) in t2

Leicester, 23. November 2011 – p. 16/32

Binder Clauses
We need to have a ‘clear scope’ for a bound
variable, and bound variables should not be free
and bound at the same time.

deep recursive binders
Let_rec as::assns t::trm bind bn(as) in t as

×Foo_rec as::assns t1::trm t2::trm
bind bn(as) in t1 as, bind bn(as) in t2

Leicester, 23. November 2011 – p. 16/32

Our Work

..
α-

classes
.

α-eq.
terms

.

existing
type
(sets of raw terms).

non-empty
subset

.

new
type

.
isomorphism

Leicester, 23. November 2011 – p. 17/32

defined fv and α

built quotient / new type
derived a reasoning infrastructure
(#, distinctness, injectivity,
cases,…)
derive a stronger cases lemma
from this, a stronger induction
principle (Barendregt variable
convention built in)

Foo (λx.λy.t) (λu.λv.s)

Our Work

.

.
α-

classes

.
α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

Leicester, 23. November 2011 – p. 17/32

defined fv and α

built quotient / new type

derived a reasoning infrastructure
(#, distinctness, injectivity,
cases,…)
derive a stronger cases lemma
from this, a stronger induction
principle (Barendregt variable
convention built in)

Foo (λx.λy.t) (λu.λv.s)

Our Work

.

.
α-

classes

.
α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

Leicester, 23. November 2011 – p. 17/32

defined fv and α

built quotient / new type
derived a reasoning infrastructure
(#, distinctness, injectivity,
cases,…)

derive a stronger cases lemma
from this, a stronger induction
principle (Barendregt variable
convention built in)

Foo (λx.λy.t) (λu.λv.s)

Our Work

.

.
α-

classes

.
α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

Leicester, 23. November 2011 – p. 17/32

defined fv and α

built quotient / new type
derived a reasoning infrastructure
(#, distinctness, injectivity,
cases,…)
derive a stronger cases lemma

from this, a stronger induction
principle (Barendregt variable
convention built in)

Foo (λx.λy.t) (λu.λv.s)

Our Work

.

.
α-

classes

.
α-eq.
terms

.

existing
type

(sets of raw terms)

.
non-empty
subset

.

new
type

.
isomorphism

Leicester, 23. November 2011 – p. 17/32

defined fv and α

built quotient / new type
derived a reasoning infrastructure
(#, distinctness, injectivity,
cases,…)
derive a stronger cases lemma
from this, a stronger induction
principle (Barendregt variable
convention built in)

Foo (λx.λy.t) (λu.λv.s)

Part I: Conclusion
the user does not see anything of the raw level

Lam a (Var a) = Lam b (Var b)

http://isabelle.in.tum.de/nominal/

Leicester, 23. November 2011 – p. 18/32

Part I: Conclusion
the user does not see anything of the raw level

http://isabelle.in.tum.de/nominal/

Leicester, 23. November 2011 – p. 18/32

Part II: αβ-Equal Terms
we have implemented a quotient package for
Isabelle;
can now introduce the type of αβ-equal terms
(starting from α-equal terms).
on paper this looks easy

x ≈αβ y ̸⇒ supp(x) = supp(y)
̸⇒ size(x) = size(y)

Andy: supp[[x]]≈αβ
=
∩

{supp(y) | y ≈αβ x}

Leicester, 23. November 2011 – p. 19/32

Part II: αβ-Equal Terms
we have implemented a quotient package for
Isabelle;
can now introduce the type of αβ-equal terms
(starting from α-equal terms).
on paper this looks easy

x ≈αβ y ̸⇒ supp(x) = supp(y)
̸⇒ size(x) = size(y)

Andy: supp[[x]]≈αβ
=
∩

{supp(y) | y ≈αβ x}

Leicester, 23. November 2011 – p. 19/32

Part II: αβ-Equal Terms
we have implemented a quotient package for
Isabelle;
can now introduce the type of αβ-equal terms
(starting from α-equal terms).
on paper this looks easy

x ≈αβ y ̸⇒ supp(x) = supp(y)
̸⇒ size(x) = size(y)

Andy: supp[[x]]≈αβ
=
∩

{supp(y) | y ≈αβ x}

Leicester, 23. November 2011 – p. 19/32

x [y := s]
def
= if x = y then s else x

t1t2 [y := s]
def
= t1[y := s] t2[y := s]

λx.t [y := s]
def
= λx. t[y := s]

provided x # (y, s)

Leicester, 23. November 2011 – p. 20/32

Part III: Regular Languages

in Theorem Provers
e.g. Isabelle, Coq, HOL4, …

automata ⇒ graphs, matrices, functions

combining automata/graphs

.........A1

. A2 ⇒A1
. A2

Leicester, 23. November 2011 – p. 21/32

Part III: Regular Languages

in Theorem Provers
e.g. Isabelle, Coq, HOL4, …

automata ⇒ graphs, matrices, functions
combining automata/graphs

.........A1

. A2

⇒A1
. A2

Leicester, 23. November 2011 – p. 21/32

Part III: Regular Languages

in Theorem Provers
e.g. Isabelle, Coq, HOL4, …

automata ⇒ graphs, matrices, functions
combining automata/graphs

.........A1

. A2 ⇒A1
. A2

Leicester, 23. November 2011 – p. 21/32

Part III: Regular Languages

in Theorem Provers
e.g. Isabelle, Coq, HOL4, …

automata ⇒ graphs, matrices, functions
combining automata/graphs

.........A1

. A2 ⇒A1
. A2

disjoint union:

A1 ⊎ A2
def
= {(1, x) |x ∈ A1} ∪ {(2, y) | y ∈ A2}

Leicester, 23. November 2011 – p. 21/32

Part III: Regular Languages

in Theorem Provers
e.g. Isabelle, Coq, HOL4, …

automata ⇒ graphs, matrices, functions
combining automata/graphs

.........A1

. A2 ⇒A1
. A2

disjoint union:

A1 ⊎ A2
def
= {(1, x) |x ∈ A1} ∪ {(2, y) | y ∈ A2}

Leicester, 23. November 2011 – p. 21/32

.

......

Problems with definition for regularity:

is_regular(A)
def
= ∃M. is_dfa(M) ∧ L(M) = A

Part III: Regular Languages

in Theorem Provers
e.g. Isabelle, Coq, HOL4, …

automata ⇒ graphs, matrices, functions
combining automata/graphs

.........A1

. A2 ⇒A1
. A2

A solution: use nats ⇒ state nodes

Leicester, 23. November 2011 – p. 21/32

Part III: Regular Languages

in Theorem Provers
e.g. Isabelle, Coq, HOL4, …

automata ⇒ graphs, matrices, functions
combining automata/graphs

.........A1

. A2 ⇒A1
. A2

A solution: use nats ⇒ state nodes
You have to rename states!

Leicester, 23. November 2011 – p. 21/32

Formal language theory…

in Theorem Provers
e.g. Isabelle, Coq, HOL4, …

Kozen’s “paper” proof of Myhill-Nerode:
requires absence of inaccessible states

is_regular(A)
def
= ∃M. is_dfa(M) ∧ L(M) = A

Leicester, 23. November 2011 – p. 22/32

…and forget about automata

Infrastructure for free. But do we lose anything?
pumping lemma
closure under complementation

most textbooks are about automata

Leicester, 23. November 2011 – p. 23/32

.

......

Definition:
A language A is regular, provided there exists a
regular expression that matches all strings of A.

…and forget about automata

Infrastructure for free. But do we lose anything?
pumping lemma
closure under complementation

most textbooks are about automata

Leicester, 23. November 2011 – p. 23/32

.

......

Definition:
A language A is regular, provided there exists a
regular expression that matches all strings of A.

…and forget about automata

Infrastructure for free. But do we lose anything?

pumping lemma
closure under complementation

most textbooks are about automata

Leicester, 23. November 2011 – p. 23/32

.

......

Definition:
A language A is regular, provided there exists a
regular expression that matches all strings of A.

…and forget about automata

Infrastructure for free. But do we lose anything?
pumping lemma

closure under complementation

most textbooks are about automata

Leicester, 23. November 2011 – p. 23/32

.

......

Definition:
A language A is regular, provided there exists a
regular expression that matches all strings of A.

…and forget about automata

Infrastructure for free. But do we lose anything?
pumping lemma
closure under complementation

most textbooks are about automata

Leicester, 23. November 2011 – p. 23/32

.

......

Definition:
A language A is regular, provided there exists a
regular expression that matches all strings of A.

…and forget about automata

Infrastructure for free. But do we lose anything?
pumping lemma
closure under complementation
regular expression matching

most textbooks are about automata

Leicester, 23. November 2011 – p. 23/32

.

......

Definition:
A language A is regular, provided there exists a
regular expression that matches all strings of A.

…and forget about automata

Infrastructure for free. But do we lose anything?
pumping lemma
closure under complementation

..regular expression matching (⇒Brozowski’64, Owens et al ’09)

most textbooks are about automata

Leicester, 23. November 2011 – p. 23/32

.

......

Definition:
A language A is regular, provided there exists a
regular expression that matches all strings of A.

…and forget about automata

Infrastructure for free. But do we lose anything?
pumping lemma
closure under complementation

..regular expression matching (⇒Brozowski’64, Owens et al ’09)

most textbooks are about automata
Leicester, 23. November 2011 – p. 23/32

.

......

Definition:
A language A is regular, provided there exists a
regular expression that matches all strings of A.

The Myhill-Nerode
Theorem

provides necessary and sufficient conditions
for a language being regular
(pumping lemma only necessary)

key is the equivalence relation:

x ≈A y
def
= ∀z. x@z ∈ A ⇔ y@z ∈ A

Leicester, 23. November 2011 – p. 24/32

The Myhill-Nerode
Theorem

.

finite (UNIV // ≈A) ⇔ A is regular

Leicester, 23. November 2011 – p. 25/32

..UNIV.

set of all
strings

The Myhill-Nerode
Theorem

.

finite (UNIV // ≈A) ⇔ A is regular

Leicester, 23. November 2011 – p. 25/32

..UNIV.

set of all
strings ..[[x]]≈A

.

an equivalence class

The Myhill-Nerode
Theorem

.

finite (UNIV // ≈A) ⇔ A is regular

Leicester, 23. November 2011 – p. 25/32

..UNIV.

set of all
strings ..[[x]]≈A

.

an equivalence class

.

......

Two directions:
1.) finite ⇒ regular

finite (UNIV // ≈A) ⇒ ∃r. A = L(r)

2.) regular ⇒ finite
finite (UNIV // ≈L(r))

Transitions between Eq-Classes

..

X

.

Y

..

c

X
c−→ Y

def
= X; c ⊆ Y

..R1

.start

Leicester, 23. November 2011 – p. 26/32

The Other Direction
One has to prove

finite(UNIV // ≈L(r))

by induction on r. Not trivial, but after a bit of
thinking, one can find a refined relation:

. ..
a1

.
a2

.
a3

.
a4

.. a1.1.
a1.2

.
a2.1

.a2.2 .
a3.1

.
a3.2

.
a4.1

.
a4.2

UNIV UNIV // ≈L(r) UNIV //R

Leicester, 23. November 2011 – p. 27/32

..a

Derivatives of RExps
introduced by Brozowski ’64
a regular expressions after a character has been
parsed

der c ∅ def
= ∅

der c [] def
= ∅

der c d def
= if c = d then [] else ∅

der c (r1 + r2)
def
= (der c r1) + (der c r2)

der c (r⋆) def
= (der c r) · r⋆

der c (r1 · r2)
def
= if nullable r1

then (der c r1) · r2 + (der c r2)
else (der c r1) · r2

Leicester, 23. November 2011 – p. 28/32

Derivatives of RExps
introduced by Brozowski ’64
a regular expressions after a character has been
parsed

pder c ∅ def
= {}

pder c [] def
= {}

pder c d def
= if c = d then {[]} else {}

pder c (r1 + r2)
def
= (pder c r1) ∪ (der c r2)

pder c (r⋆) def
= (pder c r) · r⋆

pder c (r1 · r2)
def
= if nullable r1

then (pder c r1) · r2 ∪ (pder c r2)
else (pder c r1) · r2

Leicester, 23. November 2011 – p. 28/32

.

......

partial derivatives
by Antimirov ’95

Partial Derivatives

pders x r = pders y r refines x≈L(r) y

finite(UNIV //R)

Therefore finite(UNIV // ≈L(r)). Qed.

Leicester, 23. November 2011 – p. 29/32

Partial Derivatives

pders x r = pders y r︸ ︷︷ ︸
R

refines x≈L(r) y

finite(UNIV //R)

Therefore finite(UNIV // ≈L(r)). Qed.

Leicester, 23. November 2011 – p. 29/32

..a. Antimirov ’95

Partial Derivatives

pders x r = pders y r︸ ︷︷ ︸
R

refines x≈L(r) y

finite(UNIV //R)

Therefore finite(UNIV // ≈L(r)). Qed.

Leicester, 23. November 2011 – p. 29/32

..a. Antimirov ’95

What Have We Achieved?
finite (UNIV // ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV // ≈A = UNIV // ≈A

non-regularity (anbn)

take any language; build the language of
substrings
then this language is regular (anbn ⇒ a⋆b⋆)

Leicester, 23. November 2011 – p. 30/32

What Have We Achieved?
finite (UNIV // ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV // ≈A = UNIV // ≈A

non-regularity (anbn)

take any language; build the language of
substrings
then this language is regular (anbn ⇒ a⋆b⋆)

Leicester, 23. November 2011 – p. 30/32

x ≈A y
def
= ∀z. x@z ∈ A ⇔ y@z ∈ A

What Have We Achieved?
finite (UNIV // ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV // ≈A = UNIV // ≈A

non-regularity (anbn)

take any language; build the language of
substrings
then this language is regular (anbn ⇒ a⋆b⋆)

Leicester, 23. November 2011 – p. 30/32

What Have We Achieved?
finite (UNIV // ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV // ≈A = UNIV // ≈A

non-regularity (anbn)

take any language; build the language of
substrings
then this language is regular (anbn ⇒ a⋆b⋆)

Leicester, 23. November 2011 – p. 30/32

.

......

If there exists a sufficiently large set B
(for example infinitely large), such that

∀x, y ∈ B. x ̸= y ⇒ x ̸≈A y.

then A is not regular. (B def
=

∪
n an)

What Have We Achieved?
finite (UNIV // ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV // ≈A = UNIV // ≈A

non-regularity (anbn)

take any language; build the language of
substrings

then this language is regular (anbn ⇒ a⋆b⋆)

Leicester, 23. November 2011 – p. 30/32

What Have We Achieved?
finite (UNIV // ≈A) ⇔ A is regular

regular languages are closed under
complementation; this is now easy

UNIV // ≈A = UNIV // ≈A

non-regularity (anbn)

take any language; build the language of
substrings
then this language is regular (anbn ⇒ a⋆b⋆)

Leicester, 23. November 2011 – p. 30/32

Thank you!

Questions?

Leicester, 23. November 2011 – p. 31/32

Examples

({a, b}, a → b) ≈α ({a, b}, a → b)
({a, b}, a → b) ≈α ({a, b}, b → a)

({a, b}, (a → b, a → b))
̸≈α ({a, b}, (a → b, b → a))

1.) bind (set) as in τ1, bind (set) as in τ2

2.) bind (set) as in τ1 τ2

Leicester, 23. November 2011 – p. 32/32

Examples

({a, b}, a → b) ≈α ({a, b}, a → b)
({a, b}, a → b) ≈α ({a, b}, b → a)

({a, b}, (a → b, a → b))
̸≈α ({a, b}, (a → b, b → a))

1.) bind (set) as in τ1, bind (set) as in τ2

2.) bind (set) as in τ1 τ2

Leicester, 23. November 2011 – p. 32/32

