
System F with Type Equality Coercions

Martin Sulzmann
School of Computing

National University of Singapore
sulzmann@comp.nus.edu.sg

Manuel M. T. Chakravarty
Computer Science & Engineering
University of New South Wales

chak@cse.unsw.edu.au

Simon Peyton Jones Kevin Donnelly
Microsoft Research Ltd

Cambridge, England
{simonpj,t-kevind}@microsoft.com

Abstract
We introduce SystemFC, which extends System F with support
for non-syntactic type equality. There are two main extensions: (i)
explicit witnesses for type equalities, and (ii) open, non-parametric
type functions, given meaning by top-level equality axioms. Unlike
System F,FC is expressive enough to serve as a target for several
different source-language features, including Haskell’snewtype,
generalised algebraic data types, associated types, functional de-
pendencies, and perhaps more besides.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; F.3.3 [Log-
ics and Meanings of Programs]: Studies of Program Constructs—
Type structure

General Terms Languages, Theory

Keywords Typed intermediate language, advanced type features

1. Introduction
The polymorphic lambda calculus, System F, is popular as a highly-
expressive typed intermediate language in compilers for functional
languages. However, language designers have begun to experiment
with a variety of type systems that are difficult or impossible to
translate into System F, such as functional dependencies [21], gen-
eralised algebraic data types (GADTs) [43, 31], and associated
types [6, 5]. For example, when we added GADTs to GHC, we
extended GHC’s intermediate language with GADTs as well, even
though GADTs are arguably an over-sophisticated addition to a
typed intermediate language. But when it came to associatedtypes,
even with this richer intermediate language, the translation became
extremely clumsy or in places impossible.

In this paper we resolve this problem by presenting SystemFC(X),
a super-set of F that is bothmore foundationalandmore powerful
than addingad hocextensions to System F such as GADTs or as-
sociated types.FC(X) uses explicit type-equality coercions as wit-
nesses to justify explicit type-cast operations. Like types, coercions
are erased before running the program, so they are guaranteed to
have no run-time cost.

This single mechanism allows a very direct encoding of associ-
ated types and GADTs, and allows us to deal with some exotic
functional-dependency programs that GHC currently rejects on the
grounds that they have no System-F translation (§2). Our specific
contributions are these:
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• We give a formal description of SystemFC, our new intermedi-
ate language, including its type system, operational semantics,
soundness result, and erasure properties (§3). There are two dis-
tinct extensions. The first, explicit equality witnesses, gives a
system equivalent in power to System F + GADTs (§3.2); the
second introduces non-parametric type functions, and addssub-
stantial new power, well beyond System F + GADTs (§3.3).

• A distinctive property ofFC’s type functions is that they are
open(§3.4). Here we use “open” in the same sense that Haskell
type classes are open: just as a newly defined type can be
made an instance of an existing class, so inFC we can extend
an existing type function with a case for the new type. This
property is crucial to the translation of associated types.

• The system is very general, and its soundness requires that the
axioms stated as part of the program text areconsistent(§3.5).
That is why we call the systemFC(X): the “X” indicates that
it is parametrised over a decision procedure for checking con-
sistency, rather than baking in a particular decision procedure.
(We often omit the “(X)” for brevity.) Conditions identifiedin
earlier work on GADTs, associated types, and functional de-
pendencies, already define such decision procedures.

• A major goal is thatFC should be apractical compiler inter-
mediate language. We have paid particular attention to ensuring
thatFC programs are robust to program transformation (§3.8).

• It must obviously bepossibleto translate the source language
into the intermediate language; but it is also highly desirable
that it be straightforward. We demonstrate thatFC has this
property, by sketching a type-preserving translation of two
source language idioms, namely GADTs (Section 4) and as-
sociated types (Section 5). The latter, and the corresponding
translation for functional dependencies, are more generalthan
all previous type-preserving translations for these features.

SystemFC has no new foundational content: rather, it is an intrigu-
ing and practically-useful application of techniques thathave been
well studied in the type-theory community. Several other calculi
exist that might in principle be used for our purpose, but they gen-
erally do not handle open type functions, are less robust to trans-
formation, and are significantly more complicated. We defera com-
parison with related work until§6.

To substantiate our claim thatFC is practical, we have implemented
it in GHC, a state-of-the-art compiler for Haskell, including both
GADTs and associated (data) types. This is not just a prototype;
FC now is GHC’s intermediate language.

FC does not strive to do everything; rather we hope that it strikes
an elegant balance between expressiveness and complexity.While
our motivating examples were GADTs and associated types, we
believe thatFC may have much wider application as a typed target
for sophisticated HOT (higher-order typed) source languages.



2. The key ideas
No compiler usespure System F as an intermediate language,
because some source-language constructs can only be desugared
into pure System F by very heavy encodings. A good example is
the algebraic data types of Haskell or ML, which are made more
complicated in Haskell because algebraic data types can capture
existential type variables. To avoid heavy encoding, most compilers
invariably extend System F by adding algebraic data types, data
constructors, andcase expressions. We will useFA to describe
System F extended in this way, where the data constructors are
allowed to have existential components [24], type variables can be
of higher kind, and type constructor applications can be partial.

Over the last few years, source languages (notably Haskell)have
started to explore language features that embodynon-syntacticor
definitionaltype equality. These features include functional depen-
dencies [16], generalised algebraic data types (GADTs) [43, 36],
and associated types [6, 5]. All three are difficult or impossible to
translate into System F — and yet the alternative of simply ex-
tending System F by adding functional dependencies, GADTs,and
associated types, seems wildly unattractive. Where would one stop?

In the rest of this section we informally present SystemFC, an
extension of System F that resolves the dilemma. We show how it
can serve as a target for each of the three examples. The formal
details are presented in§3. Throughout we usetypewriter font
for source-code, anditalics for FC.

2.1 GADTs

Consider the following simple type-safe evaluator, often used as the
poster child of GADTs, written in the GADT extension of Haskell
supported by GHC:

data Exp a where
Zero :: Exp Int
Succ :: Exp Int -> Exp Int
Pair :: Exp b -> Exp c -> Exp (b, c)

eval :: Exp a -> a
eval Zero = 0
eval (Succ e) = eval e + 1
eval (Pair x y) = (eval x, eval y)

main = eval (Pair (Succ Zero) Zero)

The key point about this program, and the aspect that is hard to
express in System F, is that in theZero branch ofeval, the type
variablea is the same asInt, even though the two are syntactically
quite different. That is why the0 in theZero branch is well-typed
in a context expecting a result of typea.

Rather than extend the intermediate language with GADTs them-
selves — GHC’s pre-FC “solution” — we instead propose a gen-
eral mechanism of parameterising functions withtype equalities,
writtenσ1∼σ2, witnessed bycoercions.Coercion types are passed
around using System F’s existing type passing facilities and enable
representing GADTs by ordinary algebraic data types encapsulat-
ing such type equality coercions.

Specifically, we translate the GADTExp to an ordinary algebraic
data type, where each variant is parametrised by a coercion:

data Exp : ⋆ → ⋆ where
Zero : ∀a. (a ∼ Int) ⇒ Exp a
Succ : ∀a. (a ∼ Int) ⇒ Exp Int → Exp a
Pair : ∀abc. (a ∼ (b, c)) ⇒ Exp b → Exp c → Exp a

So far, this is quite standard; indeed, several authors present
GADTs in the source language using a syntax involving explicit
equality constraints, similar to that above [43, 10]. However, for us
the equality constraints are extra type arguments to the constructor,

which must be given when the constructor is applied, and which
are brought into scope by pattern matching. The “⇒” is syntac-
tic sugar, and we sloppily omitted the kind of the quantified type
variables, so the type ofZero is really this:

Zero : ∀ a :⋆. ∀(co :a ∼ Int). Exp a

Herea ranges overtypes, of kind⋆, whileco ranges overcoercions,
of kind a ∼ Int . An important property of our approach is that
coercions are types, and hence,equalitiesτ1 ∼ τ2 are kinds.An
equality kindτ1 ∼ τ2 categorises all coercion types that witness
the interchangeability of the two typesτ1 andτ2. So, our slogan is
propositions as kinds,andproofs as (coercion) types.

Coercion types may be formed from a set of elementary coer-
cions that correspond to the rules of equational logic; for example,
Int : (Int ∼ Int) is an instance of the reflexivity of equality and
sym co : (Int ∼ a), with co : (a ∼ Int), is an instance of symme-
try. A call of the constructorZero must be given a type (to instan-
tiatea) and a coercion (to instantiateco), thus for example:

Zero Int Int : Exp Int

As indicated above, regular types likeInt , when interpreted as
coercions, witness reflexivity.

Just like value arguments, the coercions passed to a constructor
when it is built are made available again by pattern matching. Here,
then, is the code ofeval in FC:

eval = Λa :⋆.λe :Exp a.
case e of

Zero (co :a ∼ Int) →
0◮ sym co

Succ (co :a ∼ Int) (e ′ :Exp Int) →
(eval Int e ′ + 1)◮ sym co

Pair (b :⋆) (c :⋆) (co :a ∼ (b, c))
(e1 :Exp b) (e2 :Exp c) →

(eval b e1, eval c e2)◮ sym co

The form Λa :⋆.e abstracts over types, as usual. In the first al-
ternative of thecase expression, the pattern binds the coercion
type argument ofZero to co. We use the symmetry of equality
in (sym co) to get a coercion fromInt to a and use that to cast the
type of0 to a, using thecast expression0◮ sym co. Cast expres-
sions have nooperationaleffect, but they serve to explain to the
type system when a value of one type (hereInt) should be treated
as another (herea), and provide evidence for this equivalence. In
general, the forme ◮ g has typet2 if e : t1 and g : (t1 ∼ t2).
So,eval Int (Zero Int Int)) is of typeInt as required byeval ’s
signature. We shall discuss coercion types and their kinds in more
detail in§3.2.

In a similar manner, the recently-proposed extended algebraic data
types [40], which add equality and predicate constraints toGADTs,
can be translated toFC.

2.2 Associated types

Associated types are a recently-proposed extension to Haskell’s
type-class mechanism [6, 5]. They offer open, type-indexedtypes
that are associated with a type class. Here is a standard example:

class Collects c where
type Elem c -- associated type synonym
empty :: c
insert :: Elem c -> c -> c

The classCollects abstracts over a family of containers, where
the representation type of the container,c, defines (or constrains)
the type of its elementsElem c. That is,Elem is a type-level func-
tion that transforms the collection type to the element type. Just
asinsert is non-parametric – its implementation varies depend-
ing on c – so isElem. For example, a list container can contain



elements of any type supporting equality, and a bit-set container
might represent a collection of characters:

instance Eq e => Collects [e] where
{type Elem [e] = e; ...}

instance Collects BitSet where
{type Elem BitSet = Char; ...}

Generally, type classes are translated into System F [17] by(1) turn-
ing each class into a record type, called a dictionary, contain-
ing the class methods, (2) converting each instance into a dic-
tionary value, and (3) passing such dictionaries to whichever
function mentions a class in its signature. For example, a func-
tion of type negate :: Num a => a -> a will translate to
negate : NumDict a → a → a, whereNumDict is the record
generated from the classNum.

A record only encapsulates values, so what to do about associ-
ated types, such asElem in the example? The system given in
[6] translates each associated type into an additional typeparam-
eter of the class’s dictionary type, provided the class and instance
declarations abide by some moderate constraints [6]. For example,
the classCollects translates to dictionary typeCollectsDict c e,
wheree representsElem c and where all occurrences ofElem c
of the method signatures have been replaced by the new type
parametere. So, the (System F) type forinsert would now be
CollectDict c e → e → c → c. The required type transforma-
tions become more complex when associated types occur in data
types; the data types have to be rewritten substantially during trans-
lation, which can be a considerable burden in a compiler.

Type equality coercions enable a far more direct translation. Here
is the translation ofCollects into FC:

type Elem : ⋆ → ⋆
data CollectsDict c =

Collects {empty : c; insert : Elem c → c → c}

The dictionary type is as in a translation without associated types.
The type declaration inFC introduces a newtype function. An
instance declaration forCollects is translated to (a) a dictionary
transformer for the values and (b) an equality axiom that describes
(part) of the interpretation for the type functionElem. For example,
here is the translation intoFC of theCollects Bitset instance:

axiom elemBS : Elem BitSet ∼ Char
dCollectsBS : CollectsDict Bitset
dCollectsBS = ...

Theaxiom definition introduces a new, namedcoercion constant,
elemBS , which serves as a witness of the equality asserted by
the axiom; here, that we can convert between types of the form
Elem BitSet andChar . Using this coercion, we caninsert the
character ’b’ into aBitSet by applying the coercionelemBS
backwards to ’b’, thus:

(’b’ ◮ (sym elemBS)) : Elem BitSet

This argument fits the signature ofinsert .

In short, SystemFC supports a very direct translation of associated
types, in contrast to the clumsy one described in [6]. What ismore,
there are several obvious extensions to the latter paper that cannot
be translated into System F at all, even clumsily, andFC supports
them too, as we sketch in Section 5.

2.3 Functional dependencies

Functional dependencies are another popular extension of Haskell’s
type-class mechanism [21]. With functional dependencies,we can
encode a function over typesF as a relation, thus

class F a b | a -> b
instance F Int Bool

However, some programs involving functional dependenciesare
impossible to translate into System F. For example, a usefulidiom
in type-level programming is to abstract over the co-domainof a
type function by way of an existential type, theb in this example:

data T a = forall b. F a b => MkT (b -> b)

In this Haskell declaration,MkT is the constructor of typeT, captur-
ing an existential type variableb. One might hope that the following
function would type-check:

combine :: T a -> T a -> T a
combine (MkT f) (MkT f’) = MkT (f . f’)

After all, since the typea functionally determinesb, f and f’
must have the same type. Yet GHC rejects this program, because
it cannot be translated into SystemFA, becausef and f’ each
have distinct, existentially-quantified types, and there is no way to
express their (non-syntactic) identity inFA.

It is easy to translate this example intoFC, however:

type F1 : ⋆ → ⋆
data FDict : ⋆ → ⋆ → ⋆ where

F : ∀a b. (b ∼ F1 a) ⇒ FDict a b
axiom fIntBool : F1 Int ∼ Bool
data T : ⋆ → ⋆ where

MkT : ∀a b.FDict a b → (b → b) → T a

combine : T a → T a → T a
combine (MkT b (F (co : b ∼ F1 a)) f )

(MkT b′ (F (co′ : b′ ∼ F1 a)) f ′)
= MkT a b (F a b co) (f . (f ′ ◮ d2))
where

d1 : (b′ ∼ b) = co′ ◦ sym co
d2 : (b′ → b′ ∼ b → b) = d1 → d1

The functional dependency is expressed as a type functionF1, with
one equality axiom per instance. (In general there might be many
functional dependencies for a single class.) The dictionary for class
F includes a witness that indeedb is equal toF1 a, as you can see
from the declaration of constructorF . When pattern matching in
combine, we gain access to these witnesses, and can use them to
castf ′ so that it has the same type asf . (To construct the witness
d1 we use the coercion combinatorssym · and·◦·, which represent
symmetry and transitivity; and fromd1 we build the witnessd2.)

Even in the absence of existential types, there are reasonable source
programs involving functional dependencies that have no System F
translation, and hence are rejected by GHC. We have encountered
this problem in real programs, but here is a boiled-down example,
using the same classF as before:

class D a where { op :: F a b => a -> b }
instance D Int where { op _ = True }

The crucial point is that the contextF a b of the signature ofop
constrains the parameter of the enclosing type classD. This be-
comes a problem when typing the definition ofop in the instanceD
Int. In D’s dictionaryDDict , we haveop : ∀b.C a b → a → b
with b universally quantified, but in the instance declaration, we
would need to instantiateb with Bool . The instance declaration for
D cannot be translated into System F. UsingFC, this problem is
easily solved: the coercion in the dictionary forF enables the result
of op to be cast to typeb as required.

To summarise, a compiler that uses translation into System F(or
FA) must reject some reasonable (albeit slightly exotic) programs
involving functional dependencies, and also similar programs in-
volving associated types. The extra expressiveness of System FC

solves the problem neatly.



2.4 Translating newtype

FC is extremely expressive, and can support language featuresbe-
yond those we have discussed so far. Another example are Haskell
98’snewtype declarations:

newtype T = MkT (T -> T)

In Haskell, this declaresT to be isomorphic toT->T, but there is no
good way to express that in System F. In the past, GHC has handled
this with anad hochack, butFC allows it to be handled directly,
by introducing a new axiom

axiom CoT : (T → T ) ∼ T

2.5 Summary

In this section we have shown that System F is inadequate as
a typed intermediate language for source languages that embody
non-syntactic type equality — and Haskell has developed several
such extensions. We have sketchily introduced SystemFC as a
solution to these difficulties. We will formalise it in the next section.

3. System FC(X)
The main idea inFC(X) is that we pass around explicit evidence
for type equalities, in just the same way that System F passestypes
explicitly. Indeed, inFC the evidenceγ for a type equalityis a
type; we use type abstraction for evidence abstraction, andtype
application for evidence application. Ultimately, we erase all types
before running the program, and thereby erase all type-equality
evidence as well, so the evidence passing has no run-time cost.
However, that is not the only reason that it is better to represent
evidence as atyperather than as aterm, as we discuss in§3.10.

Figure 1 defines the syntax of SystemFC, while Figures 2 and 3
give its static semantics. The notationan (wheren ≥ 0) means
the sequencea1 · · · an; the “n” may be omitted when it is unim-
portant. Moreover, we use comma to mean sequence extension as
follows: an, an+1 , an+1. We usefv(x) to denote the free vari-
ables of a structurex, which may be an expression, type term, or
environment.

3.1 Conventional features

SystemFC is a superset of System F. The syntax of types and
kinds is given in Figure 1. Like F,FC is impredicative, and has
no stratification of types into polytypes and monotypes. Themeta-
variablesϕ, ρ, σ, τ , υ, and γ all range over types, and hence
also over coercions. However, we adopt the convention that we
use ρ, σ, τ , and υ in places where we can only have regular
types (i.e., no coercions), and we useγ in places where we can
only have coercion types. We useϕ for types that can take either
form. This choice of meta-variables is only a convention to aid the
reader; formally, the coercion typing and kinding rules enforce the
appropriate restrictions.

Our system allows types of higher kind; hence the type application
form τ1 τ2. However, like Haskell but unlikeFω, our system has no
type-level lambda, and type equality is syntactic identity(modulo
alpha-conversion). This choice has pervasive consequences; it gives
a remarkable combination of economy and expressiveness, but
leaves some useful higher-kinded types out of reach. For example,
there is no way to write the type constructor(λa.Either a Bool).

Value type constructorsT range over (a) the built-in function type
constructor, (b) any other built-in types, such asInt , and (c) alge-
braic data types. We regard a function typeσ1 → σ2 as the curried
application of the built-in function type constructor to two argu-
ments, thus(→) σ1 σ2. Furthermore, although we give the syntax
of arrow types and quantified types in an uncurried way, we also

Symbol Classes
a, b, c, co → 〈type variable〉
x, f → 〈term variable〉
C → 〈coercion constant〉
T → 〈value type constructor〉
Sn → 〈n-ary type function〉
K → 〈data constructor〉

Declarations
pgm → decl; e
decl → data T :κ → ⋆ where

K :∀a :κ.∀b : ι. σ → T a
| type Sn : κn → ι
| axiom C : σ1 ∼ σ2

Sorts and kinds
δ → TY | CO Sorts
κ, ι → ⋆ | κ1 → κ2 | σ1 ∼ σ2 Kinds

Types and Coercions
d → a | T Atom of sortTY
g → c | C Atom of sortCO
ϕ, ρ, σ, τ, υ, γ → a | C | T | ϕ1 ϕ2 | Sn ϕn | ∀a :κ.ϕ

| sym γ | γ1 ◦ γ2 | γ@ϕ | left γ | right γ
| γ ∼ γ | rightc γ | leftc γ | γ ◮ γ

We useρ, σ, τ , andυ for regular types,γ for coercions, andϕ for both.

Syntactic sugar
Types κ ⇒ σ ≡ ∀ :κ. σ

Terms
u → x | K Variables and data constructors
e → u Term atoms

| Λa :κ. e | e ϕ Type abstraction/application
| λx :σ. e | e1 e2 Term abstraction/application
| let x :σ = e1 in e2

| case e1 of p → e2

| e◮ γ Cast

p → K b :κ x :σ Pattern

Environments
Γ → ǫ | Γ, u :σ | Γ, d :κ | Γ, g :κ | Γ, Sn :κ

A top-level environmentbinds only type constructors,
T, Sn, data constructorsK, and coercion constantsC.

Figure 1: Syntax of SystemFC(X)

sometimes use the following syntactic sugar:

ϕn → ϕr ≡ ϕ1 → · · · → ϕn → ϕr

∀αn.ϕ ≡ ∀α1 · · · ∀αn.ϕ

An algebraic data typeT is introduced by a top-leveldata dec-
laration, which also introduces itsdata constructors. The type of a
data constructorK takes the form

K :∀a :κ. n∀b : ι. σ → T an

The firstn quantified type variablesa appear in the same order in
the return typeT a. The remaining quantified type variables bind
either existentially quantified type variables, or (as we shall see)
coercions.

Types are classified bykindsκ, using the⊢TY judgement in Fig-
ure 2. Temporarily ignoring the kindσ1∼σ2, the structure of kinds



Γ ⊢TY σ : κ

(TyVar)
d : κ ∈ Γ Γ ⊢k κ : TY

Γ ⊢TY d : κ
(TyApp)

Γ ⊢TY σ1 : κ1 → κ2 Γ ⊢TY σ2 : κ1

Γ ⊢TY σ1 σ2 : κ2

(TySCon)
(Sn : κn → ι) ∈ Γ Γ ⊢TY σ : κn

Γ ⊢TY Sn σn : ι
(TyAll)

Γ, a : κ ⊢TY σ : ⋆ Γ ⊢k κ : δ a 6∈ fv(Γ)

Γ ⊢TY ∀a :κ. σ : ⋆

Γ ⊢CO γ : σ ∼ τ

(CoRefl)
a :κ ∈ Γ Γ ⊢k κ : TY

Γ ⊢CO a : a ∼ a
(CoVar)

g :σ ∼ τ ∈ Γ

Γ ⊢CO g : σ ∼ τ

(CoAllT)
Γ, a :κ ⊢CO γ : σ ∼ τ

Γ ⊢k κ : TY a 6∈ fv(Γ)

Γ ⊢CO ∀a :κ. γ : ∀a :κ. σ ∼ ∀a :κ. τ

(CoInstT)
Γ ⊢CO γ : ∀a :κ. σ ∼ ∀b :κ. τ

Γ ⊢TY υ : κ

Γ ⊢CO γ@υ : [υ/a]σ ∼ [υ/b]τ

(SComp)
Γ ⊢CO γ : σ ∼ τn Γ ⊢TY Sn σn : κ

Γ ⊢CO Sn γn : Sn σn ∼ Sn τn (Sym)
Γ ⊢CO γ : σ ∼ τ

Γ ⊢CO sym γ : τ ∼ σ
(Trans)

Γ ⊢CO γ1 : σ1 ∼ σ2

Γ ⊢CO γ2 : σ2 ∼ σ3

Γ ⊢CO γ1 ◦ γ2 : σ1 ∼ σ3

(Comp)
Γ ⊢CO γ1 : σ1 ∼ τ1 Γ ⊢CO γ2 : σ2 ∼ τ2

Γ ⊢TY σ1 σ2 : κ

Γ ⊢CO γ1 γ2 : σ1 σ2 ∼ τ1 τ2

(Left)
Γ ⊢CO γ : σ1 σ2 ∼ τ1 τ2

Γ ⊢CO left γ : σ1 ∼ τ1

(Right)
Γ ⊢CO γ : σ1 σ2 ∼ τ1 τ2

Γ ⊢CO right γ : σ2 ∼ τ2

(CompC)
Γ ⊢CO γ : κ1 ∼ κ2 Γ ⊢CO γ′ : σ1 ∼ σ2

Γ ⊢k κ1 : CO

Γ ⊢CO γ ⇒ γ′ : (κ1 ⇒ σ1) ∼ (κ2 ⇒ σ2)

(LeftC)
Γ ⊢CO γ :

κ1 ⇒ σ1
∼

κ2 ⇒ σ2

Γ ⊢CO leftc γ : κ1 ∼ κ2

(RightC)
Γ ⊢CO γ :

κ1 ⇒ σ1
∼

κ2 ⇒ σ2

Γ ⊢CO rightc γ : σ1 ∼ σ2

(∼)
Γ ⊢CO γ1 : σ1 ∼ τ1 Γ ⊢CO γ2 : σ2 ∼ τ2

Γ ⊢CO γ1 ∼ γ2 : (σ1 ∼ σ2) ∼ (τ1 ∼ τ2)
(CastC)

Γ ⊢CO γ1 : κ Γ ⊢CO γ2 : κ ∼ κ′

Γ ⊢CO γ1 ◮ γ2 : κ′

Γ ⊢e e : σ

(Var)
u : σ ∈ Γ

Γ ⊢e u : σ
(Case)

Γ ⊢e e : σ Γ ⊢p p → e : σ → τ

Γ ⊢e case e of p → e : τ
(Let)

Γ ⊢e e1 : σ1 Γ, x : σ1 ⊢e e2 : σ2

Γ ⊢e let x :σ1 = e1 in e2 : σ2

(Cast)
Γ ⊢e e : σ Γ ⊢CO γ : σ ∼ τ

Γ ⊢e e◮ γ : τ
(Abs)

Γ ⊢TY σx : ⋆

Γ, x : σx ⊢e e : σ

Γ ⊢e λx :σx. e : σx → σ

(App)
Γ ⊢e e1 : σ2 → σ1

Γ ⊢e e2 : σ2

Γ ⊢e e1 e2 : σ1

(AbsT)
Γ, a : κ ⊢e e : σ Γ ⊢k κ : δ a 6∈ fv(Γ)

Γ ⊢e Λa :κ. e : ∀a :κ.σ
(AppT)

Γ ⊢e e : ∀a :κ.σ Γ ⊢k κ : δ Γ ⊢δ ϕ : κ

Γ ⊢e e ϕ : σ[ϕ/a]

Γ ⊢p p → e : σ → τ

(Alt)
K : ∀a :κ.∀b : ι.σ → T a ∈ Γ θ = [υ/a] Γ, b :θ(ι), x :θ(σ) ⊢e e : τ

Γ ⊢p K b :θ(ι) x :θ(σ) → e : T υ → τ

Γ ⊢ decl : Γ′

(Data)
Γ ⊢TY σ : ⋆ Γ ⊢k κ : TY

Γ ⊢ (data T :κ where K :σ) : (T :κ, K :σ)

(Type)
Γ ⊢k κ : TY

Γ ⊢ (type S : κ) : (S :κ)
(Coerce)

Γ ⊢k κ : CO

Γ ⊢ (axiom C : κ) : (C :κ)

Γ ⊢ pgm : σ

(Pgm)

Γ ⊢ decl : Γd Γ = Γ0, Γd

Γ ⊢ e : σ

Γ0 ⊢ decl; e : σ

Figure 2: Typing rules for SystemFC(X)



Γ ⊢k κ : δ

(Star)
Γ ⊢k ⋆ : TY

(FunK)
Γ ⊢k κ1 : TY Γ ⊢k κ2 : TY

Γ ⊢k κ1 → κ2 : TY

(EqTy)
Γ ⊢TY σ1 : κ Γ ⊢TY σ2 : κ

Γ ⊢k σ1 ∼ σ2 : CO

(EqCo)
Γ ⊢k γ1 : CO Γ ⊢k γ2 : CO

Γ ⊢k γ1 ∼ γ2 : CO

Figure 3: Kinding rules for SystemFC(X)

is conventional:⋆ is the kind of proper types (that is, the types that
a term can have), while higher kinds take the formκ1 → κ2. Kinds
guide type application by way of Rule (TyApp). Finally, the rules
for judgements of the formΓ ⊢k κ : δ, given in Figure 3, ensure
the well-formedness of kinds. Hereδ is eitherTY for kinds formed
from arrows and⋆, or CO for coercion kinds of formσ1 ∼ σ2. The
conclusions of Rule (EqTy) and (EqCo) appear to overlap, butan
actual implementation can deterministically decide whichrule to
apply, choosing (EqCo) iffγ1 has the formϕ1 ∼ ϕ2.

The syntax of terms is largely conventional, as are their type rules
which take the formΓ ⊢e e : σ. As in F, every binder has an
explicit type annotation, and type abstraction and application are
also explicit. There is acase expression to take apart values built
with data constructors. The patterns of a case expression are flat —
there are no nested patterns — and bind existential type variables,
coercion variables, and value variables. For example, suppose

K : ∀ a :⋆. ∀ b :⋆. a → b → (b → Int) → T a

Then acase expression that deconstructsK would have the form

case e of K (b :⋆) (v :a) (x :b) (f :b → Int) → e ′

Note that only the existential type variableb is bound in the pattern.
To see why, one need only realise thatK ’s type is isomorphic to:

K : ∀ a :⋆. (∃ b :⋆. (a, b, (b → Int))) → T a

3.2 Type equality coercions

We now describe the unconventional features of our system. To
begin with, consider the fragment of SystemFC that omits type
functions (i.e.,type andaxiom declarations). This fragment is
sufficient to serve as a target for translating GADTs, and so is of
interest in its own right. We return to type functions in§3.3.

The essential addition to plain F (beyond algebraic data types and
higher kinds) is an infrastructure to construct, pass, and apply type-
equality coercions.In FC, a coercion,γ, is a special sort of type
whose kind takes the unusual formσ1 ∼ σ2. We can use such a
coercion to cast an expressione : σ1 to type σ2 using thecast
expression(e ◮ γ); see Rule (Cast) in Figure 2. Our intuition for
equality coercions is anextensionalone:

γ : σ1 ∼ σ2 is evidence that a value of typeσ1 can be used
in any context that expects a value of typeσ2, and vice
versa.

By “can be used”, we mean that running the program after type
erasure will not go wrong. We stress that this is only an intuition;
the soundness of our system is proved without appealing to any
semantic notion of whatσ1 ∼ σ2 “means”. We use the symbol

“∼” rather than “=”, to avoid suggesting that the two types are
intensionally equal.

Coercions are types – some would call them “constructors” [25, 12]
since they certainly do not have kind⋆ — and hence the term-level
syntax for type abstraction and application (Λa.e and e ϕ) also
serves for coercion abstraction and application. However,coercions
have their own kinding judgement⊢CO, given in Figure 2. The type
of a term often has the form∀co : (σ1 ∼ σ2).ϕ, whereϕ does not
mentionco. We allow the standard syntactic sugar for this case,
writing it thus: (σ1 ∼ σ2) ⇒ ϕ (see Figure 1). Incidentally, note
that although coercions are types, they do not classify values. This
is standard inFω; for example, there are no values whose type has
kind ⋆ → ⋆.

More complex coercions can be built by combining or transform-
ing other coercions, such that every syntactic form corresponds to
an inference rule of equational logic. We have the reflexivity of
equality for a given typeσ (witnessed by the type itself), symme-
try ‘ sym γ’, transitivity ‘γ1 ◦ γ2’, type composition ‘γ1 γ2’, and
decomposition ‘left γ’ and ‘ right γ’. The typing rules for these
coercion expressions are given in Figure 2.

Here is an example, taken from§2. Suppose a GADTExpr has a
constructorSucc with type

Succ : ∀ a :⋆. (a ∼ Int) ⇒ Exp Int → Exp a

(notice the use of the syntactic sugarκ ⇒ σ). Then we can con-
struct a value of typeExp Int thus: Succ Int Int e. The sec-
ond argumentInt is a regular type used as a coercion witness-
ing reflexivity — i.e., we haveInt : (Int ∼ Int) by Rule (CoRefl).
Rule (CoRefl) itself only covers type variables and constructors,
but in combination with Rule (Comp), the reflexivity of complex
types is also covered. More interestingly, here is a function that
decomposes a value of typeExp a :

foo : ∀ a :⋆. Exp a → a → a
= Λa :⋆. λe :Exp a. λx :a.
case e of

Succ (co :a ∼ Int) (e ′ :Exp Int) →
(foo Int e ′ 0 + (x ◮ co))◮ sym co

Thecase pattern binds the coercionco, which provides evidence
that a and Int are the same type. This evidence is needed twice,
once to castx : a to Int , and once to coerce theInt result back to
a, via the coercion(sym co).

Coercion composition allows us to “lift” coercions througharbi-
trary types, in the style of logical relations [1]. For example, if
we have a coercionγ : (σ1 ∼ σ2) then the coercionTree γ is ev-
idence thatTree σ1 ∼ Tree σ2, using rules (Comp) and (CoRefl)
and (CoVar). More generally, our system has the following theo-
rem.

THEOREM1 (Lifting). If Γ′ ⊢CO γ : σ1 ∼ σ2 andΓ ⊢TY ϕ : κ,
thenΓ′ ⊢CO [γ/a]ϕ : [σ1/a]ϕ∼ [σ2/a]ϕ, for any typeϕ, including
polytypes, whereΓ = Γ′, a :κ′ such thata does not appear inΓ′.

For example, ifγ : σ1 ∼ σ2 then

∀ b. γ → Int : (∀ b. σ1 → Int) ∼ (∀ b. σ2 → Int)

Dually decomposition enables us to take evidence apart. Forex-
ample, assumeγ :Tree σ1 ∼ Tree σ2; then,(right γ) is evidence
thatσ1 ∼ σ2, by rule (Right). Decomposition is necessary for the
translation of GADT programs toFC, but is problematic in ear-
lier approaches [3, 9]. The soundness of decomposition relies, of
course, on algebraic types being injective; i.e.,Tree σ1 = Tree σ2

iff σ1 = σ2. Notice, too, thatTree by itself is a coercion relating
two types of higher kind.

Similarly, one can compose and decompose equalities over poly-
types, using rules (CoAllT) and (CoInstT). For example,



γ : (∀a.a → Int) ∼ (∀a.a → b)
⊢CO γ@Bool : (Bool → Int) ∼ (Bool → b)

This simply says that if the two polymorphic functions are inter-
changeable, then so are their instantiations atBool .

Rules (CompC), (LeftC), and (RightC) are analogous to (Comp),
(Left), and (Right): they allow composition and decomposition of
a type of formκ ⇒ ϕ, whereκ is a coercion kind. These rules are
essential to allow us to validate this consequence of Theorem 1:

γ :σ1 ∼ σ2 ⊢CO (γ ∼ Int ⇒ Tree γ) :
σ1 ∼ Int ⇒ Tree σ1

∼
σ2 ∼ Int ⇒ Tree σ2

Even thoughκ ⇒ ϕ is is sugar for∀ : κ. ϕ, we cannot generalise
(CoAllT) to cover (CompC) because the former insists that the two
kinds are identical.

We will motivate the need for rules (∼) and (CastC) when dis-
cussing the dynamic semantics (§3.7).

3.3 Type functions

Our last step extends the power ofFC by addingtype functions
and equality axioms, which are crucial for translating associated
types, functional dependencies, and the like. A type function Sn

is introduced by a top-leveltype declaration, which specifies its
kind κn → ι, but says nothing about itsinterpretation. The index
n indicates thearity of S. The syntax of types requires thatSn

always appears applied to its full complement ofn arguments (§3.6
explains why). The arity subscript should be considered part of the
name of the type constructor, although we will often elide it, writing
Elem σ rather thanElem1 σ, for example.

A type function is given its interpretation by one or more equality
axioms. Each axiom introduces a coercion constant, whose kind
specifies the types between which the coercion converts. Thus:

axiom elemBitSet : Elem BitSet ∼ Char

introduces the named coercion constantelemBitSet . Given an
expressione : Elem BitSet , we can use the axiom via the coercion
constant as in the caste ◮ elemBitSet , which is of typeChar .

We often want to state axioms involving parametric types, thus:

axiom elemList : (∀e :⋆.Elem [e]) ∼ (∀e :⋆. e)

This is the axiom generated from the instance declaration for
Collects [e] in §2.2. To use this axiom as a coercion, say, for lists of
integers, we need to apply the coercion constant to a type argument:

elemList Int : (Elem [Int ] ∼ Int)

which appeals to Rule (CoInstT) of Figure 2. We have already seen
the usefulness of (CoInstT) towards the end of§3.2, and here we
simply re-use it. It may be surprising that we use one quantifier
on each side of the equality, instead of quantifying over theentire
equality as in

∀a :⋆. (Elem [a] ∼ a) -- Not well-formedFC!

One could add such a construct, but it is simply unnecessary.We
already have enough machinery, and when thought of as a logical
relation, the form with a quantifier on each side makes perfect
sense.

3.4 Type functions are open

A crucial property of type functions is that they areopen, or exten-
sible. A type functionS may take an argument of kind⋆ (or ⋆ → ⋆,
etc), and, since the kind⋆ is extensible, we cannot write out all
the cases forS at the moment we introduceS. For example, imag-
ine that a library module contains the definition of theCollects
class (§2.2). Then a client imports this module, defines a new typeT
(thereby adding a new constant to the extensible kind⋆), and wants
to makeT an instance ofCollects. In FC this is easy by simply
writing in the client module

import CollectsLib
instance Collects T where {type Elem T = E; ...}

where we assume thatE is the element type of the collection type
T. In short, open type functions are absolutely required to support
modular extensibility.

We do not argue thatall type functions should be open; it would
certainly be possible to extendFC with non-extensible kind decla-
rations and closed type functions. Such an extension would be use-
ful; consider the well-worn example of lists parametrised by their
length, which we give in source-code form to reduce clutter:

kind Nat = Z | S Nat

data Seq a (n::Nat) where
Nil :: Seq a Z
Cons :: a -> Seq a n -> Seq a (S n)

app :: Seq a n -> Seq a m -> Seq a (Plus n m)
app Nil ys = ys
app (Cons x xs) ys = Cons x (app xs ys)

type Plus :: Nat -> Nat -> Nat
Plus Z b = b
Plus (S a) b = S (Plus a b)

Whilst we can translate this intoFC, we would be forced to give
Plus the kind⋆ → ⋆ → ⋆, which allows nonsensical forms like
Plus Int Bool . Furthermore, the non-extensibility ofNat would
allow induction, which is not available inFC precisely because
kind ⋆ is extensible.

Other closely-related languages support closed type functions; for
example LH [25], LX [12], andΩmega [36]. In this paper, however,
we focus on open-ness, since it is one ofFC’s most distinctive
features and is crucial to translating associated types.

3.5 Consistency

In SystemFC(X), we refine the equational theory of types by
giving non-standard equality axioms.So what is to prevent us
declaring unsound axioms?For example, one could easily write
a program that would crash, using the coercion constant introduced
by the following axiom:

axiom utterlybogus : Int ∼ Bool

(whereInt andBool are both algebraic data types). There are many
ad hocways to restrict the system to exclude such cases. The most
general way is this: we require that the axioms, taken together, are
consistent. We essentially adapt the standard notion of consistency
of sets of equations [13, Section 3] to our setting.

DEFINITION 1 (Value type).A typeσ is avalue typeif it is of form
∀a.υ or T υ.

DEFINITION 2 (Consistency).Γ is consistentiff

1. If Γ ⊢CO γ : T σ ∼ υ, andυ is a value type, thenυ = T τ .

2. If Γ ⊢CO γ : ∀a :κ. σ ∼ υ, and υ is a value type, then
υ = ∀a :κ. τ .

That is, if there is a coercion connecting twovalue types — al-
gebraic data types, built-in types, functions, or foralls —then the
outermost type constructors must be the same. For example, there
can be no coercion of typeBool ∼ Int . It is clear that the consis-
tency ofΓ is necessary for soundness, and it turns out that it is also
sufficient (§3.7).

Consistency is only required of thetop-levelenvironment, however
(Figure 1). For example, consider this function:

f = λ(g :Int ∼ Bool). 1 + (True◮ g)



It uses the bogus coerciong to cast anInt to aBool , sof would
crash if called. But there is no problem, becausethe function can
never be called; to do so, one would have to produce evidence that
Int andBool are interchangeable. The proof in§3.7 substantiates
this intuition.

Nevertheless, consistency is absolutely required for the top-level
environment, but alas it is an undecidable property. That iswhy we
call the system “FC(X)”: it is parametrised by a decision procedure
X for determining consistency. There is no “best” choice forX, so
instead of baking a particular choice into the language, we have
left the choice open. Each particular source-program construct that
exploits type equalities comes with its own decision procedure —
or, alternatively, guaranteesby constructionto generate only con-
sistent axioms, so that consistency need never be checked. All the
applications we have implemented so far take the latter approach.
For example, GADTs generate no axioms at all (Section 4); new-
types generate exactly one axiom per newtype; and associated types
are constrained to generate a non-overlapping rewrite system (Sec-
tion 5).

3.6 Saturation of type functions

We remarked earlier that applications of type functionsSn are
required to be saturated. The reason for this insistence is,again,
consistency. We definitely want to allow abstract types to benon-
injective; for example:

axiom c1 : S1 Int ∼ Bool
axiom c2 : S1 Bool ∼ Bool

Here, bothS1 Int andS1 Bool are represented by theBool type.
But now we can form the coercion(c1 ◦ (sym c2)) which has
typeS1 Int ∼ S1 Bool , and from that we must not be able to de-
duce (viaright) that Int ∼ Bool , because that would violate con-
sistency! Applications of type functions are therefore syntactically
distinguished so thatright andleft apply only to ordinary type ap-
plication (Rules (Left) and (Right) in Figure 2), and not to appli-
cations of type functions. The same syntactic mechanism prevents
a partial type-function application from appearing as a type argu-
ment, thereby instantiating a type variable with a partial application
— in effect, type variables of higher-kind range only over injective
type constructors.

However, it is perfectly acceptable for a type function to have an
arity of 1, say, but a higher kind of⋆ → ⋆ → ⋆. For example:

type HS1 : ⋆ → ⋆ → ⋆
axiom c1 : HS1 Int ∼ [ ]
axiom c2 : HS1 Bool ∼ Maybe

An application ofHS to one type is saturated, although it has kind
⋆ → ⋆ and can be applied (via ordinary type application) to another
type.

3.7 Dynamic semantics and soundness

The operational semantics ofFC is shown in Figure 4. In the
expression reductions we omit the type annotations on binders to
save clutter, but that is mere abbreviation.

An unusual feature of our system, which we share with Crary’s
coercion calculus for inclusive subtyping [11], is that values are
stratified intocvaluesandplain values; their syntax is in Figure 4.
Evaluation reduces a closed term to acvalue, or diverges. A cvalue
is either aplain valuev (an abstraction or saturated constructor
application), or it is a value wrapped in a single cast, thusv ◮ γ
(Figure 4). The latter form is needed because we cannot reduce a
term to a plain value without losing type preservation; for example,
we cannot reduce(True ◮ γ), where γ :Bool ∼ S any further
without changing its type fromS to Bool .

However, there are four situations when a cvalue will not do,
namely as the function part of a type, coercion, or function ap-

plication, or as the scrutinee of acase expression. Rules (TPush),
(CPush), (Push) and (KPush) deal with those situations, by pushing
the coercion inside the term, turning the cast into a plain value. No-
tice that all four rules leave thecontext(the application or case ex-
pression) unchanged; they rewrite the function or case scrutinee re-
spectively. Nevertheless, the context is necessary to guarantee that
the type of the rewritten term is a function or data type respectively.

Rules (TPush) and (Push) are quite straightforward. Rule (CPush)
is rather like (Push), but at the level of coercions. It is this rule that
forces us to add the forms(γ1 ∼ γ2), (γ1 ◮ γ2), (leftc γ) , and
(rightc γ) to the language of coercions. We will shortly provide an
example to illustrate this point.

The final rule, (KPush), is more complicated. Here is an example,
stripped of thecase context, whereCons : ∀a.a → [a] → [a],
andγ : [Int ] ∼ [S Bool ]:

(Cons Int e1 e2)◮γ −→ Cons (S Bool) (e1 ◮ right γ)
(e2 ◮ ([ ]) (right γ))

The coercion wrapped around the application ofCons is pushed in-
side to wrap each of its components. (Of course, an implementation
does none of this, because types and coercions are erased.) The type
preservation of this rule relies on Theorem 1 in Section 3.2,which
guarantees thatei ◮ θ(ρi) has the correct type.

The rule is careful to cast thecoercionarguments as well as the
valuearguments. Here is an example, taken from Section 2.3:

F : ∀a b.(b ∼ F1 a) ⇒ FDict a b
γ : FDict Int Bool ∼ FDict c d
ϕ : Bool ∼ F1 Int

Now, stripped of thecase context, rule (KPush) describes the
following transition:

(F Int Bool ϕ) ◮ γ −→ F c d (ϕ◮ (γ2 ∼ F1 γ1))

whereγ1 = right (left γ) andγ2 = right γ. The coercion argu-
mentϕ is cast by the strange-looking coercionγ2 ∼ F1 γ1, whose
kind is (Bool ∼ F1 Int) ∼ (d ∼ F1 c). That is why we need rule
(∼) in Figure 2, so that we can type such coercions.

We derived all three “push” rules in a systematic way. For example,
for (Push) we asked whate′ (involving e andγ) would ensure that
((λx.e) ◮ γ) = λy.e′. The reader may like to check that if the
left-hand side of each rule is well-typed (in the top-level context)
then so is the right-hand side.

When a data constructor has a higher-rank type, in which the
argument types are themselves quantified, a good deal of book-
keeping is needed. For example, suppose that

K : ∀a :∗. (a ∼ Int ⇒ a → Int) → T a
γ : T σ1 ∼ T σ2

e : (σ1 ∼ Int) ⇒ σ1 → Int

Then, according to rule (KPush) we find (as before we strip offthe
case context)

(K σ1 e)◮ γ −→ K σ2 (e◮ γ′)

where γ′ = (right γ ∼ Int) ⇒ right γ → Int , which is ob-
tained by substituting[right γ/a] in (a ∼ Int) ⇒ a → Int .
Now suppose that we later reduce the (sub)-expression

(e◮ γ′) γ′′

wheree = Λ b : (σ1 ∼ Int). λ x :σ1. x ◮ b. Before we can apply
rule (CPush) we have to determine the kind ofγ′. It is straightfor-
ward to deduce that

γ′ : (σ1 ∼ Int ⇒ σ1 → Int) ∼ (σ2 ∼ Int ⇒ σ2 → Int)



Values:
Plain values v ::= Λa.e | λx.e | K σ ϕ e
Cvalues cv ::= v ◮ γ | v

Evaluation contexts:
e −→ e′

E[e] −→ E[e′]
E ::= [ ] | E e | E τ | E ◮ γ | case E of p → rhs

Expression reductions:

(TBeta) (Λa.e) ϕ −→ [ϕ/a]e
(Beta) (λx.e) e′ −→ [e′/x]e

(Case) case (K σ ϕ e) of . . . K b x → e′ . . . −→ [ϕ/b, e/x]e′

(Comb) (v ◮ γ1)◮ γ2 −→ v ◮ (γ1 ◦ γ2)

(TPush) ((Λa :κ. e)◮ γ) ϕ −→ (Λa :κ. (e◮ γ@a)) ϕ
where γ : (∀a :κ. σ1) ∼ (∀b :κ. σ2)

(CPush) ((Λa :κ. e)◮ γ) ϕ −→ (Λa′ :κ′. (([(a′ ◮ γ1)/a]e)◮ γ2)) ϕ
where γ : (κ ⇒ σ) ∼ (κ′ ⇒ σ′)

γ1 = sym (leftc γ) – coercion for argument
γ2 = rightc γ – coercion for result

(Push) ((λx.e)◮ γ) e′ −→ (λy.([(y ◮ γ1)/x]e◮ γ2)) e′

where γ1 = sym (right (left γ)) – coercion for argument
γ2 = right γ – coercion for result

(KPush) case (K σ ϕ e◮ γ) of p → rhs −→ case (K τ ϕ′ e′) of p → rhs
where γ : T σ ∼ T τ

K : ∀a :κ.∀b : ι. ρ → T an

ϕ′

i =


ϕi ◮ θ(υ1 ∼ υ2) if bi : υ1 ∼ υ2

ϕi otherwise
e′i = ei ◮ θ(ρi)

θ = [γi/ai, ϕi/bi]
γi = right (left . . . (left

| {z }

n−i

γ))

Figure 4: Operational semantics

Hence, via (CPush) we find that

((Λb : (σ1 ∼ Int). λx :σ1. x ◮ b)◮ γ′) γ′′

−→ (Λc : (σ2 ∼ Int). (λx :σ1. x◮ (c◮ γ1))◮ γ2) γ′′

whereγ1 = sym (leftc γ′), γ1 : (σ1 ∼ Int) ∼ (σ2 ∼ Int), γ2 =
rightc γ′ andγ2 : (σ1 → Int) ∼ (σ2 → Int).

Notice that forms(γ1 ∼ γ2), (γ1 ◮ γ2), (leftc γ) , and(rightc γ)
only appear during the reduction ofFC programs. In case we
restrictFC types to be rank 1 none of these forms are necessary.

THEOREM2 (Progress and subject reduction).Suppose that a top-
level environmentΓ is consistent, andΓ ⊢e e : σ. Then eithere is
a cvalue, ore −→ e′ andΓ ⊢e e′ : σ for some terme′.

A proof is given in [37].

COROLLARY 1 (Syntactic Soundness).Let Γ be consistent top-
level environment andΓ ⊢e e : σ. Then eithere −→∗ cv and
Γ ⊢e cv : σ for some cvaluecv, or the evaluation diverges.

We give a call-by-name semantics here, but a call-by-value seman-
tics would be equally easy: simply extend the syntax of evaluation
contexts with the formv E, and restrict the argument of rule (Beta)
to be a cvalue.

In general, evaluation affectsexpressionsonly, not types. Since co-
ercions are types, it follows that coercions are not evaluated either.
This means that we can completely avoid the issue of normalisation
of coercions, what a coercion “value” might be, and so on.

3.8 Robustness to transformation

One of our major concerns was to make it easy for a compiler to
transform and optimise the program. For example, consider this
fragment:

λx . case x of { T1 → let z = y + 1 in ...; ... }

A good optimisation might be to float the let-binding out of the
lambda, thus:

let z = y + 1 in λx . case x of { T1 → ...; ... }

But suppose thatx : Ta and y : a, and that the pattern match
on T1 refinesa to Int . Then the floated form is type-incorrect,
because the let-binding is now out of the scope of the pattern
match. This is a real problem for any intermediate language in
which equality is implicit. InFC, however,y will be cast toInt
using a coercion that is bound by the pattern match onT1. So
the type-incorrect transformation is prevented, because the binding
mentions a variable bound by the match; and better still, we can
perform the optimisation in a type-correct way by abstracting over
the variable to get this:

let z ′ = λg . (y ◮ g) + 1
in λx . case x of { T1 g → let z = z ′ g in ...; ... }

The inner let-binding obviously cannot be floated outside, because
it mentions a variable bound by the match.

Another useful transformation is this:

(case x of pi → ei) arg = case x of pi → ei arg



This is valid inFC, but not in the more implicit language LH, for
example [25].

In summary, we believe thatFC’s obsessively-explicit form makes
it easy to write type-preserving transformations, whereasdoing so
is significantly harder in a language where type equality is more
implicit.

3.9 Type and coercion erasure

SystemFC permits syntactic type erasure much as plain System
F does, thereby providing a solid guarantee that coercions impose
absolutely no run-time penalty. Like types, coercions simply pro-
vide a statically-checkable guarantee that there will be norun-time
crash.

Formally, we can define an erasure functione◦, which erases all
types and coercions from the term, and prove the standard erasure
theorem. Following Pierce [32, Section 23.7] we erase a typeab-
straction to a trivial term abstraction, and type application to term
application to the unit value; this standard device preserves ter-
mination behaviour in the presence ofseq, or with call-by-value
semantics. The only difference from plain F is that we also erase
casts.

x◦ = x
K◦ = K

(Λa :κ. e)◦ = λa.e◦

(e σ)◦ = e◦()

(λx :ϕ. e)◦ = λx.e◦

(e1 e2)
◦ = e1

◦e2
◦

(e◮ γ)◦ = e◦

(K a :κ x :ϕ)◦ = K a x

(let x :σ = e1 in e2)
◦ = let x = e1

◦ in e2
◦

(case e1 of p → e2)
◦ = case e1

◦ of p◦ → e2
◦

THEOREM3. Suppose that a top-level environmentΓ is consistent,
andΓ ⊢e e1 : σ. Then, (a) eithere1 is a cvalue ande1

◦ is a value
or (b) we havee1 −→ e2 and eithere1

◦ −→ e2
◦ or e1

◦ = e2
◦.

A proof is given in [37].

COROLLARY 2 (Erasure soundness).For an well-typed System
FC terme1, we havee1 −→∗ e2 iff e1

◦ −→∗ e2
◦.

The dynamic semantics of Figure 4 makes all the coercions in the
program bigger and bigger. This is not a run-time concern, because
of erasure, but it might be a concern for compiler transformations.
Fortunately there are many type-preserving simplifications that can
be performed on coercions, such as:

sym σ = σ
left (Tree Int) = Tree
e◮ σ = e

and so on. The compiler writer is free (but not obliged) to usesuch
identities to keep the size of coercions under control.

In this context, it is interesting to note the connection of type-
equality coercions to the notion of proof objects in machine-
supported theorem proving. Coercion terms are essentiallyproof
objects of equational logic and the above simplification rules, as
well the manipulations performed by rules, such as (PushK),cor-
respond to proof transformations.

3.10 Summary and observations

FC is an intensional type theory, like F: that is,every term encodes
its own typing derivation. This is bad for humans (because the
terms are bigger) but good for a compiler (because type checking
is simple, syntax-directed, and decidable). An obvious question is
this: could we maintain simple, syntax-directed, decidable type-
checking forFC with less clutter? In particular, a coercion is an
explicit proof of a type equality; could we omit the coercions,
retaining only their kinds, and reconstructing the proofs on the fly?

No, we could not. Previous work showed that such proofs can in-
deed be inferred for the special case of GADTs [43, 34, 38]. But our

setting is much more general because of our type functions, which
in turn are necessary to support the source-language extensions we
seek. Reconstructing an equality proof amounts to unification mod-
ulo an equational theory (E-unification), which is undecidable even
in various restricted forms, let alone in the general case [2]. In short,
dropping the explicit proofs encoded by coercions would render
type checking undecidable (see [37] for a formal proof).

Why do we express coercions astypes, rather than asterms? The
latter is more conventional; for example, GADTs can be used to
encode equality evidence [36], via a GADT of the form

data Eq a b where { EQ :: Eq a a }

FC turns this idea on its head, instead using equality evidenceto
encode GADTs. This is good for several reasons. First,FC is more
foundational than System F plus GADTs. Second,FC expresses
equality evidence intypes, which permit erasure; GADTs encode
equality evidence asvalues, and these values cannot be erased.
Why not? Because in the presence of recursion, the mere existence
of an expression of typeEq a b is not enough to guarantee thata is
the same asb, because⊥ has any type. Instead, one mustevaluate
evidence before using it, to ensure that it converges, or else provide
a meta-level proof that asserts that the evidence always converges.
In contrast, our language of types deliberately lacks recursion, and
hence coercions can be trusted simply by virtue of being well-
kinded.

4. Translating GADTs
With FC in hand, we now sketch the translation of a source lan-
guage supporting GADTs intoFC. As highlighted in§2.1, the key
idea is to turn type equalities into coercion types. This approach
strongly resembles the dictionary-passing translation known from
translating type classes [17]. The difference is that we do not turn
type equalities into values, rather, we turn them into types.

We do not have space to present a full source language supporting
GADTs, but instead sketch its main features; other papers give full
details [43, 10]. We assume that the GADT source language hasthe
following syntax of types:

Polytypes π → η | ∀a.π
Constrained types η → τ | τ ∼ τ ⇒ η
Monotypes τ → a | τ → τ | T τ

We deliberately re-useFC’s syntax τ1 ∼ τ2 to describe GADT
type equalities. These equality constraints are used in thesource-
language type of data constructors. For example, theSucc con-
structor from§2.1 would have type

Succ : ∀a.(a ∼ Int) ⇒ Int → Exp a

Notice that this alreadyis anFC type.

To keep the presentation simple, we use a non-syntax-directed
translation scheme based on the judgement

C; Γ ⊢GADT e : π  e′

We read it as “assuming constraintC and type environmentΓ,
the source-language expressione has typeπ, and translates to the
FC expressione′”. The translation scheme can be made syntax-
directed along the lines of [31, 34, 38]. The constraintC consists
of a set of named type equalities:

C → ǫ | C, c :τ1 ∼ τ2

The most interesting translation rules are shown in Figure 5, where
we assume for simplicity that all quantified GADT variables are
of kind ∗. The Rules (Var), (∀-Intro), and (∀-Elim), dealing
with variables and the introduction and elimination of polymor-
phic types, are standard for translating Hindley/Milner toSystem
F [19]. The introduction and elimination rules for constrained



C; Γ ⊢GADT e : π  e′

(Var)
(x : π) ∈ Γ

C; Γ ⊢GADT x : π  x
(Eq)

C; Γ ⊢GADT e : τ  e′ C ⊢CO γ : τ ∼ τ ′

C; Γ ⊢GADT e : τ ′  e′ ◮ γ

(∀-Intro)
C; Γ ⊢GADT e : π  e′ a 6∈ fv(C, Γ)

C; Γ ⊢GADT e : ∀a.π  Λa :∗. e′
(C-Intro)

C, c :τ1 ∼ τ2; Γ ⊢GADT e : η  e′

C; Γ ⊢GADT e : τ1 ∼ τ2 ⇒ η  Λ(c :τ1 ∼ τ2). e
′

(∀-Elim)
C; Γ ⊢GADT e : ∀a.π  e′

C; Γ ⊢GADT e : [τ/a]π  e′ τ
(C-Elim)

C; Γ ⊢GADT e : τ1 ∼ τ2 ⇒ η  e′ C ⊢CO γ : τ1 ∼ τ2

C; Γ ⊢GADT e : η  e′ γ

C; Γ ⊢GADT p → e : π → π  p′ → e′

(Alt)

K :: ∀ā, b̄.τ ′ ∼ τ ′′ ⇒ τ → T ā ā ∩ b̄ = ∅ fv(τ, τ ′, τ ′′) = fv(ā, b̄) θ = [υ/a]

C, c :θ(τ ′) ∼ θ(τ ′′); Γ, x :θ(τ ) ⊢GADT e : τ ′  e′ c̄ fresh

C; Γ ⊢GADT K x → e : T υ → τ ′  K (b :∗) (c :θ(τ ′) ∼ θ(τ ′′)) (x :θ(τ )) → e′

Figure 5: Type-Directed GADT toFC Translation (interesting cases)

types, Rules (C-Intro) and (C-Elim), relate to the standardtype-
class translation [17], but where class constraints inducevalue
abstraction and application, equality constraints inducetype ab-
straction and application.

The translation of pattern clauses in Rule (Case) is as expected. We
replace each GADT constructor by an appropriateFC constructor
which additionally carries coercion types representing the GADT
type equalities. We assume that source patterns are alreadyflat.

Rule (Eq) applies the cast construct to coerce types. For this, we
need a coercionγ witnessing the equality of the two types, and we
simply re-use theFC judgementΓ ⊢CO γ : τ1 ∼ τ2 from Figure 2.
In this context,γ is an “output” of the judgement, a coercion whose
syntactic structure describes the proof ofτ1 ∼ τ2. In other words,
C ⊢CO γ : τ1 ∼ τ2 represents the GADT condition that the equality
context “C impliesτ1 ∼ τ2”.

Finding aγ is decidable, using an algorithm inspired by the uni-
fication algorithm [23]. The key observation is that the statement
“C implies τ1 ∼ τ2” holds if θ(τ1) = θ(τ2) whereθ is the most
general unifier ofC. W.l.o.g., we neglect the case thatC has no
unifier, i.e.C is unsatisfiable. Program parts which make use of
unsatisfiable constraints effectively represent dead-code.

Roughly, the type coercion construction procedure proceeds as
follows. Given the assumption setC and our goalτ1 ∼ τ2 we
perform the following calculations:

Step 1 : We normalise the constraintsC = c : τ ′ ∼ τ ′′ to the
solvedform γ : a ∼ υ whereai < ai+1 andfv(ā) ∩ fv(ῡ) = ∅
by decomposing with Rule (Right) (we neglect higher-kinded
types for simplicity) and applying Rule (Sym) and (Trans). We
assume some suitable ordering among variables with< and
disallow recursive types.

Step 2 : Normalisec′ : τ1 ∼ τ2 wherec′ is fresh to the solved form
γ′ : a′ ∼ υ′ wherea′

j < a′

j+1.

Step 3 : Match the resulting equations from Step 2 against equa-
tions from Step 1.

Step 4 : We obtainγ by reversing the normalisation steps in Step 2.

Failure in any of the steps implies thatC ⊢CO γ : τ1 ∼ τ2 does
not hold for anyγ. A constraint-based formulation of the above
algorithm is given in [39].

To illustrate the algorithm, let’s considerC = {c1 : [a] ∼ [b], c2 :
b = c} andc3 : [a] ∼ [c], with a < b < c.
Step 1: NormalisingC yields{right c1 : a ∼ b, c2 : b = c} in an
intermediate step. We apply rule (Trans) to obtain the solved form
{(right c1) ◦ c2 : a ∼ c, c2 : b = c}
Step 2: Normalisingc3 : [a] ∼ [c] yields(right c3) : a ∼ c.
Step 3: We can matchright c3 : a∼c against(right c1◦c2) : a∼c.
Step 4: Reversing the normalisation steps in Step 2 yieldsc3 =
[right c1 ◦ c2], as⊢CO [ ] : [ ] ∼ [ ].

The following result can be straightforwardly proven by induction
over the derivation.

LEMMA 1 (Type Preservation).Let C; ∅ ⊢GADT e : t  e′.
Then,C ⊢e e′ : t.

In §3.5, we saw that only consistentFC programs are sound. It
is not hard to show that this the case for GADTFC programs, as
GADT programs only make use of syntactic (a.k.a. Herbrand) type
equality, and so, require no type functions at all.

THEOREM4 (GADT Consistency).If dom(Γ) contains no type
variables or coercion constants, andΓ ⊢CO γ : σ1 ∼ σ2, then
σ1 = σ2 (i.e. the two are syntactically identical).

The proof is by induction on the structure ofγ. Consistency is an
immediate corollary of Theorem 4. Hence, all GADTFC programs
are sound. From the Erasure Soundness Corollary 2, we can imme-
diately conclude that the semantics of GADT programs remains
unchanged (wheree◦ is e after type erasure).

LEMMA 2. Let ∅; ∅ ⊢GADT e : t  e′. Then,e′ ֌∗ v iff
e◦ ֌∗ v wherev is some base value, e.g. integer constants.

5. Translating Associated Types
In §2.2, we claimed thatFC permits a more direct and more general
type-preserving translation of associated types than the translation
to plain System F described in [6]. In fact, the translation of as-
sociated types toFC is almost embarrassingly simple, especially
given the translation of GADTs toFC from §4. In the following,
we outline the additions required to the standard translation of type
classes to System F [17] to support associated types.

5.1 Translating expressions

To translate expressions, we need to add three rules to the standard
system of [17], namely Rules (Eq), (C-Intro), and (C-Elim) from



Figure 5 of the GADT translation. Rule (Eq) permits casting ex-
pression with types including associated types to equal types where
the associated types have been replaced by their definition.Strictly
speaking, the Rules (C-Intro) and (C-Elim) are used in a moregen-
eral setting during associated type translation than during GADT
translation. Firstly, the setC contains not only equalities, but both
equality and class constraints. Secondly, in the GADT translation
only GADT data constructors carry equality constraints, whereas
in the associated type translation, any function can carry equality
constraints.

5.2 Translating class predicates

In the standard translation, predicates are translated to dictionaries
by a judgementC 
D D τ  ν. In the presence of associated
types, we have to handle the case where the type argument to a
predicate contains an associated type. For example, given the class

class Collects c where
type Elem c -- associated type synonym
empty :: c
insert :: Elem c -> c -> c
toList :: c -> [Elem c]

we might want to define

sumColl :: (Collects c, Num (Elem c))
=> c -> Elem c

sumColl c = sum (toList c)

which sums the elements of a collection, provided these elements
are members of theNum class; i.e., provided we haveNum (Elem
c). Here we have an associated type as a parameter to a class
constraint. Wherever the functionsumColl is used, we will have
to check the constraintNum (Elem c), which will require a cast
of the resulting dictionary ifc is instantiated. We achieve this by
adding the following rule:

(Subst)
C 
D D τ1  w C ⊢TY γ : D τ1 = D τ2

C 
D D τ2  w ◮ γ

It permits to replace type class arguments by equal types, where
the coercionγ witnessing the equality is used to adapt the type of
the dictionaryw, which in turn witnesses the type class instance.
Interestingly, we need this rule also for the translation assoon as
we admit qualified constructor signatures in GADT declarations.

5.3 Translating declarations

Strictly speaking, we also have to extend the translation rules for
class and instance definitions, as these can now declare and define
associated types. However, the extension is so small that weomit
the formal rules for space reasons. In summary, each declaration
of an associated type in a type class turns into the declaration of
a type function inFC, and each definition of an associated type
in an instance turns into an equalityaxiom in FC. We have seen
examples of this in§2.2.

5.4 Observations

In the translation of associated types, it becomes clear whyFC

includes coercions over type constructors of higher kind. Consider
the following class of monads with references:

class Monad m => RefMonad m where
type Ref m :: * -> *
newRef :: a -> m (Ref m a)
readRef :: Ref m a -> m a
writeRef :: Ref m a -> a -> m ()

This class may be instantiated for theIO monad and theST monad.
The associated typeRef is of higher-kind, which implies that the
coercions generated from its definitions will also be higherkinded.

The translation of associated types to plain System F imposes two
restrictions on the formation of well-formed programs [5,§5.1],
namely (1) that equality constraints for ann parameter type class
must have type variables as the firstn arguments to its associated
types and (2) that class method signatures cannot constraintype
class parameters. Both constraints can be lifted in the translation to
FC.

5.5 Guaranteeing consistency for associated types

How do we know that the axioms generated by the source-program
associated types and their instance declarations are consistent? The
answer is simple. The source-language type system for associated
types only makes sense if the instance declarations obey certain
constraints, such as non-overlap [6]. Under those conditions, it is
easy to guarantee that the axioms derived from the source program
are consistent. In this section we briefly sketch why this is the case.

The axiom generated by an instance declaration for an associated
type has the form1 C : (∀a :⋆.S σ1) ∼ (∀a :⋆.σ2). where (a)
σ1 does not refer to any type function, (b)fv(σ1) = ā, and (c)
fv(σ2) ⊆ ā. This is an entirely natural condition and can also be
found in [5]. We call an axiom of this form arewrite axiom, and a
set of such axioms defines a rewrite system among types.

Now, the source language rules ensure that this rewrite system is
confluentand terminating, using the standard meaning of these
terms [2]. We writeσ1 ↓ σ2 to mean thatσ1 can be rewritten to
σ2 by zero or more steps, whereσ2 is a normal form. Then we
prove that each type has a canonical normal form:

THEOREM5 (Canonical Normal Forms).Let Γ be well-formed,
terminating and confluent. Then,Γ ⊢CO γ : σ1 ∼ σ2 iff σ1 ↓ σ′

1

andσ2 ↓ σ′

2 such thatσ′

1 = σ′

2.

Using this result we can decide type equality via a canonicalnormal
form test, and thereby prove consistency:

COROLLARY 3 (AT Consistency).If Γ contains only rewrite ax-
ioms that together form a terminating and confluent rewrite system,
thenΓ is consistent.

For example, assumeΓ ⊢CO γ : T1 σ1 ∼ T2 σ2. Then, we find
T1 σ1 ↓ σ′

1 andT2 σ2 ↓ σ′

2 such thatσ′

1 = σ′

2. None of the rewrite
rules affectT1 or T2. Hence,σ′

1 must have the shapeT1 σ′′

1 andσ′

2

the shapeT2 σ′′

2 . Immediately, we find thatT1 = T2 and we are
done.

We can state similar results for type functions resulting from func-
tional dependencies. Again, the canonical normal form property is
the key to obtain consistency. While sufficient the canonical nor-
mal form property is not a necessary condition. Consider thenon-
confluent but consistent environmentΓ = {c1 : S1 [Int]∼S2, c2 :
(∀a :⋆.S1 [a])∼(∀a :⋆.[S1 a])}. We find thatΓ ⊢CO γ : S1 [Int]∼
S2. But there existsS1 [Int] ↓ [S1 Int] and S2 ↓ S2 where
[S1 Int] 6= S2. Similar observations can be made for ill-formed,
consistent environments.

6. Related Work
System F with GADTs. Xi et al. [43] introduced the explicitly
typed calculusλ2,Gµ together with a translation from an implicitly
typed source language supporting GADTs. Their calculus hasthe
typing rules for GADTs built in, just like Pottier & Régis-Gianas’s
MLGI [34]. This is the approach that GHC initially took.FC is the
result of a search for an alternative.

Encoding GADTs in plain System F and Fω . There are several
previous works [3, 9, 30, 42, 7, 39] which attempt an encoding

1 For simplicity, we here assume unary associated types that do not range
over higher-kinded types.



of GADTs in plain System F with (boxed) existential types. We
believe that these primitive encoding schemes are not practical and
often non-trivial to achieve. We discuss this in more detailin [37].

An encoding of a restricted subset of GADT programs in plain
System Fω can be found in [33], but this encoding only works for
limited patterns of recursion.

Intentional type analysis and beyond. Harper and Morrisett’s vi-
sionary paper on intensional type analysis [20] introducedthe cal-
culusλML

i , which was already sufficiently expressive for a large
range of GADT programs, although GADTs only became popular
later. Subsequently, Crary and Weirch’s language LX [12] gener-
alised the approach significantly by enabling the analysis of source
language types in the intermediate language and by providing a
type erasure semantics, among other things. LX’s type analysis is
sufficiently powerful to expressclosedtype functions which must
be primitive recursive. This is related, but different toFC(X), where
type functions areopenand need not be terminating (see [37]).

Trifonov et al. [41] generalisedλML

i in a different direction than
LX, such that they arrived at a fully reflexive calculus; i.e., one
that can analyse the type of any runtime value of the calculus. In
particular, they can analyse types of higher kind, an ability that was
also crucial in the design ofFC(X). However, Trifonov et al.’s work
corresponds toλML

i and LX in that it applies toclosed, primitive-
recursive type functions.

Calculi with explicit proofs. Licata & Harper [25] introduced
the calculus LH to represent programs in the style of Dependent
ML. LH’s type terms include lambdas, and its definitional equality
therefore includes a beta rule, whereasFC’s definitional equality is
simpler, being purely syntactic. LH’s propositional equality enables
explicit proofs of type equality, much as inFC(X). These explicit
proofs are the basis for the definition ofretyping functionsthat play
a similar role to our cast expressions. In contrast, FC’s propositional
equality lacks some of LH’s equalities, namely those including cer-
tain forms of inductive proofs as well as type equalities whose re-
typings have a computational effect. The price for LH’s added ex-
pressiveness is that retypings — even if they amount to the iden-
tity on values — can incur non-trivial runtime costs and (together
with LH types) cannot be erased without meta-level proofs that as-
sert that particular forms of retypings are guaranteed to beidentity
functions.

Another significant difference is that in LH, as in LX, type func-
tions areclosedand must beprimitive recursive; whereas inFC(X),
they are open and need not be terminating. These properties are
very important in our intended applications, as we argued inSec-
tion 3.4. Finally,FC(X) admits optimising transformations that are
not valid in LH, as we discussed in Section 3.8.

Shao et al.’s impressive work [35] illustrates how to integrate an en-
tire proof system into typed intermediate and assembly languages,
such that program transformations preserve proofs. Their type lan-
guage TL resembles the calculus of inductive constructions(CIC)
and, among other things, can express retypings witnessed byex-
plicit proofs of equality [35, Section 4.4], not unlike LH. TL is
much more expressive and complex thanFC(X) and, like LH, does
not support open type functions.

Coercion-based subtyping. Mitchell [29] introduced the idea of
inserting coercions during type inference for an ML-like languages.
However, Mitchell’s coercion are not identities, but perform coer-
cions between different numeric types and so forth. A more recent
proposal of the same idea was presented by Kießling and Luo [22].
Subsequently, Mitchell [28] also studied coercions that are oper-
ationally identities to model type refinement for type inference in
systems that go beyond Hindley/Milner.

Much closer toFC is the work by Breazu-Tannen et al. [4] who
add a notion of coercions to System F to translate languages featur-
ing inheritance polymorphism. In contrast toFC, their coercions
model a subsumption relationship, and hence are not symmetric.
Moreover, their coercions are values, not types. Nevertheless, they
introduce coercion combinators, as we do, but they don’t consider
decomposition, which is crucial to translating GADTs. The focus
of their paper is the translation of an extended version of Cardelli
& Wegner’s Fun, and in particular, the coherence propertiesof that
translation.

Similarly, Crary [11] introduces a coercion calculus for inclusive
subtyping. It shares the distinction between plain values and co-
ercion values with our system, but does not require quantification
over coercions, nor does it consider decomposition.

Intuitionistic type theory, dependent types, and theorem provers.
The ideas from Mitchell’s work [29, 28] have also been transferred
to dependently typed calculi as they are used in theorem provers;
e.g., based on the Calculus of Constructions [8]. Generally, our co-
ercion terms are a simple instance of the proof terms of logical
frameworks, such as LF [18], or generally the evidence in intuition-
istic type theory [26]. This connection indicates several directions
for extending the presented system in the direction of more power-
ful dependently typed languages, such as Epigram [27].

Translucency and singleton kinds. In the work on ML-style
module systems, type equalities are represented as singleton kinds,
which are essential to model translucent signatures [14]. Recent
work [15] demonstrated that such a module calculus can represent
a wide range of type class programs including associated types.
Hence, there is clearly an overlap withFC(X) equality axioms,
which we use to represent associated types. Nevertheless, the cur-
rent formulation of modular type classes covers only a subset of the
type class programs supported by Haskell systems, such as GHC.
We leave a detailed comparison of the two approaches to future
work.

7. Conclusions and further work
We showed that explicit evidence for type equalities is a convenient
mechanism for the type-preserving translation of GADTs, associa-
tive types, and functional dependencies. We implementedFC(X)
in its full glory in GHC, a widely used, state-of-the-art, highly op-
timising Haskell compiler. At the same time, we re-implemented
GHC’s support fornewtypes and GADTs to work as outlined in
§2 and added support for associated (data) types. Consequently, this
implementation instantiates the decision procedure for consistency,
“X”, to a combination of that described in Section 4 and 5. TheFC-
version of GHC is nowthemain development version of GHC and
supports our claim thatFC(X) is a practical choice for a production
system.

An interesting avenue for future work is to find good source lan-
guage features to expose more of the power ofFC to programmers.
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