UNIF, Edinburgh, 14. July 2010 - p. 1/34

Assuming that a and b are distinct variables, is it possible to find λ -terms M_1 to M_7 that make the following pairs α -equivalent?

λa.λb.(M₁ b) and λb.λa.(a M₁)
λa.λb.(M₂ b) and λb.λa.(a M₃)
λa.λb.(b M₄) and λb.λa.(a M₅)
λa.λb.(b M₆) and λa.λa.(a M₇)

If there is one solution for a pair, can you describe all its solutions?

Nominal Unification Hitting a Sweet Spot

Christian Urban

initial spark from Roy Dyckhoff in November 2001 joint work with Andy Pitts and Jamie Gabbay

UNIF, Edinburgh, 14. July 2010 - p. 2/34

UNIF, Edinburgh, 14. July 2010 - p. 3/34

Typing implemented in Prolog (from a textbook)

Typing implemented in Prolog (from a textbook) type (Gamma, var(X), T) :- member (X,T) Gamma. type (Gamma, app(M, N), T') :type (Gamma, M, arrow(T, T')), type (Gamma, N, T).

type (Gamma, lam(X, M), arrow(T, T')) :type ((X, T)::Gamma, M, T').

member X X::Tail. member X Y::Tail :- member X Tail.

type (Gamma, lam(X, M), arrow(T, T')) :type ((X, T)::Gamma, M, T').

member X X::Tail. member X Y::Tail :- member X Tail.

Higher-Order Unification

State of the art at the time:

- Lambda Prolog with full Higher-Order Unification (no mgus, undecidable, modulo αβ)
- Higher-Order Pattern Unification

 (has mgus, decidable, some restrictions, modulo αβ₀)

• Unification (only) up to α

- Unification (only) up to α
- Swappings / Permutations

$\lambda a.b$ $\lambda c.b$

- Unification (only) up to lpha
- Swappings / Permutations

- Unification (only) up to α
- Swappings / Permutations

$$(a b) \cdot \lambda a.b$$
 $(a b) \cdot \lambda c.b$
= $\lambda b.a$ = $\lambda c.a$

$$(a b) \cdot t \stackrel{\text{def}}{=} \text{swap all occurrences of}$$

 $b \text{ and } a \text{ in } t$

- Unification (only) up to lpha
- Swappings / Permutations

$$(a b) \cdot \lambda a.b$$
 $(a b) \cdot \lambda c.b$
= $\lambda b.a$ = $\lambda c.a$

$$(a b) \cdot t \stackrel{\text{def}}{=} \text{swap all occurrences of}$$

 $b \text{ and } a \text{ in } t$

Unlike for $[\mathbf{b}:=\mathbf{a}] \cdot (-)$, for $(\mathbf{a} \mathbf{b}) \cdot (-)$ we do have if $\mathbf{t} =_{\alpha} \mathbf{t}'$ then $\pi \cdot \mathbf{t} =_{\alpha} \pi \cdot \mathbf{t}'$.

- Unification (only) up to α
- Swappings / Permutations
- Variables (or holes)

- Unification (only) up to α
- Swappings / Permutations
- Variables (or holes)

- Unification (only) up to α
- Swappings / Permutations
- Variables (or holes)

ys are the parameters the hole can depend on

- Unification (only) up to lpha
- Swappings / Permutations
- Variables (or holes)

$$\lambda xs. \left(\bigcirc ys \right)$$

ys are the parameters the hole can depend on, but then you need β_0 -reduction

$$(oldsymbol{\lambda} oldsymbol{x}.oldsymbol{t})oldsymbol{y} \longrightarrow_{eta_0} oldsymbol{t}[oldsymbol{x}:=oldsymbol{y}]$$

- Unification (only) up to α
- Swappings / Permutations
- Variables (or holes)

we will record the information about which parameters a hole **cannot** depend on

UNIF, Edinburgh, 14. July 2010 - p. 6/34

Atoms are constants (infinitely many of them)

UNIF, Edinburgh, 14. July 2010 - p. 6/34

 $\lceil \lambda a.a \rceil \mapsto \text{fn } a.a$ constructions like fn *X*.*X* are not allowed

UNIF, Edinburgh, 14. July 2010 - p. 6/34

X is a variable standing for a term π is an explicit permutation $(a_1 b_1) \dots (a_n b_n)$, waiting to be applied to the term that is substituted for X

Permutations

a permutation applied to a term

•
$$[] \cdot c \stackrel{\text{def}}{=} c$$

• $(a b) :: \pi \cdot c \stackrel{\text{def}}{=} \begin{cases} a & \text{if } \pi \cdot c = b \\ b & \text{if } \pi \cdot c = a \\ \pi \cdot c & \text{otherwise} \end{cases}$

Permutations

a permutation applied to a term

•
$$[] \cdot c \stackrel{\text{def}}{=} c$$

• $(a \ b) ::: \pi \cdot c \stackrel{\text{def}}{=} \begin{cases} a & \text{if } \pi \cdot c = b \\ b & \text{if } \pi \cdot c = a \\ \pi \cdot c & \text{otherwise} \end{cases}$
• $\pi \cdot a.t \stackrel{\text{def}}{=} \pi \cdot a.\pi \cdot t$

Permutations

a permutation applied to a term

• $[] \cdot c \stackrel{\text{def}}{=} c$ • $(a b) :: \pi \cdot c \stackrel{\text{def}}{=} \begin{cases} a & \text{if } \pi \cdot c = b \\ b & \text{if } \pi \cdot c = a \\ \pi \cdot c & \text{otherwise} \end{cases}$ • $\pi \cdot a.t \stackrel{\text{def}}{=} \pi \cdot a.\pi \cdot t$ • $\pi \cdot \pi' \cdot X \stackrel{\text{def}}{=} (\pi @ \pi') \cdot X$

Freshness Constraints

Recall λa .

Freshness Constraints Recall λa.

We therefore will identify

fn $a.X \approx fn b.(a b) \cdot X$

provided that 'b is fresh for X - (b # X)', i.e., does not occur freely in any ground term that might be substituted for X. **Freshness Constraints** Recall λa.

We therefore will identify

fn $a.X \approx fn b.(a b) \cdot X$

provided that 'b is fresh for X - (b # X)', i.e., does not occur freely in any ground term that might be substituted for X.

If we know more about X, e.g., if we knew that a # X and b # X, then we can replace $(a b) \cdot X$ by X.

Our equality is **not** just

 $t \approx t'$ α -equivalence

UNIF, Edinburgh, 14. July 2010 - p. 9/34

but judgements

 $\nabla \vdash t \approx t'$ α -equivalence

where

$$oldsymbol{
abla} = \{oldsymbol{a}_1 \ \# \ oldsymbol{X}_1, \ldots, oldsymbol{a}_n \ \# \ oldsymbol{X}_n\}$$

is a finite set of freshness assumptions.

UNIF, Edinburgh, 14. July 2010 - p. 9/34

but judgements

 $\nabla \vdash t \approx t'$ α -equivalence

where

$$oldsymbol{
abla} = \{ a_1 \ \# \ X_1, \ldots, a_n \ \# \ X_n \}$$

is a finite set of freshness assumptions.

 $\{a \ \# \ X, b \ \# \ X\} \vdash \text{fn} \ a.X \approx \text{fn} \ b.X$

but judgements

 $\nabla \vdash t \approx t' \quad \alpha \text{-equivalence} \\ \nabla \vdash a \ \# t \quad \text{freshness}$

where

$$oldsymbol{
abla} = \{ oldsymbol{a}_1 \ \# \ oldsymbol{X}_1, \ldots, oldsymbol{a}_n \ \# \ oldsymbol{X}_n \}$$

is a finite set of freshness assumptions.

 $\{a \ \# \ X, b \ \# \ X\} \vdash \text{fn } a.X \approx \text{fn } b.X$

Excerpt (i.e. only the interesting rules)

UNIF, Edinburgh, 14. July 2010 - p. 10/34

$$\overline{
abla \vdash a pprox a}$$

$$\frac{\nabla \vdash t \approx t'}{\nabla \vdash a.t \approx a.t'}$$

$$\frac{a \neq b \quad \nabla \vdash t \approx (a \, b) \cdot t' \quad \nabla \vdash a \ \# \ t'}{\nabla \vdash a.t \approx b.t'}$$

UNIF, Edinburgh, 14. July 2010 - p. 11/34

 $(a \# X) \in \nabla$ for all a with $\pi \cdot a \neq \pi' \cdot a$ $abla \vdash \pi \cdot X \approx \pi' \cdot X$

for example

 $\{a \ \#X, b \ \#X\} \vdash X \approx (a \ b) \bullet X$

UNIF, Edinburgh, 14. July 2010 – p. 12/34
Rules for Equivalence

$$(a \# X) \in \nabla$$

for all a with $\pi \cdot a \neq \pi' \cdot a$
$$\nabla \vdash \pi \cdot X \approx \pi' \cdot X$$

for example

 $\{a \ \# X, c \ \# X\} \vdash (a \ c)(a \ b) \cdot X \approx (b \ c) \cdot X$

because (a c)(a b): $a \mapsto b$ (b c): $a \mapsto a$ $b \mapsto c$ $b \mapsto c$ $c \mapsto a$ $c \mapsto b$

disagree at *a* and *c*.

UNIF, Edinburgh, 14. July 2010 - p. 12/34

Rules for Freshness

Excerpt (i.e. only the interesting rules)

UNIF, Edinburgh, 14. July 2010 - p. 13/34

Rules for Freshness

$$\frac{a \neq b}{\nabla \vdash a \ \# \ b}$$

$$\frac{a \neq b \quad \nabla \vdash a \ \# \ t}{\nabla \vdash a \ \# \ b.t}$$

$$\frac{(\pi^{-1} \boldsymbol{\cdot} \boldsymbol{a} \ \# \ \boldsymbol{X}) \in \boldsymbol{\nabla}}{\boldsymbol{\nabla} \vdash \boldsymbol{a} \ \# \ \pi \boldsymbol{\cdot} \boldsymbol{X}}$$

UNIF, Edinburgh, 14. July 2010 - p. 14/34

Theorem: \approx is an equivalence relation.

(Reflexivity) $\nabla \vdash t \approx t$ (Symmetry) if $\nabla \vdash t_1 \approx t_2$ then $\nabla \vdash t_2 \approx t_1$ (Transitivity) if $\nabla \vdash t_1 \approx t_2$ and $\nabla \vdash t_2 \approx t_3$ then $\nabla \vdash t_1 \approx t_3$

Theorem: \approx is an equivalence relation.

∇ ⊢ t ≈ t' then ∇ ⊢ π • t ≈ π • t'
∇ ⊢ a # t then ∇ ⊢ π • a # π • t

Theorem: \approx is an equivalence relation.

- $\nabla \vdash t \approx t'$ then $\nabla \vdash \pi \cdot t \approx \pi \cdot t'$
- $\nabla \vdash a \ \# \ t$ then $\nabla \vdash \pi \cdot a \ \# \ \pi \cdot t$
- $\nabla \vdash t \approx \pi \cdot t'$ then $\nabla \vdash (\pi^{-1}) \cdot t \approx t'$
- $\nabla \vdash a \ \# \ \pi \cdot t$ then $\nabla \vdash (\pi^{-1}) \cdot a \ \# \ t$

Theorem: \approx is an equivalence relation.

- $\nabla \vdash t \approx t'$ then $\nabla \vdash \pi \cdot t \approx \pi \cdot t'$
- $\nabla \vdash a \ \# \ t$ then $\nabla \vdash \pi \cdot a \ \# \ \pi \cdot t$
- $\nabla \vdash t \approx \pi \cdot t'$ then $\nabla \vdash (\pi^{-1}) \cdot t \approx t'$
- $\nabla \vdash a \ \# \ \pi \cdot t$ then $\nabla \vdash (\pi^{-1}) \cdot a \ \# \ t$
- $\nabla \vdash a \ \# \ t$ and $\nabla \vdash t \approx t'$ then $\nabla \vdash a \ \# \ t'$

Traditionally $=_{\alpha}$ is defined as

least congruence which identifies a.t with b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences of *a* by *b* in *t*.

Traditionally $=_{\alpha}$ is defined as

least congruence which identifies a.t with b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences of *a* by *b* in *t*.

For ground terms:

Traditionally $=_{\alpha}$ is defined as

least congruence which identifies a.t with b.[a := b]t provided b is not free in t

where [a := b]t replaces all free occurrences of a by b in t.

In general $=_{\alpha}$ and \approx are distinct!

 $a.X =_{\alpha} b.X$ but not $arnothing \vdash a.X pprox b.X \ (a \neq b)$

That is a crucial point: if we had

 $\varnothing \vdash a.X \approx b.X,$

then applying $[X := a], [X := b], \ldots$ give two terms that are **not** α -equivalent.

The freshness constraints a # X and b # Xrule out the problematic substitutions. Therefore

 $\{a \ \# \ X, b \ \# \ X\} \vdash a.X \approx b.X$ does hold.

• $\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$ • $\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$

•
$$\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$$

• $\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$

for example $a.(a b) \cdot X \ [X := \langle b, Y \rangle]$

UNIF, Edinburgh, 14. July 2010 - p. 17/34

•
$$\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$$

• $\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$

for example $\Rightarrow \frac{a \cdot (a \ b) \cdot X \ [X := \langle b, Y \rangle]}{a \cdot (a \ b) \cdot X [X := \langle b, Y \rangle]}$

•
$$\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$$

• $\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$

for example

 $egin{aligned} oldsymbol{a.}(oldsymbol{a}oldsymbol{b}oldsymbol{\cdot} X \ [X := \langle b, Y
angle] \ &\Rightarrow oldsymbol{a.}(oldsymbol{a}oldsymbol{b}oldsymbol{\cdot} X[X := \langle b, Y
angle] \ &\Rightarrow oldsymbol{a.}(oldsymbol{a}oldsymbol{b}oldsymbol{\cdot} \langle b, Y
angle \ \end{aligned}$

UNIF, Edinburgh, 14. July 2010 - p. 17/34

•
$$\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$$

• $\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$

for example

 $\begin{array}{l} \boldsymbol{a}.(\boldsymbol{a} \ \boldsymbol{b}) \boldsymbol{\cdot} \boldsymbol{X} \quad [\boldsymbol{X} := \langle \boldsymbol{b}, \boldsymbol{Y} \rangle] \\ \Rightarrow \quad \boldsymbol{a}.(\boldsymbol{a} \ \boldsymbol{b}) \boldsymbol{\cdot} \boldsymbol{X} [\boldsymbol{X} := \langle \boldsymbol{b}, \boldsymbol{Y} \rangle] \\ \Rightarrow \quad \boldsymbol{a}.(\boldsymbol{a} \ \boldsymbol{b}) \boldsymbol{\cdot} \langle \boldsymbol{b}, \boldsymbol{Y} \rangle \\ \Rightarrow \quad \boldsymbol{a}.\overline{\langle \boldsymbol{a}, (\boldsymbol{a} \ \boldsymbol{b}) \boldsymbol{\cdot} \boldsymbol{Y} \rangle} \end{array}$

• $\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$ • $\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$

• if $\nabla \vdash t \approx t'$ and $\nabla' \vdash \sigma(\nabla)$ then $\nabla' \vdash \sigma(t) \approx \sigma(t')$

• $\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$ • $\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$

• if $\nabla \vdash t \approx t'$ and $\overline{\nabla' \vdash \sigma(\nabla)}$ then $\nabla' \vdash \sigma(t) \approx \sigma(t')$

> this means $\nabla' \vdash a \# \sigma(X)$ holds for all $(a \# X) \in \nabla$

> > UNIF, Edinburgh, 14. July 2010 - p. 17/34

• $\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$ • $\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$

• if $\nabla \vdash t \approx t'$ and $\nabla' \vdash \sigma(\nabla)$ then $\nabla' \vdash \sigma(t) \approx \sigma(t')$

• $\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)$ • $\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases} \pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\ \pi \cdot X & \text{otherwise} \end{cases}$

- if $\nabla \vdash t \approx t'$ and $\nabla' \vdash \sigma(\nabla)$ then $\nabla' \vdash \sigma(t) \approx \sigma(t')$
- $\sigma(\pi \cdot t) = \pi \cdot \sigma(t)$

UNIF, Edinburgh, 14. July 2010 - p. 17/34

Equational Problems

An equational problem

 $t \approx ? t'$

is solved by

- a substitution σ (terms for variables)
- **and** a set of freshness assumptions ∇

so that $\nabla \vdash \sigma(t) \approx \sigma(t')$.

Unifying equations may entail solving freshness problems.

E.g. assuming that $a \neq a'$, then

 $a.t \approx ? a'.t'$

can only be solved if

 $t \approx ? (a a') \cdot t'$ and a # ? t'

can be solved.

UNIF, Edinburgh, 14. July 2010 - p. 19/34

Freshness Problems

A freshness problem

a #? *t*

is solved by

- a substitution σ
- and a set of freshness assumptions ∇

so that $\nabla \vdash a \# \sigma(t)$.

Existence of MGUs

<u>Theorem</u>: There is an algorithm which, given a nominal unification problem P, decides whether or not it has a solution (σ, ∇) , and returns a most general one if it does.

Existence of MGUs

<u>Theorem</u>: There is an algorithm which, given a nominal unification problem P, decides whether or not it has a solution (σ, ∇) , and returns a most general one if it does.

most general: straightforward definition "iff there exists a τ such that ..."

Existence of MGUs

<u>Theorem</u>: There is an algorithm which, given a nominal unification problem P, decides whether or not it has a solution (σ, ∇) , and returns a most general one if it does.

Proof: one can reduce all the equations to 'solved form' first (creating a substitution), and then solve the freshness problems (easy).

Remember the Quiz?

Assuming that a and b are distinct variables, is it possible to find λ -terms M_1 to M_7 that make the following pairs α -equivalent?

λa.λb.(M₁ b) and λb.λa.(a M₁)
λa.λb.(M₂ b) and λb.λa.(a M₃)
λa.λb.(b M₄) and λb.λa.(a M₅)
λa.λb.(b M₆) and λa.λa.(a M₇)

If there is one solution for a pair, can you describe all its solutions?

 $\lambda a.\lambda b.(M_1 b)$ and $\lambda b.\lambda a.(a M_1)$

 $a.b.\langle M_1,b
angle ~pprox ? ~b.a.\langle a,M_1
angle$

 $a.b.\langle M_1,b
angle ~pprox ? ~b.a.\langle a,M_1
angle$

 $\stackrel{arepsilon}{\Rightarrow} \hspace{0.2cm} \boldsymbol{b.}\langle \boldsymbol{M_1}, \boldsymbol{b}
angle pprox ? \hspace{0.1cm} (\boldsymbol{a} \hspace{0.1cm} \boldsymbol{b}) \hspace{-0.1cm} \bullet \hspace{-0.1cm} \boldsymbol{a.} \langle \boldsymbol{a}, \boldsymbol{M_1}
angle \hspace{0.1cm}, \hspace{0.1cm} \boldsymbol{a} \hspace{0.1cm} \# ? \hspace{0.1cm} \boldsymbol{a.} \langle \boldsymbol{a}, \boldsymbol{M_1}
angle$

 $a.b.\langle M_1,b
angle ~pprox ? ~b.a.\langle a,M_1
angle$

 $\stackrel{\varepsilon}{\Rightarrow} \quad \boldsymbol{b}.\langle \boldsymbol{M}_1, \boldsymbol{b} \rangle \boldsymbol{\approx} ? \ \boldsymbol{b}.\langle \boldsymbol{b}, (\boldsymbol{a} \ \boldsymbol{b}) \boldsymbol{\cdot} \boldsymbol{M}_1 \rangle \ , \ \boldsymbol{a} \ \# ? \ \boldsymbol{a}.\langle \boldsymbol{a}, \boldsymbol{M}_1 \rangle$

 $a.b.\langle M_1,b
angle ~pprox ? ~b.a.\langle a,M_1
angle$

- $\stackrel{\varepsilon}{\Rightarrow} \hspace{0.1in} \boldsymbol{b.} \langle \boldsymbol{M_1}, \boldsymbol{b} \rangle \thickapprox ? \hspace{0.1in} \boldsymbol{b.} \langle \boldsymbol{b}, (\boldsymbol{a} \hspace{0.1in} \boldsymbol{b}) \hspace{-.1in} \boldsymbol{\cdot} \boldsymbol{M_1} \rangle \hspace{0.1in}, \hspace{0.1in} \boldsymbol{a} \hspace{0.1in} \# ? \hspace{0.1in} \boldsymbol{a.} \langle \boldsymbol{a}, \boldsymbol{M_1} \rangle$
- $\stackrel{arepsilon}{\Rightarrow} \hspace{0.1 in} \langle M_1, b
 angle pprox ? \left\langle b, (a \, b) {}^{ullet} M_1
 ight
 angle \hspace{0.1 in}, \hspace{0.1 in} a \ \# ? \ a {}_{ullet} \langle a, M_1
 angle$

 $a.b.\langle M_1,b
angle ~pprox ? ~b.a.\langle a,M_1
angle$

- $\stackrel{\varepsilon}{\Rightarrow} \quad \boldsymbol{b}.\langle \boldsymbol{M}_1, \boldsymbol{b} \rangle \boldsymbol{\approx} ? \ \boldsymbol{b}.\langle \boldsymbol{b}, (\boldsymbol{a} \ \boldsymbol{b}) \boldsymbol{\cdot} \boldsymbol{M}_1 \rangle \ , \ \boldsymbol{a} \ \# ? \ \boldsymbol{a}.\langle \boldsymbol{a}, \boldsymbol{M}_1 \rangle$
- $\stackrel{arepsilon}{\Rightarrow} \hspace{0.1 in} \langle \boldsymbol{M}_1, \boldsymbol{b}
 angle oldsymbollpha ? \langle \boldsymbol{b}, (\boldsymbol{a} \, \boldsymbol{b}) {}^{ullet} \boldsymbol{M}_1
 angle \hspace{0.1 in}, \hspace{0.1 in} \boldsymbol{a} \ \# ? \ \boldsymbol{a}. \langle \boldsymbol{a}, \boldsymbol{M}_1
 angle$
- $\stackrel{arepsilon}{\Rightarrow} \hspace{0.2cm} M_1 pprox ? \hspace{0.1cm} b \hspace{0.1cm}, \hspace{0.1cm} b pprox ? \hspace{0.1cm} (a \hspace{0.1cm} b) \hspace{0.1cm} \bullet \hspace{0.1cm} M_1 \hspace{0.1cm}, \hspace{0.1cm} a \hspace{0.1cm} \# ? \hspace{0.1cm} a . \langle a, M_1
 angle$

 $\stackrel{[M_1:=b]}{\Rightarrow} b \approx ? (a b) \bullet b , a \# ? a. \langle a, b \rangle$

 $egin{aligned} a.b.\langle M_1,b
angle &pprox ? b.a.\langle a,M_1
angle \ &\stackrel{arepsilon}{\Rightarrow} b.\langle M_1,b
angle &pprox ? b.\langle b,(a\,b)ullet M_1
angle \ , \ a \ \#? \ a.\langle a,M_1
angle \ &\stackrel{arepsilon}{\Rightarrow} \langle M_1,b
angle &pprox ? \langle b,(a\,b)ullet M_1
angle \ , \ a \ \#? \ a.\langle a,M_1
angle \ &\stackrel{arepsilon}{\Rightarrow} \ &\stackrel{\langle M_1,b
angle &pprox ? \langle b,(a\,b)ullet M_1
angle \ , \ a \ \#? \ a.\langle a,M_1
angle \ &\stackrel{arepsilon}{\Rightarrow} \ &\stackrel{\langle M_1,b
angle &pprox ? \langle b,(a\,b)ullet M_1
angle \ , \ a \ \#? \ a.\langle a,M_1
angle \ &\stackrel{arepsilon}{\Rightarrow} \ &\stackrel{\langle M_1,b
angle & pprox ? \langle b,(a\,b)ullet M_1
angle \ , \ a \ \#? \ a.\langle a,M_1
angle \ &\stackrel{arepsilon}{\Rightarrow} \ &\stackrel{arepsilon}{$$

 $\stackrel{\varepsilon}{\Rightarrow} M_1 \approx ? b , b \approx ? (a b) \cdot M_1 , a \# ? a \cdot \langle a, M_1 \rangle \ \stackrel{[M_1:=b]}{\Rightarrow} b \approx ? a , a \# ? a \cdot \langle a, b
angle$

 $a.b.\langle M_1,b
angle ~pprox ? ~b.a.\langle a,M_1
angle$

- $\stackrel{\varepsilon}{\Rightarrow} \quad \boldsymbol{b}.\langle \boldsymbol{M}_1, \boldsymbol{b} \rangle \boldsymbol{\approx} ? \ \boldsymbol{b}.\langle \boldsymbol{b}, (\boldsymbol{a} \ \boldsymbol{b}) \boldsymbol{\cdot} \boldsymbol{M}_1 \rangle \ , \ \boldsymbol{a} \ \# ? \ \boldsymbol{a}.\langle \boldsymbol{a}, \boldsymbol{M}_1 \rangle$
- $\stackrel{arepsilon}{\Rightarrow} \hspace{0.1 in} \langle \boldsymbol{M}_1, \boldsymbol{b}
 angle oldsymbol{lpha} ? \langle \boldsymbol{b}, (\boldsymbol{a} \, \boldsymbol{b}) {}^{ullet} \boldsymbol{M}_1
 angle \hspace{0.1 in}, \hspace{0.1 in} \boldsymbol{a} \ \# ? \ \boldsymbol{a} {}^{ullet} \boldsymbol{a} {}^{ullet} \boldsymbol{A}_1
 angle$
- $\stackrel{\varepsilon}{\Rightarrow} \quad \boldsymbol{M}_1 \thickapprox ? \boldsymbol{b} \ , \ \boldsymbol{b} \thickapprox ? (\boldsymbol{a} \ \boldsymbol{b}) \boldsymbol{\bullet} \boldsymbol{M}_1 \ , \ \boldsymbol{a} \ \# ? \ \boldsymbol{a} \boldsymbol{\cdot} \langle \boldsymbol{a}, \boldsymbol{M}_1 \rangle$
- $\stackrel{[M_1:=b]}{\Rightarrow} b \approx ? a , a \# ? a.\langle a, b \rangle$

 \Rightarrow FAIL
$\begin{array}{rcl} a.b.\langle M_1,b\rangle &\approx ? & b.a.\langle a,M_1\rangle \\ \stackrel{\varepsilon}{\Rightarrow} & b.\langle M_1,b\rangle \approx ? & b.\langle b,(a\,b)\bullet M_1\rangle \ , \ a \ \# ? \ a.\langle a,M_1\rangle \\ \stackrel{\varepsilon}{\Rightarrow} & \langle M_1,b\rangle \approx ? & \langle b,(a\,b)\bullet M_1\rangle \ , \ a \ \# ? \ a.\langle a,M_1\rangle \\ \stackrel{\varepsilon}{\Rightarrow} & M_1 \approx ? & b \ , \ b \approx ? & (a\,b)\bullet M_1 \ , \ a \ \# ? \ a.\langle a,M_1\rangle \\ \stackrel{[M_1:=b]}{\Rightarrow} & b \approx ? & a \ , \ a \ \# ? \ a.\langle a,b\rangle \\ \stackrel{\cong}{\Rightarrow} & FAIL \end{array}$

 $\lambda a.\lambda b.(M_1 b) =_{\alpha} \lambda b.\lambda a.(a M_1)$ has no solution

 $\lambda a.\lambda b.(b M_6)$ and $\lambda a.\lambda a.(a M_7)$

 $a.b.\langle b, M_6
angle pprox ? a.a.\langle a, M_7
angle$

 $egin{aligned} egin{aligned} egi$

$oldsymbol{a.b.}\langle oldsymbol{b}, oldsymbol{M}_6 angle ~pprox ? ~oldsymbol{a.a.}\langle oldsymbol{a}, oldsymbol{M}_7 angle$

- $\stackrel{arepsilon}{\Rightarrow} b.\langle b, M_6
 angle pprox ? a. \langle a, M_7
 angle$
- $\stackrel{\varepsilon}{\Rightarrow} \langle \boldsymbol{b}, \boldsymbol{M}_6 \rangle \boldsymbol{\approx} ? \langle \boldsymbol{b}, (\boldsymbol{b} \, \boldsymbol{a}) \boldsymbol{\cdot} \boldsymbol{M}_7 \rangle \ , \ \boldsymbol{b} \ \# ? \ \langle \boldsymbol{a}, \boldsymbol{M}_7 \rangle$

 $a.b.\langle b, M_6
angle ~pprox ? ~a.a.\langle a, M_7
angle$

- $\stackrel{arepsilon}{\Rightarrow} b.\langle b, M_6
 angle pprox ? a.\langle a, M_7
 angle$
- $\stackrel{arepsilon}{\Longrightarrow} \langle m{b}, m{M}_6
 angle pprox ? \langle m{b}, (m{b}\,m{a}) ullet m{M}_7
 angle , \ m{b} \ \#? \ \langle m{a}, m{M}_7
 angle$
- $\stackrel{arepsilon}{\Longrightarrow} oldsymbol{b} pprox ? oldsymbol{b} \ , \ oldsymbol{M}_6 pprox ? \ (oldsymbol{b} \, oldsymbol{a}) ullet oldsymbol{M}_7 \ , \ oldsymbol{b} \ \# ? \ \langle oldsymbol{a}, oldsymbol{M}_7
 angle$

 $a.b.\langle b, M_6
angle ~pprox ? ~a.a.\langle a, M_7
angle$

- $\stackrel{arepsilon}{\Rightarrow} b.\langle b, M_6
 angle pprox ? a.\langle a, M_7
 angle$
- $\stackrel{arepsilon}{\Longrightarrow} \langle m{b}, m{M}_6
 angle pprox ? \langle m{b}, (m{b}\,m{a}) ullet m{M}_7
 angle , \ m{b} \ \#? \ \langle m{a}, m{M}_7
 angle$
- $\stackrel{\varepsilon}{\Rightarrow} b pprox ? b , \ M_6 pprox ? (b a) \cdot M_7 , \ b \# ? \langle a, M_7 \rangle$
- $\stackrel{\varepsilon}{\Rightarrow} M_6 \thickapprox ? (b a) \bullet M_7 , \ b \# ? \langle a, M_7 \rangle$

$$egin{aligned} a.b.\langle b, M_6
angle \ pprox ? \ a.a.\langle a, M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b.\langle b, M_6
angle pprox ? \ a.\langle a, M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b.\langle b, M_6
angle pprox ? \ a.\langle a, M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} \delta.\langle b, M_6
angle pprox ? \ a.\langle a, M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} \delta.\langle b, M_6
angle pprox ? \ a.\langle a, M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} \delta.\langle b, M_6
angle pprox ? \ a.\langle a, M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} \delta.\langle b, M_6
angle pprox ? \ a.\langle a, M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} \delta.\langle b, M_6
angle pprox ? \ a.\langle a, M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} \delta.\langle b, M_6
angle pprox ? \ & (b \ a) \bullet M_7 \ , \ b \ \#? \ \langle a, M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} \delta.\langle b, M_6
angle \ &\stackrel{$$

$$egin{aligned} a.b.\langle b, M_6
angle &pprox ? a.a.\langle a, M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b.\langle b, M_6
angle &pprox ? a.\langle a, M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b, M_6
angle &pprox ? a.\langle a, M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} \langle b, M_6
angle &pprox ? a.\langle a, M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b &pprox ? \langle b, (b \, a) \cdot M_7
angle , \ b & \#? \langle a, M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b & pprox ? (b \, a) \cdot M_7 \ , \ b & \#? & \langle a, M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b & \ &\stackrel{arepsilon}{\Rightarrow} b & \ &\stackrel{arepsilon}{\Rightarrow} b & \ &\stackrel{arepsilon}{\Rightarrow} M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b & \ &\stackrel{arepsilon}{\Rightarrow} M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b & \ &\stackrel{arepsilon}{\Rightarrow} M_7
angle \ &\stackrel{arepsil$$

$$egin{aligned} a.b.\langle b,M_6
angle &pprox ? a.a.\langle a,M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b.\langle b,M_6
angle &pprox ? a.\langle a,M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b.\langle b,M_6
angle &pprox ? a.\langle a,M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} \langle b,M_6
angle &pprox ? a.\langle a,M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} \langle b,M_6
angle &pprox ? \langle b,(b\,a)\cdot M_7
angle \ , b\,\#?\,\langle a,M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b\,pprox ? (b\,a)\cdot M_7 \ , b\,\#?\,\langle a,M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b\,pprox ? (b\,a)\cdot M_7 \ , b\,\#?\,\langle a,M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b\,\#?\,\langle a,M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b\,\#?\,\langle a,M_7
angle \ &\stackrel{arepsilon}{\Rightarrow} b\,\#?\,a \ , b\,\#?\,M_7 \ &\stackrel{arepsilon}{\Rightarrow} h\,\#?\,M_7 \ &\stackrel{arepsilon}{\Rightarrow} b\,\#?\,M_7 \ &\stackrel{arepsil$$

$a.b.\langle b, M_6 angle ~pprox$? $a.a.\langle a, M_7 \rangle$
$\stackrel{arepsilon}{\Rightarrow} oldsymbol{b}.\langle oldsymbol{b}, M_6 angle pprox ? oldsymbol{a}.\langle oldsymbol{a}, M_7 angle$	
$\stackrel{arepsilon}{\Rightarrow} \langle m{b}, m{M}_6 angle pprox ? \langle m{b}, (m{b}m{a}) ullet m{M}_7 angle \ , \ m{b} \ \# ? \ \langle m{a}, m{M}_7 angle$	
$\stackrel{arepsilon}{\Rightarrow} oldsymbol{b} pprox ? oldsymbol{b} , oldsymbol{M}_6 pprox ? (oldsymbol{b} oldsymbol{a}) ullet oldsymbol{M}_7 , oldsymbol{b} \# ? \langle oldsymbol{a}, oldsymbol{M}_7 angle$	
$\stackrel{arepsilon}{\Rightarrow} M_6 pprox ? (b a) {\scriptstyle ullet} M_7 \;,\; b \# ? \; \langle a, M_7 angle$	
$\stackrel{[\boldsymbol{M}_6:=(\boldsymbol{b}\boldsymbol{a})ullet\boldsymbol{M}_7]}{\Longrightarrow} \boldsymbol{b}~\#?~\langle \boldsymbol{a},\boldsymbol{M} angle$	$egin{aligned} \lambda a. \lambda b. (b \ M_6) \ =_{oldsymbol{lpha}} & \lambda a. \lambda a. (a \ M_7) \end{aligned}$
$\stackrel{\varnothing}{\Rightarrow} b$ #? a , b #?	we can take M_7 to be any λ -term that
$\stackrel{\varnothing}{\Rightarrow} b \#? M_7$	does not contain free occurrences of b , so long as we take M_6 to be the result
$\stackrel{\{b\#M_7\}}{\Longrightarrow} \varnothing$	of swapping all occurrences of b and a
	throughout M_7

• An interesting feature of nominal unification is that it does not need to create new atoms.

 $\{a.t \approx ? b.t'\} \cup P \stackrel{\varepsilon}{\Rightarrow} \{t \approx ? (a b) \bullet t', a \ \#? \ t'\} \cup P$

• An interesting feature of nominal unification is that it does not need to create new atoms.

$$\{a.t \approx ? b.t'\} \cup P \stackrel{\varepsilon}{\Rightarrow} \{t \approx ? (a b) \bullet t', a \ \#? \ t'\} \cup P$$

• The alternative rule

 $\begin{aligned} \{a.t \approx ? b.t'\} \cup P \stackrel{\varepsilon}{\Rightarrow} \\ \{(a c) \bullet t \approx ? (b c) \bullet t', c \ \#? \ t, c \ \#? \ t'\} \cup P \end{aligned}$

leads to a more complicated notion of mgu.

• An interesting feature of nominal unification is that it does not need to create new atoms.

$$\{a.t \approx ? b.t'\} \cup P \stackrel{\varepsilon}{\Rightarrow} \{t \approx ? (a b) \bullet t', a \ \#? \ t'\} \cup P$$

• The alternative rule

 $\begin{aligned} \{a.t \approx ? b.t'\} \cup P \stackrel{\varepsilon}{\Rightarrow} \\ \{(a c) \bullet t \approx ? (b c) \bullet t', c \ \#? \ t, c \ \#? \ t'\} \cup P \end{aligned}$

leads to a more complicated notion of mgu. $\{a.X \approx b.Y\} \implies (\{a \# Y, c \# Y\}, [X := (a c)(b c) \bullet Y])$

Is it Useful?

Yes. α Prolog by James Cheney (main developer)

type (Gamma, var(X), T) :- member (X,T) Gamma. type (Gamma, app(M, N), T') :type (Gamma, M, arrow(T, T')), type (Gamma, N, T).

type (Gamma, lam(**x.M**), arrow(T, T')) / **x # Gamma** :type ((x, T)::Gamma, M, T').

member X X::Tail. member X Y::Tail :- member X Tail.

type (Gamma, lam(**x.M**), arrow(T, T')) / **x # Gamma** :type ((x, T)::Gamma, M, T').

member X X::Tail. member X Y::Tail :- member X Tail.

member X Y:: Tail :- member X Tail.

Equivariant Unification

James Cheney proposed

$$t \approx ? t' \stackrel{\nabla, \sigma, \pi}{\Longrightarrow} \nabla \vdash \sigma(t) \approx \pi \boldsymbol{\cdot} \sigma(t')$$

Equivariant Unification

James Cheney proposed

$$t \approx ? t' \stackrel{\nabla, \sigma, \pi}{\Rightarrow} \nabla \vdash \sigma(t) \approx \pi \boldsymbol{\cdot} \sigma(t')$$

But he also showed this problem is undecidable in general. :(

Taking Atoms as Variables

Instead of a.X, have A.X.

Taking Atoms as Variables

Instead of *a*.*X*, have *A*.*X*.

Unfortunately this breaks the mgu-property:

 $a.Z \approx ? X.Y.v(a)$

can be solved by

$$egin{aligned} & [oldsymbol{X} := oldsymbol{a}, oldsymbol{Z} := oldsymbol{Y}.oldsymbol{v}(oldsymbol{a})] ext{ and } \ & [oldsymbol{Y} := oldsymbol{a}, oldsymbol{Z} := oldsymbol{Y}.oldsymbol{v}(oldsymbol{Y})] \end{aligned}$$

UNIF, Edinburgh, 14. July 2010 - p. 28/34

HOPU vs. NOMU

• James Cheney showed

$HOPU \Rightarrow NOMU$

• Jordi Levy and Mateu Villaret established

$HOPU \Leftarrow NOMU$

The translations 'explode' the problems quadratically.

UNIF, Edinburgh, 14. July 2010 - p. 29/34

From: Zhenyu Qian <zhqian@microsoft.com> To: Christian Urban <urbanc@in.tum.de> Subject: RE: Linear Higher-Order Pattern Unification Date: Mon, 14 Apr 2008 09:56:47 +0800

Hi Christian,

Thanks for your interests and asking. I know that that paper is complex. As I told Tobias when we met last time, I have raised the question to myself many times whether the proof could have some flaws, and so making it through a theorem prover would definitely bring piece to my mind (no matter what the result would be). The only problem for me is the time.

•••

Thanks/Zhenyu

- Christiopher Calves and Maribel Fernandez showed first that it is polynomial and then also quadratic
- Jordi Levy and Mateu Villaret showed that it is quadratic by a translation into a subset of NOMU and using ideas from Martelli/Montenari.

 Nominal Unification is a completely first-order language, but implements unification modulo α. (verification...Ramana Kumar and Michael Norrish)

- Nominal Unification is a completely first-order language, but implements unification modulo α. (verification...Ramana Kumar and Michael Norrish)
- NOMU has been applied in term-rewriting and logic programming. (Maribel Fernandez et al has a KB-completion procedure.) I hope it will also be used in typing systems.

- Nominal Unification is a completely first-order language, but implements unification modulo α. (verification...Ramana Kumar and Michael Norrish)
- NOMU has been applied in term-rewriting and logic programming. (Maribel Fernandez et al has a KB-completion procedure.) I hope it will also be used in typing systems.
- NOMU and HOPU are 'equivalent' (it took a long time and considerable research to find this out).

- Nominal Unification is a completely first-order language, but implements unification modulo α. (verification...Ramana Kumar and Michael Norrish)
- NOMU has been applied in term-rewriting and logic programming. (Maribel Fernandez et al has a KB-completion procedure.) I hope it will also be used in typing systems.
- NOMU and HOPU are 'equivalent' (it took a long time and considerable research to find this out).
- The question about complexity is still an ongoing story.

Thank you very much! Questions?

UNIF, Edinburgh, 14. July 2010 - p. 33/34

Most General Unifiers

<u>Definition</u>: For a unification problem P, a solution (σ_1, ∇_1) is more general than another solution (σ_2, ∇_2) , iff there exists a substitution τ with

• $\nabla_2 \vdash \tau(\nabla_1)$ • $\nabla_2 \vdash \sigma_2 \approx \tau \circ \sigma_1$

Most General Unifiers

<u>Definition</u>: For a unification problem P, a solution (σ_1, ∇_1) is more general than another solution (σ_2, ∇_2) , iff there exists a substitution τ with

• $\nabla_2 \vdash \tau(\nabla_1)$ • $\nabla_2 \vdash \sigma_2 \approx \tau \circ \sigma_1$

 $\nabla_2 \vdash a \ \# \ \sigma(X)$ holds for all $(a \ \# \ X) \in \nabla_1$

UNIF, Edinburgh, 14. July 2010 - p. 34/34

Most General Unifiers

<u>Definition</u>: For a unification problem P, a solution (σ_1, ∇_1) is more general than another solution (σ_2, ∇_2) , iff there exists a substitution τ with

• $\nabla_2 \vdash \tau(\nabla_1)$ • $\nabla_2 \vdash \sigma_2 \approx \tau \circ \sigma_1$

 $abla_2 \vdash \sigma_2(X) \approx \sigma(\sigma_1(X)) \text{ holds for all}$ $X \in \operatorname{dom}(\sigma_2) \cup \operatorname{dom}(\sigma \circ \sigma_1)$