UNIF, Edinburgh, 14. July 2010 – p. 1/34

Assuming that *a* and *b* are distinct variables, is it possible to find λ -terms M_1 to M_7 that make the following pairs α -equivalent?

> λ *a.λb.*(M_1 *b*) and λ *b.* λ *a.*(*a* M_1) $\lambda a.\lambda b.(M_2 b)$ and $\lambda b.\lambda a.(a M_3)$ *λa.λb.*(*b M*4) and *λb.λa.*(*a M*5) $\sim \lambda a.\lambda b.$ $(b M_6)$ and $\lambda a.\lambda a.$ $(a M_7)$

If there is one solution for a pair, can you describe all its solutions?

Nominal Unification Hitting a Sweet Spot

Christian Urban

initial spark from Roy Dyckhoff in November 2001 joint work with Andy Pitts and Jamie Gabbay

UNIF, Edinburgh, 14 . July 2010 – p. $2/34$

UNIF, Edinburgh, 14. July 2010 – p. 3/34

Typing implemented in Prolog (from a textbook)

Typing implemented in Prolog (from a textbook) type (Gamma, $var(X)$, T) :- member (X,T) Gamma. type (Gamma, app $(M, N), T'$) :type (Gamma, M, arrow(T, T')), type (Gamma, N, T).

type $(Gamma, lam(X, M), arrow(T, T))$: type $((X, T)$::Gamma, M , T').

member X X::Tail. member X Y::Tail :- member X Tail

type $(Gamma, lam(X, M), arrow(T, T))$: type ((X, T)::Gamma, M, T').

member X X::Tail. member X Y::Tail :- member X Tail.

Higher-Order Unification

State of the art at the time:

- Lambda Prolog with full Higher-Order Unification (no mgus, undecidable, modulo *αβ*)
- Higher-Order Pattern Unification (has mgus, decidable, some restrictions, modulo α *β*₀)

Unification (only) up to *α*

- Unification (only) up to *α*
- Swappings / Permutations

$\lambda a.b$ $\lambda c.b$

- Unification (only) up to *α*
- Swappings / Permutations

$$
\begin{array}{ll} [b\!:=\!a] \,\lambda a.b & \quad [b\!:=\!a] \,\lambda c.b \\ = \lambda a.a & = \lambda c.a \end{array}
$$

- Unification (only) up to *α*
- Swappings / Permutations

$$
\begin{array}{ccc} (a\,b)\boldsymbol{\cdot}\lambda a.b & (a\,b)\boldsymbol{\cdot}\lambda c.b \\ =\lambda b.a & =\lambda c.a \end{array}
$$

$$
(a b) \cdot t \stackrel{\text{def}}{=} \text{swap all occurrences of} \\ b \text{ and } a \text{ in } t
$$

- Unification (only) up to *α*
- Swappings / Permutations

$$
\begin{array}{ccc} (a\,b)\boldsymbol{\cdot}\lambda a.b & (a\,b)\boldsymbol{\cdot}\lambda c.b \\ =\lambda b.a & =\lambda c.a \end{array}
$$

$$
(a b) \cdot t \stackrel{\text{def}}{=} \text{swap all occurrences of} \\ b \text{ and } a \text{ in } t
$$

Unlike for $[b := a] \cdot (−)$, for $(a b) \cdot (−)$ we do have if $t = \alpha$ t' then $\pi \cdot t = \alpha$ $\pi \cdot t'$.

- Unification (only) up to *α*
- Swappings / Permutations
- Variables (or holes)

- Unification (only) up to *α*
- Swappings / Permutations
- Variables (or holes)

- Unification (only) up to α
- Swappings / Permutations
- Variables (or holes)

ys are the parameters the hole can depend on

- Unification (only) up to *α*
- Swappings / Permutations
- Variables (or holes)

$$
\lambda xs. \left(\bullet \right) ys \right)
$$

ys are the parameters the hole can depend on, but then you need $β_0$ -reduction

$$
(\boldsymbol{\lambda x. t})\boldsymbol{y \longrightarrow_{\beta_0} t}[\boldsymbol{x}:=\boldsymbol{y}]
$$

- Unification (only) up to α
- Swappings / Permutations
- Variables (or holes)

we will record the information about which parameters a hole **cannot** depend on

UNIF, Edinburgh, 14. July 2010 – p. 6/34

Atoms are constants (infinitely many of them)

UNIF, Edinburgh, 14. July 2010 – p. 6/34

 $\sqrt{\ }$ λ*a.a* $\sqrt{\ }$ → fn *a.a* constructions like fn *X.X* are not allowed

UNIF, Edinburgh, 14. July 2010 – p. 6/34

X is a variable standing for a term π is an explicit permutation $(a_1 b_1) \dots (a_n b_n)$, waiting to be applied to the term that is substituted for *X*

Permutations

a permutation applied to a term

•
$$
[\cdot c \stackrel{\text{def}}{=} c
$$

\n• $(ab) :: \pi \cdot c \stackrel{\text{def}}{=} \begin{cases} a & \text{if } \pi \cdot c = b \\ b & \text{if } \pi \cdot c = a \\ \pi \cdot c & \text{otherwise} \end{cases}$

Permutations

a permutation applied to a term

\n- \n
$$
\begin{array}{c}\n \bullet \quad \quad \mathbb{I} \cdot c \quad \stackrel{\text{def}}{=} \quad c \\
\bullet \quad (a \ b) :: \pi \cdot c \quad \stackrel{\text{def}}{=} \quad \begin{cases}\n a & \text{if } \pi \cdot c = b \\
b & \text{if } \pi \cdot c = a \\
\pi \cdot c & \text{otherwise}\n \end{cases}
$$
\n
\n- \n
$$
\begin{array}{c}\n a & \text{if } \pi \cdot c = b \\
\pi \cdot c & \text{otherwise}\n \end{array}
$$
\n
\n

Permutations

a permutation applied to a term

 $\left[\begin{array}{ccc} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array}\right]$ $(\bm{a}\ \bm{b})::\bm{\pi}\bm{\cdot}\bm{c}\ \ \stackrel{\text{def}}{=}$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ *a* if $\pi \cdot c = b$ *b* if $\pi \cdot c = a$ *^π·^c* otherwise π *·a.t* $\stackrel{\text{def}}{=}$ π *·a.* π *·t* π • π' • X $\stackrel{\text{def}}{=}$ $(\pi @ \pi')$ • X

Freshness Constraints

 $Recall \lambda a.$

Freshness Constraints Recall *λa.* .

We therefore will identify

fn $a.X \approx$ fn $b.(a b) \cdot X$

provided that '*b* is fresh for $X - (b \# X)$ ', i.e., does not occur freely in any ground term that might be substituted for *X*.

Freshness Constraints Recall *λa.* .

We therefore will identify

 $f_n a.X \approx f_n b.(a b) \cdot X$

provided that '*b* is fresh for $X - (b \# X)$ ', i.e., does not occur freely in any ground term that might be substituted for *X*.

If we know more about X , e.g., if we knew that $a \# X$ and $b \# X$, then we can replace $(a b) \cdot X$ by X.

Our equality is **not** just

 $t \approx t'$ *a*-equivalence

UNIF, Edinburgh, 14 . July 2010 – p. $9/34$

but judgements

∇ ⊢ t ≈ t ′ α-equivalence

where

$$
\boldsymbol{\nabla} = \{\boldsymbol{a}_1 \ \#\ \boldsymbol{X}_1, \dots, \boldsymbol{a}_n \ \#\ \boldsymbol{X}_n\}
$$

is a finite set of freshness assumptions.

UNIF, Edinburgh, 14. July 2010 – p. 9/34

but judgements

∇ ⊢ t ≈ t ′ α-equivalence

where

$$
\boldsymbol{\nabla} = \{\boldsymbol{a}_1 \ \#\ \boldsymbol{X}_1, \dots, \boldsymbol{a}_n \ \#\ \boldsymbol{X}_n \}
$$

is a finite set of freshness assumptions.

{a # *X, b* # *X} ⊢* fn *a.X ≈* fn *b.X*

but judgements

∇ ⊢ t ≈ t ′ α-equivalence *∇ ⊢ a* # *t* freshness

where

$$
\boldsymbol{\nabla} = \{\boldsymbol{a}_1 \ \#\ \boldsymbol{X}_1, \dots, \boldsymbol{a}_n \ \#\ \boldsymbol{X}_n \}
$$

is a finite set of freshness assumptions.

{a # *X, b* # *X} ⊢* fn *a.X ≈* fn *b.X*

Excerpt (i.e. only the interesting rules)

UNIF, Edinburgh, 14. July 2010 – p. 10/34

$$
\overline{\nabla \vdash a \approx a}
$$

$$
\frac{\nabla \vdash t \approx t'}{\nabla \vdash a.t} \approx a.t'
$$

$$
\cfrac{a\neq b \quad \ \nabla \vdash t \approx (a\,b)\!\cdot\! t' \quad \ \nabla \vdash a\;\#\;t'}{\nabla \vdash a.t} \approx b.t'
$$

UNIF, Edinburgh, 14. July 2010 – p. 11/34

UNIF, Edinburgh, 14. July 2010 – p. 12/34

 $(a \# X) \in \nabla$ for all *a* with $\pi \cdot a \neq \pi' \cdot a$ $\nabla \vdash \pi \cdot X \approx \pi' \cdot X$

for example

{^a #*X, b* #*X} ⊢ ^X [≈]* (*a b*)*·^X*

UNIF, Edinburgh, 14. July 2010 – p. 12/34
Rules for Equivalence

$$
(a \# X) \in \nabla
$$

for all a with $\pi \cdot a \neq \pi' \cdot a$

$$
\nabla \vdash \pi \cdot X \approx \pi' \cdot X
$$

for example

{^a #*X, c* #*X} ⊢* (*a c*)(*a b*)*·^X [≈]* (*b c*)*·^X*

because $(a c)(a b): a \mapsto b (b c): a \mapsto a$ $b \mapsto c$ $b \mapsto c$ $c \mapsto a$ $c \mapsto b$

disagree at *a* and *c*.

UNIF, Edinburgh, 14. July 2010 – p. 12/34

Rules for Freshness

Excerpt (i.e. only the interesting rules)

UNIF, Edinburgh, 14. July 2010 – p. 13/34

Rules for Freshness

$$
\frac{a \neq b}{\nabla \vdash a \; \# \; b}
$$

$$
\cfrac{}{\nabla \vdash a \;\#\; a.t} \qquad \cfrac{a \;\neq\; b \qquad \nabla \vdash a \;\#\; t}{\nabla \vdash a \;\#\; b.t}
$$

$$
\frac{(\pi^{-1} \boldsymbol{\cdot} a \ \# \ X) \in \nabla}{\nabla \vdash a \ \# \ \pi \boldsymbol{\cdot} X}
$$

UNIF, Edinburgh, 14. July 2010 – p. 14/34

Theorem: *≈* is an equivalence relation.

 $(Reflexivity)$ ∇ \vdash $t \approx t$ (Symmetry) if ∇ *⊢* $t_1 \approx t_2$ then ∇ *⊢* $t_2 \approx t_1$ (Transitivity) if $\nabla \vdash t_1 \approx t_2$ and $\nabla \vdash t_2 \approx t_3$ then ∇ *⊢* $t_1 \approx t_3$

Theorem: *≈* is an equivalence relation.

 ∇ *⊢ t* \approx *t'* then ∇ *⊢* π *·t* \approx π *·t' ∇ ⊢ ^a* # *^t* then *∇ ⊢ ^π·^a* # *^π·^t*

Theorem: *≈* is an equivalence relation.

- ∇ *⊢ t* \approx *t'* then ∇ *⊢* π *·t* \approx π *·t'*
- *∇ ⊢ ^a* # *^t* then *∇ ⊢ ^π·^a* # *^π·^t*
- ∇ *<i>⊢ t* $\approx \pi \cdot t'$ then ∇ *⊢* (π^{-1}) $\cdot t \approx t'$
- *∇ ⊢ ^a* # *^π·^t* then *∇ ⊢* (*^π −*1)*·^a* # *^t*

Theorem: *≈* is an equivalence relation.

- ∇ *⊢ t* \approx *t'* then ∇ *⊢* π *·t* \approx π *·t'*
- *∇ ⊢ ^a* # *^t* then *∇ ⊢ ^π·^a* # *^π·^t*
- ∇ *<i>⊢ t* $\approx \pi \cdot t'$ then ∇ *⊢* (π^{-1}) $\cdot t \approx t'$
- *∇ ⊢ ^a* # *^π·^t* then *∇ ⊢* (*^π −*1)*·^a* # *^t*
- ∇ *⊢ a* # *t* and ∇ *⊢ t* ≈ *t'* then ∇ *⊢ a* # *t'*

Traditionally $=$ _{α} is defined as

least congruence which identifies *a.t* with **.[** $**a** := **b**|**t**$ **provided ***b* is not free in *t*

where $[a := b]t$ replaces all free occurrences of *a* by *b* in *t*.

Traditionally $=$ _{α} is defined as

least congruence which identifies *a.t* with **.[** $**a** := **b**|**t**$ **provided ***b* is not free in *t*

where $[a := b]t$ replaces all free occurrences of *a* by *b* in *t*.

For ground terms:

 $\frac{\text{Theorem:} \quad t}{\text{#}}t' \quad \text{iff} \quad \varnothing \vdash t \approx t'$ $a \notin FA(t)$ iff $\varnothing \vdash a \neq t$

Traditionally $=$ _{α} is defined as

least congruence which identifies *a.t* with **.[** $**a** := **b**|**t**$ **provided ***b* is not free in *t*

where $[a := b]t$ replaces all free occurrences of *a* by *b* in *t*.

In general $=_{\alpha}$ and \approx are distinct!

 $a.X = a b.X$ but not \emptyset *⊢**a.X* **≈** *b.X* **(***a* **≠** *b***)**

That is a crucial point: if we had

least congruence which identifies *a.t* with \emptyset *⊢**a.X* **≈** *b.X***,**

 \mathbf{b} then applying $[\boldsymbol{X} := \boldsymbol{a}], [\boldsymbol{X} := \boldsymbol{b}], \ldots$ give two terms that are **not** α -equivalent.

The freshness constraints $a \# X$ and $b \# X$ rule out the problematic substitutions. Therefore

{a # *X, b* # *X} ⊢ a.X ≈ b.X* does hold.

 $\boldsymbol{\sigma}(\boldsymbol{a}.\boldsymbol{t}) \stackrel{\text{def}}{=} \boldsymbol{a}.\boldsymbol{\sigma}(\boldsymbol{t})$ $\bm{\sigma}(\bm{\pi}\bm{\cdot}\bm{X})\stackrel{\text{def}}{=}$ $\int \pi \cdot \sigma(X) \text{ if } \sigma(X) \neq X$ *^π·^X* otherwise

\n- \n
$$
\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)
$$
\n
\n- \n
$$
\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases}\n\pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\
\pi \cdot X & \text{otherwise}\n\end{cases}
$$
\n
\n

for example $a.(a b) \cdot X \ \ [X := \langle b, Y \rangle]$

\n- \n
$$
\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)
$$
\n
\n- \n
$$
\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases}\n\pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\
\pi \cdot X & \text{otherwise}\n\end{cases}
$$
\n
\n

for example

 $a.(a b) \cdot X \ [X := \langle b, Y \rangle]$ $\Rightarrow a.(a b) \cdot X[X := \langle b, Y \rangle]$

UNIF, Edinburgh, 14. July 2010 – p. 17/34

\n- \n
$$
\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)
$$
\n
\n- \n
$$
\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases}\n\pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\
\pi \cdot X & \text{otherwise}\n\end{cases}
$$
\n
\n

for example

 $\bm{a}.(\bm{a}\ \bm{b}) \bm{\cdot} \bm{X} \ \ [\bm{X} := \langle \bm{b}, \bm{Y} \rangle]$ $\Rightarrow a.(a b) \cdot X[X := \langle b, Y \rangle]$ \Rightarrow *a.*(*ab*)*•*(*b, Y*)

UNIF, Edinburgh, 14. July 2010 – p. 17/34

\n- \n
$$
\sigma(a.t) \stackrel{\text{def}}{=} a.\sigma(t)
$$
\n
\n- \n
$$
\sigma(\pi \cdot X) \stackrel{\text{def}}{=} \begin{cases}\n\pi \cdot \sigma(X) & \text{if } \sigma(X) \neq X \\
\pi \cdot X & \text{otherwise}\n\end{cases}
$$
\n
\n

for example

 $\bm{a}.(\bm{a}\ \bm{b}) \cdot \bm{X} \ \ [\bm{X} := \langle \bm{b}, \bm{Y} \rangle]$ \Rightarrow $a.(a b) \cdot X[X := \langle b, Y \rangle]$ \Rightarrow *a.*(*ab*)*•* \langle *b, Y* \rangle \Rightarrow *a.* $\langle a, (a \, b) \cdot Y \rangle$

 $\boldsymbol{\sigma}(\boldsymbol{a}.\boldsymbol{t}) \stackrel{\text{def}}{=} \boldsymbol{a}.\boldsymbol{\sigma}(\boldsymbol{t})$ $\bm{\sigma}(\bm{\pi}\bm{\cdot}\bm{X})\stackrel{\text{def}}{=}$ $\int \pi \cdot \sigma(X) \text{ if } \sigma(X) \neq X$ *^π·^X* otherwise

if ∇ *⊢* $t \approx t'$ and ∇' *⊢* $\sigma(\nabla)$ then $\nabla' \vdash \sigma(t) \approx \sigma(t')$

 $\boldsymbol{\sigma}(\boldsymbol{a}.\boldsymbol{t}) \stackrel{\text{def}}{=} \boldsymbol{a}.\boldsymbol{\sigma}(\boldsymbol{t})$ $\bm{\sigma}(\bm{\pi}\bm{\cdot}\bm{X})\stackrel{\text{def}}{=}$ $\int \pi \cdot \sigma(X) \text{ if } \sigma(X) \neq X$ *^π·^X* otherwise

if $\nabla \vdash t \approx t'$ and $(\nabla' \vdash \sigma(\nabla))$ then $\nabla' \vdash \sigma(t) \approx \overline{\sigma(t')}$

> . this means $∇' ⊢ a # σ(X)$ holds for all $(a \# X) \in \nabla$

 $\boldsymbol{\sigma}(\boldsymbol{a}.\boldsymbol{t}) \stackrel{\text{def}}{=} \boldsymbol{a}.\boldsymbol{\sigma}(\boldsymbol{t})$ $\bm{\sigma}(\bm{\pi}\bm{\cdot}\bm{X})\stackrel{\text{def}}{=}$ $\int \pi \cdot \sigma(X) \text{ if } \sigma(X) \neq X$ *^π·^X* otherwise

if ∇ *⊢* $t \approx t'$ and ∇' *⊢* $\sigma(\nabla)$ then $\nabla' \vdash \sigma(t) \approx \sigma(t')$

 $\boldsymbol{\sigma}(\boldsymbol{a}.\boldsymbol{t}) \stackrel{\text{def}}{=} \boldsymbol{a}.\boldsymbol{\sigma}(\boldsymbol{t})$ $\bm{\sigma}(\bm{\pi}\bm{\cdot}\bm{X})\stackrel{\text{def}}{=}$ $\int \pi \cdot \sigma(X) \text{ if } \sigma(X) \neq X$ *^π·^X* otherwise

- if ∇ *⊢* $t \approx t'$ and ∇' *⊢* $\sigma(\nabla)$ then $\nabla' \vdash \sigma(t) \approx \sigma(t')$
- $\sigma(\pi \cdot t) = \pi \cdot \sigma(t)$

Equational Problems

An equational problem

t ≈? *t ′*

is solved by

- a substitution *σ* (terms for variables)
- **and** a set of freshness assumptions *∇*

so that $\nabla \vdash \sigma(t) \approx \sigma(t').$

Unifying equations may entail solving freshness problems.

E.g. assuming that $a \neq a'$, then

 $a.t \approx ? \; a'.t'$

can only be solved if

 $t \approx ?$ $(a \cdot a') \cdot t'$ and $a \neq ?$ t'

can be solved.

Freshness Problems

A freshness problem

 $a \#? t$

is solved by

- a substitution *σ*
- and a set of freshness assumptions *∇*

so that ∇ *⊢* $a \# \sigma(t)$.

Existence of MGUs

Theorem: There is an algorithm which, given a nominal unification problem P , decides whether or not it has a solution (σ, ∇) , and returns a most general one if it does.

Existence of MGUs

Theorem: There is an algorithm which, given a nominal unification problem P , decides whether or not it has a solution (σ, ∇) , and returns a most general one if it does.

> . most general: straightforward definition "iff there exists a *τ* such that …"

Existence of MGUs

Theorem: There is an algorithm which, given a nominal unification problem P , decides whether or not it has a solution (σ, ∇) , and returns a most general one if it does.

Proof: one can reduce all the equations to 'solved form' first (creating a substitution), and then solve the freshness problems (easy).

Remember the Quiz?

Assuming that *a* and *b* are distinct variables, is it possible to find λ -terms M_1 to M_7 that make the following pairs *α*-equivalent?

> $\lambda a.\lambda b.(M_1 b)$ and $\lambda b.\lambda a.(a M_1)$ $\bullet \ \lambda a.\lambda b. (M_2 b) \ \text{and} \ \lambda b.\lambda a.(a M_3)$ **•** $\lambda a.\lambda b.(b M_4)$ and $\lambda b.\lambda a.(a M_5)$ $\lambda a.\lambda b.(b M_6)$ and $\lambda a.\lambda a.(a M_7)$

If there is one solution for a pair, can you describe all its solutions?

 $\lambda a.\lambda b. (M_1 b)$ and $\lambda b.\lambda a. (a M_1)$

 $a.b.\langle M_1, b \rangle \approx ? \; b.a.\langle a, M_1 \rangle$

 $a.b.\langle M_1, b \rangle \approx ? \; b.a.\langle a, M_1 \rangle$

 $\stackrel{\varepsilon}{\implies}$ *b.* $\langle M_1,b\rangle \approx ? \; (a\,b) \!\cdot\! a.\langle a,M_1\rangle \; , \; a \; \#? \; a.\langle a,M_1\rangle$

 $a.b.\langle M_1, b \rangle \approx ? \; b.a.\langle a, M_1 \rangle$

 \Rightarrow *b.* $\langle M_1, b \rangle \approx ?$ *b.* $\langle b, (a b) \cdot M_1 \rangle$, a #? a. $\langle a, M_1 \rangle$

 $a.b.(M_1, b) \approx ? \; b.a.(a, M_1)$

- \Rightarrow *b.* $\langle M_1, b \rangle \approx ?$ *b.* $\langle b, (a b) \cdot M_1 \rangle$, a #? a. $\langle a, M_1 \rangle$
- $\stackrel{\varepsilon}{\implies}$ $\langle M_1,b\rangle \approx ? \langle b,(a\,b){\hspace{1em}}{\circ}\, M_1\rangle$, $a \;\#\text{?}\; a.\langle a,M_1\rangle$

 $a.b.\langle M_1, b \rangle \approx ? \; b.a.\langle a, M_1 \rangle$

- \Rightarrow *b.* $\langle M_1, b \rangle \approx ?$ *b.* $\langle b, (a b) \cdot M_1 \rangle$, a #? a. $\langle a, M_1 \rangle$
- $\stackrel{\varepsilon}{\implies}$ $\langle M_1,b\rangle \approx ? \langle b,(a\,b){\hspace{1em}}{\circ}\, M_1\rangle$, $a \;\#\text{?}\; a.\langle a,M_1\rangle$
- $\stackrel{\varepsilon}{\implies}$ *M*₁ \approx ? *b* , *b* \approx ? (*a b*)*•M*₁ , *a* #? *a.* \langle *a,M*₁ \rangle

 $a.b.\langle M_1, b \rangle \approx ? \; b.a.\langle a, M_1 \rangle$

- \Rightarrow *b.* $\langle M_1, b \rangle \approx ?$ *b.* $\langle b, (a b) \cdot M_1 \rangle$, a #? a. $\langle a, M_1 \rangle$
- $\stackrel{\varepsilon}{\implies}$ $\langle M_1,b\rangle \approx ? \langle b,(a\,b){\hspace{1em}}{\circ}\, M_1\rangle$, $a \;\#\text{?}\; a.\langle a,M_1\rangle$
- $\stackrel{\varepsilon}{\implies}$ *M*₁ \approx ? *b* , *b* \approx ? (*a b*)*•M*₁ , *a* #? *a.* \langle *a,M*₁ \rangle $\stackrel{[M_1:=b]}{\Rightarrow}$ $b \approx ?$ $(a b) \cdot b$, $a \n# ?$ $a.\langle a,b \rangle$

 $a.b.(M_1, b) \approx ? \; b.a.(a, M_1)$

- \Rightarrow *b.* $\langle M_1, b \rangle \approx ?$ *b.* $\langle b, (a b) \cdot M_1 \rangle$, a #? a. $\langle a, M_1 \rangle$
- $\stackrel{\varepsilon}{\implies}$ $\langle M_1,b\rangle \approx ? \langle b,(a\,b){\hspace{1em}}{\circ}\, M_1\rangle$, $a \;\#\text{?}\; a.\langle a,M_1\rangle$
- $\stackrel{\varepsilon}{\implies}$ *M*₁ \approx ? *b* , *b* \approx ? (*a b*)*•M*₁ , *a* #? *a.* \langle *a,M*₁ \rangle $\stackrel{[M_1:=b]}{\Rightarrow} b \approx ? \; a \; , \; a \; \# ? \; a . \langle a,b \rangle$

 $a.b.(M_1, b) \approx ? \; b.a.(a, M_1)$

- \Rightarrow *b.* $\langle M_1, b \rangle \approx ?$ *b.* $\langle b, (a b) \cdot M_1 \rangle$, a #? a. $\langle a, M_1 \rangle$
- $\stackrel{\varepsilon}{\implies}$ $\langle M_1,b\rangle \approx ? \langle b,(a\,b){\hspace{1em}}{\circ}\, M_1\rangle$, $a \;\#\text{?}\; a.\langle a,M_1\rangle$
- $\stackrel{\varepsilon}{\implies}$ *M*₁ \approx ? *b* , *b* \approx ? (*a b*)*•M*₁ , *a* #? *a.* \langle *a,M*₁ \rangle
- $\stackrel{[M_1:=b]}{\Rightarrow} b \approx ? \; a \; , \; a \; \# ? \; a . \langle a,b \rangle$

=*⇒ FAIL*
$a.b.(M_1, b) \approx ? \; b.a.(a, M_1)$

- \Rightarrow *b.* $\langle M_1, b \rangle \approx ?$ *b.* $\langle b, (a b) \cdot M_1 \rangle$, a #? a. $\langle a, M_1 \rangle$
- $\stackrel{\varepsilon}{\implies}$ $\langle M_1,b\rangle \approx ? \langle b,(a\,b){\hspace{1em}}{\circ}\, M_1\rangle$, $a \;\#\text{?}\; a.\langle a,M_1\rangle$
- $\stackrel{\varepsilon}{\implies}$ *M*₁ \approx ? *b* , *b* \approx ? (*a b*)*•M*₁ , *a* #? *a.* \langle *a,M*₁ \rangle
- $\stackrel{[M_1:=b]}{\Rightarrow} b \approx ? \; a \; , \; a \; \# ? \; a . \langle a,b \rangle$

=*⇒ FAIL*

 $\lambda a.\lambda b. (M_1 b) = \alpha \lambda b.\lambda a. (a M_1)$ has no solution

 $\lambda a.\lambda b. (b M_6)$ and $\lambda a.\lambda a.(a M_7)$

 $a.b.\langle b, M_6 \rangle \approx ? \ a.a.\langle a, M_7 \rangle$

 $a.b.\langle b, M_6 \rangle \approx ? \ a.a.\langle a, M_7 \rangle$

 $\stackrel{\varepsilon}{\implies}$ $b.\langle b,M_6\rangle \approx ? \; a.\langle a,M_7\rangle$

$a.b. \langle b, M_6 \rangle \approx ? \ a.a. \langle a, M_7 \rangle$

- $\stackrel{\varepsilon}{\implies}$ $b.\langle b,M_6\rangle \approx ? \; a.\langle a,M_7\rangle$
- $\stackrel{\varepsilon}{\implies} \langle b,M_6\rangle \approx ? \langle b,(b\,a)\!\cdot\! M_7\rangle \; , \; b \; \#?\; \langle a,M_7\rangle$

 $a.b. \langle b, M_6 \rangle \approx ? \ a.a. \langle a, M_7 \rangle$

- $\stackrel{\varepsilon}{\implies}$ $b.\langle b,M_6\rangle \approx ? \; a.\langle a,M_7\rangle$
- $\stackrel{\varepsilon}{\implies} \langle b,M_6\rangle \approx ? \langle b,(b\,a)\!\cdot\! M_7\rangle \; , \; b \; \#?\; \langle a,M_7\rangle$
- $\stackrel{\varepsilon}{\implies}$ *b* \approx ? *b , M*₆ \approx ? (*b a*)*•M*₇ *, b* #? *⟨a,M*₇*⟩*

 $a.b. \langle b, M_6 \rangle \approx ? \ a.a. \langle a, M_7 \rangle$

- $\stackrel{\varepsilon}{\implies}$ $b.\langle b,M_6\rangle \approx ? \; a.\langle a,M_7\rangle$
- $\stackrel{\varepsilon}{\implies} \langle b,M_6\rangle \approx ? \langle b,(b\,a)\!\cdot\! M_7\rangle \; , \; b \; \#?\; \langle a,M_7\rangle$
- $\stackrel{\varepsilon}{\implies}$ *b* \approx ? *b , M*₆ \approx ? (*b a*)*•M*₇ *, b* #? *⟨a,M*₇*⟩*
- $\stackrel{\varepsilon}{\implies} M_6 \approx ? \; (b \, a) \!\cdot\! M_7 \; , \; b \; \# ? \; \langle a, M_7 \rangle$

 $a.b. \langle b, M_6 \rangle \approx ? \ a.a. \langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\implies}$ $b.\langle b,M_6\rangle \approx ? \; a.\langle a,M_7\rangle$ $\stackrel{\varepsilon}{\implies} \langle b,M_6\rangle \approx ? \langle b,(b\,a)\!\cdot\! M_7\rangle \; , \; b \; \#?\; \langle a,M_7\rangle$ $\stackrel{\varepsilon}{\implies}$ *b* \approx ? *b , M*₆ \approx ? (*b a*)*•M*₇ *, b* #? *⟨a,M*₇*⟩* $\stackrel{\varepsilon}{\implies} M_6 \approx ? \; (b \, a) \!\cdot\! M_7 \; , \; b \; \# ? \; \langle a, M_7 \rangle$ $\stackrel{[M_6:=(b\,a)\bullet M_7]}{\Longrightarrow}b\,\,\#?\,\,\langle\bm a,M_7\rangle$

 $a.b. \langle b, M_6 \rangle \approx ? \ a.a. \langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\implies}$ $b.\langle b,M_6\rangle \approx ? \; a.\langle a,M_7\rangle$ $\stackrel{\varepsilon}{\implies} \langle b,M_6\rangle \approx ? \langle b,(b\,a)\!\cdot\! M_7\rangle \; , \; b \; \#?\; \langle a,M_7\rangle$ $\stackrel{\varepsilon}{\implies}$ *b* \approx ? *b , M*₆ \approx ? (*b a*)*•M*₇ *, b* #? *⟨a,M*₇*⟩* $\stackrel{\varepsilon}{\implies} M_6 \approx ? \; (b \, a) \!\cdot\! M_7 \; , \; b \; \# ? \; \langle a, M_7 \rangle$ $\stackrel{[M_6:=(b\,a)\bullet M_7]}{\Longrightarrow}b\,\,\#?\,\,\langle\bm a,M_7\rangle$ ∅ =*⇒ b* #? *a , b* #? *M*⁷

 $a.b. \langle b, M_6 \rangle \approx ? \ a.a. \langle a, M_7 \rangle$ $\stackrel{\varepsilon}{\implies}$ $b.\langle b,M_6\rangle \approx ? \; a.\langle a,M_7\rangle$ $\stackrel{\varepsilon}{\implies} \langle b,M_6\rangle \approx ? \langle b,(b\,a)\!\cdot\! M_7\rangle \; , \; b \; \#?\; \langle a,M_7\rangle$ $\stackrel{\varepsilon}{\implies}$ *b* \approx ? *b , M*₆ \approx ? (*b a*)*•M*₇ *, b* #? *⟨a,M*₇*⟩* $\stackrel{\varepsilon}{\implies} M_6 \approx ? \; (b \, a) \!\cdot\! M_7 \; , \; b \; \# ? \; \langle a, M_7 \rangle$ $\stackrel{[M_6:=(b\,a)\bullet M_7]}{\Longrightarrow}b\,\,\#?\,\,\langle\bm a,M_7\rangle$ ∅ =*⇒ b* #? *a , b* #? *M*⁷ $\stackrel{\mathscr{D}}{\Longrightarrow}$ **b** #? M_7

An interesting feature of nominal unification is that it does not need to create new atoms.

 ${a.t \approx? b.t'}$ $\cup P \stackrel{\varepsilon}{\Longrightarrow} {t \approx? (a b) \cdot t', a \neq? t'}$ $\cup P$

An interesting feature of nominal unification is that it does not need to create new atoms.

$$
\{a.t \approx ?\ b.t'\} \cup P \stackrel{\varepsilon}{\Longrightarrow} \{t \approx ?\ (a\ b) \mathord{\bullet} t', a \ \#\text{?}\ t'\} \cup P
$$

o The alternative rule

{a.t ≈? *b.t′} ∪ P ε* =*⇒* ${{(a c) \cdot t ≈ ? (b c) \cdot t', c \neq ? t, c \neq ? t'} \cup P}$

leads to a more complicated notion of mgu.

An interesting feature of nominal unification is that it does not need to create new atoms.

$$
\{a.t \approx ?\ b.t'\} \cup P \stackrel{\varepsilon}{\Longrightarrow} \{t \approx ?\ (a\ b) \mathord{\bullet} t', a \ \#\text{?}\ t'\} \cup P
$$

o The alternative rule

{a.t ≈? *b.t′} ∪ P ε* =*⇒* ${{(a c) \cdot t ≈ ? (b c) \cdot t', c \neq ? t, c \neq ? t'} \cup P}$

leads to a more complicated notion of mgu. ${a.X \approx ? b.Y} \Rightarrow { {a \# Y, c \# Y}, {X := (a c)(b c) \cdot Y} }$

Is it Useful?

Yes. *α*Prolog by James Cheney (main developer)

type (Gamma, $var(X)$, T) :- member (X,T) Gamma. type (Gamma, app $(M, N), T'$) :type (Gamma, M, arrow(T, T')), type (Gamma, N, T).

type (Gamma, $lam(x.M)$, arrow(T, T')) / $x \# Gamma$:type ((x, T)::Gamma, M, T').

member X X::Tail. member X Y::Tail :- member X Tail.

type (Gamma, $lam(x,M)$, arrow(T, T')) / $x \# Gamma$:type ((x, T)::Gamma, M, T').

member X X::Tail. member X Y::Tail :- member X Tail.

member X Y::Tail :- member X Tail.

Equivariant Unification

James Cheney proposed

$$
t\approx ?\ t'\stackrel{\nabla, \sigma,\pi}{\Longrightarrow} \nabla\vdash \sigma(t)\approx \pi\!\cdot \! \sigma(t')
$$

Equivariant Unification

James Cheney proposed

$$
t\approx ?\ t'\stackrel{\nabla_{\!\!\! ,\sigma\!,\pi}}{\Longrightarrow} \nabla\vdash \sigma(t)\approx \pi\!\boldsymbol{\cdot}\sigma(t')
$$

But he also showed this problem is undecidable in general. :(

Taking Atoms as Variables

Instead of *a.X*, have *A.X*.

Taking Atoms as Variables

Instead of *a.X*, have *A.X*.

Unfortunately this breaks the mgu-property:

 $a.Z \approx ? X.Y.v(a)$

can be solved by

$$
\begin{matrix} [\boldsymbol{X} := \boldsymbol{a}, \boldsymbol{Z} := \boldsymbol{Y}\boldsymbol{.} \boldsymbol{v}(\boldsymbol{a})] \text{ and } \\ [\boldsymbol{Y} := \boldsymbol{a}, \boldsymbol{Z} := \boldsymbol{Y}\boldsymbol{.} \boldsymbol{v}(\boldsymbol{Y})]\end{matrix}
$$

UNIF, Edinburgh, 14 . July 2010 – p. $28/34$

HOPU vs. NOMU

• James Cheney showed

$HOPU \Rightarrow NOMU$

Jordi Levy and Mateu Villaret established

$HOPU \leftarrow NOMU$

The translations 'explode' the problems quadratically.

UNIF, Edinburgh, 14. July 2010 – p. 29/34

From: Zhenyu Qian <zhqian@microsoft.com> To: Christian Urban <urbanc@in.tum.de> Subject: RE: Linear Higher-Order Pattern Unification Date: Mon, 14 Apr 2008 09:56:47 +0800

Hi Christian,

Thanks for your interests and asking. I know that that paper is complex. As I told Tobias when we met last time, I have raised the question to myself many times whether the proof could have some flaws, and so making it through a theorem prover would definitely bring piece to my mind (no matter what the result would be). The only problem for me is the time.

…

Thanks/Zhenyu

- Christiopher Calves and Maribel Fernandez showed first that it is polynomial and then also quadratic
- Jordi Levy and Mateu Villaret showed that it is quadratic by a translation into a subset of NOMU and using ideas from Martelli/Montenari.

• Nominal Unification is a completely first-order language, but implements unification modulo *α*. (verification…Ramana Kumar and Michael Norrish)

- Nominal Unification is a completely first-order language, but implements unification modulo *α*. (verification…Ramana Kumar and Michael Norrish)
- NOMU has been applied in term-rewriting and logic programming. (Maribel Fernandez et al has a KB-completion procedure.) I hope it will also be used in typing systems.

- Nominal Unification is a completely first-order language, but implements unification modulo *α*. (verification…Ramana Kumar and Michael Norrish)
- NOMU has been applied in term-rewriting and logic programming. (Maribel Fernandez et al has a KB-completion procedure.) I hope it will also be used in typing systems.
- NOMU and HOPU are 'equivalent' (it took a long time and considerable research to find this out).

- Nominal Unification is a completely first-order language, but implements unification modulo *α*. (verification…Ramana Kumar and Michael Norrish)
- NOMU has been applied in term-rewriting and logic programming. (Maribel Fernandez et al has a KB-completion procedure.) I hope it will also be used in typing systems.
- NOMU and HOPU are 'equivalent' (it took a long time and considerable research to find this out).
- The question about complexity is still an ongoing story. UNIF, Edinburgh, 14. July 2010 – p. 32/34

Thank you very much! Questions?

UNIF, Edinburgh, 14. July 2010 – p. 33/34

Most General Unifiers

Definition: For a unification problem *P* , a solution (σ_1, ∇_1) is more general than another solution (σ_2, ∇_2) , iff there exists a substitution τ with

> \bullet ∇_2 *⊢* $\tau(\nabla_1)$ \bullet ∇_2 *⊢* σ_2 ≈ *τ* ∘ σ_1

Most General Unifiers

Definition: For a unification problem *P* , a solution (σ_1, ∇_1) is more general than another solution (σ_2, ∇_2) , iff there exists a substitution τ with

\bullet ∇_2 *⊢* τ (∇_1) \bullet ∇_2 *⊦* $\sigma_2 \approx \tau \circ \sigma_1$

 ∇_2 *⊢ a* # σ (*X*) holds for all $(a \# X) \in \nabla_1$

UNIF, Edinburgh, 14. July 2010 – p. 34/34

Most General Unifiers

Definition: For a unification problem *, a solution* (σ_1, ∇_1) is more general than another solution (σ_2, ∇_2) , iff there exists a substitution τ with

> \bullet ∇_2 *⊢ τ* (∇_1) *•* ∇_2 *⊦* $\sigma_2 \approx \tau \circ \sigma_1$

 ∇_2 *⊢* $\sigma_2(X) \approx \sigma(\sigma_1(X))$ holds for all $X \in \text{dom}(\sigma_2) \cup \text{dom}(\sigma \circ \sigma_1)$

UNIF, Edinburgh, 14. July 2010 – p. 34/34