Dagstuhl, 14 October 2013 — p. 1/19

Nominal Isabelle

or, How Not to be Intimidated by
the Variable Convention

Christian Urban
King’s College London

Variable Convention:

If My, ..., M, occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound
variables are chosen to be different from the free variables.

Henk Barendregt in “The Lambda-Calculus: Its Syntax and Semantics”

dinner after my PhD examination

e Aim: develop Nominal Isabelle for reasoning
formally about programming languages

Variable Convention:
If M, ..., M, occur in a certain mathematical context (e.g. definition,
proof), then in these terms all bound variables are chosen to be different
from the free variables. —Henk Barendregt

e Aim: develop Nominal Isabelle for reasoning
formally about programming languages

Variable Convention:
If M, ..., M, occur in a certain mathematical context (e.g. definition,
proof), then in these terms all bound variables are chosen to be different
from the free variables. —Henk Barendregt

e found an error in an ACM journal paper by Bob
Harper and Frank Pfenning about LF (and fixed it
in three ways)

e found also fixable errors in my Ph.D.-thesis about
cut-elimination (examined by Henk Barendregt
and Andy Pitts)

e found that the variable convention can in
principle be used for proving false

Nominal Techniques

e Andy Pitts showed me that permutations
preserve a-equivalence:

t, =, b = el =, Tely
e also permutations and substitutions commute, if
you suspend permutations in front of variables

weo(t) = o(met)

o this allowed us to define as simple Nominal
Unification algorithm

VEt=lt Vika#'t

Nominal Isabelle

e ageneral theory about atoms and permutations

e sorted atoms and
e sort-respecting permutations

e support and freshness
supp(z) = {a | infinite {b | (ab)ex # x}}
a#x™a ¢ supp(x)

Nominal Isabelle

e ageneral theory about atoms and permutations

e sorted atoms and
@ sortrespecting permutations

e support and freshness
supp(z) = {a | infinite {b | (ab)ex # x}}
a#x™a ¢ supp(x)

e allow users to reason about alpha-equivalence
classes as if they were syntax trees

New Types in HOL

existing
type

New Types in HOL

existing
type

non-empty
subset

New Types in HOL

new . hi existing
type _ isomorphism type
N 4

non-empty
subset

New Types in HOL

existing
?;};’Z a-eq. isomorphism type
terms | ¢ > (sets of raw terms)

non-empty
subset

New Types in HOL

new

type a_eq.

terms

new

type

New Types in HOL

areq.
terms

isomorphism

V)
S

(N
7

non-empty
subset

existing
type

(sets of raw terms)

define a-equivalence

new

type

New Types in HOL

areq.
terms

isomorphism
& L

existing
type

(sets of raw terms)

define a-equivalence

The “new types mechanism” is the
reason why there is no Nominal Coq.

HOL vs. Nominal

e Nominal logic by Pitts is incompatible with
choice principles

e but HOL includes Hilbert’s epsilon

HOL vs. Nominal

e Nominal logic by Pitts is incompatible with
choice principles

e but HOL includes Hilbert’s epsilon

@ The solution: Do not require that everything has
finite support

finite(supp(x)) = a# a.x

HOL vs. Nominal

e Nominal logic by Pitts is incompatible with
choice principles

e but HOL includes Hilbert’s epsilon

@ The solution: Do not require that everything has
finite support

a# a.x

new

type

Our Work

o define fv and

aceq.
terms

&
<

isomorphism

N
?

non-empty
subset

existing
type

(sets of raw terms)

Our Work

o define fvand o
e build quotient / new type

new a-eq
e .
typ terms

Our Work

o define fvand
e build quotient / new type

e | a-ea. e derive a reasoning infrastructure
rerms (#, distinctness, injectivity
cases,...)

Our Work

o define fvand
e build quotient / new type

e | a-ea. e derive a reasoning infrastructure
rerms (#, distinctness, injectivity
cases,...)

e derive a stronger cases lemma

Our Work

o define fvand
e build quotient / new type

new | eq. e derive a reasoning infrastructure
YPE | erms . o ..
(#, distinctness, injectivity,
cases,...)

e derive a stronger cases lemma

e from this, a stronger induction
principle (Barendregt variable
convention built in)

Foo Axz.Ay.t) Au.\v.s)

Nominal Isabelle

e Users can for example define lambda-terms as:
atom_decl name

nominal_datatype lam =
Var name
| App lam lam
| Lam x::name t::lam binds x in t ("Lam _. ")

@ These are named alpha-equivalence classes, for
example

Lam a.(Var a) = Lam b.(Var b)

(Weak) Induction Principles

o The usual induction principle for lambda-terms is
as follows:

V. Px
Vtito. Pti NPty = P(t1 tg)

Vet. Pt = P (A\x.t)
Pt

e It requires us in the lambda-case to show the
property P for all binders x.

(This nearly always requires renamings and they
can be tricky to automate.)

Strong Induction Principles

o Therefore we introduced the following strong
induction principle:
Vzec. Pcx
Vtityc. (Vd. Pdt)) A (Vd.Pdty) = Pc (tty)
Vetc.x # c N (Vd.Pdt) = Pc (Ax.t)

Pct

Strong Induction Principles

o Therefore we introduced the following strong
induction principle:
Vzec. Pcx
Vtityc. (Vd. Pdt)) A (Vd.Pdty) = Pc (tty)
Vetc.x # cA (Vd.Pdt) = Pc (Ax.t)

Pect

~

The variable over which the induction pro-
ceeds:

“...By induction over the structure of M...”

Strong Induction Principles

o Therefore we introduced the following strong
induction principle:
Vzec. Pcx
Vtityc. (Vd. Pdt)) A (Vd.Pdty) = Pc (tty)
Vetc.x # cNA (Vd.Pdt) = Pc (Ax.t)

Pct

[

| The context of the induction; i.e. what the bin- |
der should be fresh for = (x,y, N, L):

“...By the variable convention we can assume
z Z x,y and z not free in N, L...”

Strong Induction Principles

o Therefore we introduced the following strong
induction principle:
Vzec. Pcx
Vtityc. (Vd. Pdt)) A (Vd.Pdty) = Pc (tty)
Vetc.x # cA (Vd.Pdt) = Pc (Ax.t)

Pct

A

The property to be proved by induction:

ANxyy,N,L).AM. x £y Nz # L =
Mxz:=Nlly:=L| = M[y:=L][z:=N[y:=L]||

Binding Sets of Names

e binding sets of names has some interesting
properties:

Hz, 9}z =y =a V{y,z}.y— =

* x,y, z are assumed to be distinct

Binding Sets of Names

e binding sets of names has some interesting
properties:

Hz, 9}z =y =a V{y,z}.y— =

V{z,y}.x >y #. V{z}.z—> =z

* x,y, z are assumed to be distinct

Binding Sets of Names

e binding sets of names has some interesting
properties:

Hz, 9}z =y =a V{y,z}.y— =
V{z,y}.x >y #. V{z}.z—> =z
V{z}.x >y =, V{z,z}.z—y

provided z is fresh for the type

* x,y, z are assumed to be distinct

Binding Sets of Names

° l};if; For type-schemes the order of bound

names does not matter, and
a-equivalence is preserved under
vacuous binders.

V{Z,yf. T — Y ZEa Vizf.Z2 — 2 ’

V{z}.x >y =, V{z,z}.z—y
provided z is fresh for the type

* x,y, z are assumed to be distinct

Other Binding Modes

e alpha-equivalence being preserved under vacuous
binders is not always wanted:

letx =3andy =2inx — y end

Other Binding Modes

e alpha-equivalence being preserved under vacuous
binders is not always wanted:

letx =3andy =2inx — y end

Rqlety=2and x =3 inx — y end

Other Binding Modes

e alpha-equivalence being preserved under vacuous
binders is not always wanted:

let x =3 and y =2 in x — y end
Faolety=2and x =3 and z = loop in — y end

Even Another Binding Mode
@ sometimes one wants to abstract more than one
name, but the order does matter

let (z,y) = (3,2) in x — y end
o let (y,x) = (3,2) in x — y end

Specification of Binding

nominal_datatype trm =
Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assns t::trm bind bn(as) in t
and assns =
ANil

| ACons name trm assns

Specification of Binding

nominal_datatype trm =
Var name
| App trm trm
| Lam x::name t::trm bind x in t
| Let as::assns t::trm bind bn(as) in t
and assns =
ANil
| ACons name trm assns
binder bn where
bn(ANil = ||
| bn(ACons a t as) = [a] @ bn(as)

So Far So Good

o A Faulty Lemma with the Variable Convention?

Variable Convention:

If M., ..., M, occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound
variables are chosen to be different from the free variables.

Barendregt in “The Lambda-Calculus: Its Syntax and Semantics”

v

Inductive Rule Inductions:
Definitions: 1.) Assume the property for
the premises. Assume

prem, ...prem, scs : £
the side-conditions.

concl

2.) Show the property for
the conclusion.

Faulty Reasoning

e Consider the two-place relation foo:

- t—t
r— T ti to — 1 Lo Azt — t

Faulty Reasoning

e Consider the two-place relation foo:

- t—t
THT bty tity g ¢

e The lemma we going to prove:
Lett — t'. Ify # ttheny # t'.

Faulty Reasoning

e Consider the two-place relation foo:

- t—t
THT bty tity g ¢

e The lemma we going to prove:
Lett — t'. Ify # ttheny # t'.

@ Cases 1 and 2 are trivial:

o If y # x then y # «.
o Ify # t1 ty theny # t, to.

Faulty Reasoning

e Consider the two-place relation foo:

- t=t
T—T ity tity o ¢

e The lemma we going to prove:
Lett — t/. Ify # t theny # t'.

e Case 3:
o We know y # Ax.t. We have to show y # t'.
o The IH says: if y # t theny # t'.

- - rw)

Variable Convention:

If M,,..., M, occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound varia-
bles are chosen to be different from the free variables.

In our case:

The free variables are y and t’; the bound one is
75

By the variable convention we conclude that #
7

@ Case 3:
o We know y # Ax.t. We have to show y # t'.
o The IH says: if y # t theny # t'.

- - rw)

Variable Convention:

If M,,..., M, occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound varia-
bles are chosen to be different from the free variables.

In our case:

The free variables are y and t’; the bound one is
75

By the variable convention we conclude that = #

Y. y g Aa.t) <= ygi(t)—{z} EL y gt]

o aS€ 3: (—\/
o We know y # Ax.t. We have to show y # t'.
o The IH says: if y # t theny # t'.

- - rw)

Variable Convention:

If M,,..., M, occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound varia-
bles are chosen to be different from the free variables.

In our case:

The free variables are y and t’; the bound one is
75

By the variable convention we conclude that = #
Y. y@fv(Am.t) < y @ fi(t)—{a} ZL ygfv(t)]

e Case 3: —
o We know y # Ax.t. We have to show y # t'.
o The IH says: if y # t theny # t'.
o So we have y # t. Hence y # t’ by IH. Done!

Faulty Reasoning

e Consider the two-place relation foo:

- t=t
T—T ity tity o ¢

e The lemma we going to prove:
Lett — t/. Ify # t theny # t'.

e Case 3:
o We know y # Ax.t. We have to show y # t'.

o The IH says: if y # t theny # t'.
o So we have y # t. Hence y # t’ by IH. Done!

Conclusions

o The user does not see anything of the “raw” level.

e The Nominal Isabelle automatically derives the
strong structural induction principle for all
nominal datatypes (not just the lambda-calculus)

e They are easy to use: you just have to think
carefully what the variable convention should be.

e We can explore the corners of the variable
convention: when and where it can be used safely.

Conclusions

o The user does not see anything of the “raw” level.

e The Nominal Isabelle automatically derives the
strong structural induction principle for all
nominal datatypes (not just the lambda-calculus)

e They are easy to use: you just have to think
carefully what the variable convention should be.

e We can explore the corners of the variable
convention: when and where it can be used safely.

e Main Point: Actually these proofs using the
variable convention are all trivial / obvious /
routine...provided you use Nominal Isabelle. ;0)

Thank you very much!

Questions?

