
Higher Order Quotients in Higher Order Logic

Peter V. Homeier

U. S. Department of Defense
palantir@trustworthytools.com

http://www.trustworthytools.com

Abstract. The quotient operation is a standard feature of set theory,
where a set is partitioned into subsets by an equivalence relation. We rein-
terpret this idea for Higher Order Logic (HOL), where types are divided
by an equivalence relation to create new types, called quotient types. We
present a tool for the Higher Order Logic theorem prover to mechan-
ically construct quotient types as new types in the HOL logic, and to
automatically lift constants and theorems about the original types to cor-
responding constants and theorems about the quotient types. This pack-
age exceeds the functionality of Harrison’s package, creating quotients
of multiple mutually recursive types simultaneously, and supporting the
equivalence of aggregate types, such as lists and pairs. Most importantly,
this package successfully creates higher-order quotients, automatically
lifting theorems with quantification over functions of any higher order.
This is accomplished through the use of partial equivalence relations, a
possibly nonreflexive version of equivalence relations. We demonstrate
this tool by lifting Abadi and Cardelli’s sigma calculus.

1 Introduction

The quotient operation is a standard feature of mathematics, including set theory
and abstract algebra. It provides a way to cleanly identify elements that previ-
ously were distinct. This simplifies the system by removing unneeded structure.

Traditionally, quotients have found many applications. Classic examples are
the construction of the integers from pairs of non-negative natural numbers, or
the rationals from pairs of integers. In the lambda calculus [2] and similar calculi,
it is common to identify terms which are alpha-equivalent, that differ only by
the choice of local names used by binding operators. Other examples include the
construction of bags from lists by ignoring order, and the construction of sets
from bags by ignoring duplicates.

The ubiquity of quotients has recommended their investigation within the
field of mechanical theorem proving. The first to appear was Ton Kalker’s 1989
package for HOL88 [11]. Isabelle/HOL [14] has mechanical support for the cre-
ation of higher order quotients by Oscar Slotosch [19], using partial equivalence
relations represented as a type class, with equivalence relations as a subclass.
That system provides a definitional framework for establishing quotient types,
including higher order. Independently, Larry Paulson has shown a construction

2 Peter V. Homeier

of first-order quotients in Isabelle without any use of the Hilbert choice operator
[17]. PVS uses quotients to support theory interpretations [15]. MetaPRL has
quotients in its foundations, as a type with a new equality [16]. Coq, based on
the Calculus of Constructions [10], supports quotients [6] but has some difficul-
ties with higher order [4]. These systems provide little automatic support. In
particular, there is no automatic lifting of constants or theorems.

John Harrison has developed a package for the HOL theorem prover which
supports first order quotients, including automation to define new quotient types
and to lift to the quotient level both constants and theorems previously estab-
lished [9]. This automatic lifting is key to practical support for quotients. A quo-
tient of a group would be incomplete without also mapping the original group
operation to a corresponding one for the quotient group. Similarly, a theorem
stating that the original group was abelian should also be true of the quotient
group. Mechanizing this lifting is vital for avoiding the repetition of proofs at
the higher level which were already proved at the lower level. Such automation
is not only practical, but mathematically incisive.

Despite the quality of Harrison’s excellent package, it does have limitations.
It can only lift one type at a time, and does not deal with aggregate types,
such as lists or pairs involving types being lifted, which makes it difficult to lift
a family of mutually nested recursive types. Most importantly, it is limited to
lifting only first order theorems, where quantification is permitted over the type
being lifted, but not over functions or predicates involving the type being lifted.

In this paper we describe a new package for quotients for the Higher Order
Logic theorem prover that meets these three concerns. It provides a tool for lifting
multiple types across multiple equivalence relations simultaneously. Aggregate
equivalence relations are produced and used automatically. Most significantly,
this package supports the automatic lifting of theorems that involve higher order
functions, including quantification, of any finite order. This is possible through
the use of partial equivalence relations [18], as a possibly non-reflexive variant
of equivalence relations, enabling quotients of function types. The relationship
between these partial equivalence relations and their associated abstraction and
representation functions (mapping between the lower and higher types) is ex-
pressed in quotient theorems which play a central and vital role in this package.

The precise definition of the quotient relationship between the original and
lifted types, and the proof of that relationship’s preservation for a function type,
given existing quotients for the function’s domain and range, are the heart of this
paper, and are presented in full detail. These form the core theory that justifies
the treatment of all higher order functions, including higher order universal,
existential, and unique existential quantification.

In addition, many existing polymorphic operators from the theories of lists,
pairs, sums, and options have theorems pre-proven showing the operators’ re-
spectfulness of equivalence relations and their preservation across quotients,
yielding results at the quotient level which correspond properly with their results
at the lower level. These respectfulness and preservation theorems enable the au-
tomatic lifting of theorems that mention these operators. Additional operators

Higher Order Quotients in Higher Order Logic 3

can also be lifted by proving and including the corresponding respectfulness and
preservation theorems, which justify the operator’s use across quotients.

The system is thus extensible, both in terms of new operators, and even in
terms of new polymorphic type operators, by proving and including theorems
entailing a quotient of the type operator, given quotients of the argument types.

The structure of this paper is as follows. In section 2 we briefly review quo-
tient sets. In section 5 we re-interpret this idea for type theory. Section 3 discusses
equivalence relations and their aggregates. Section 4 describes partial equiva-
lence relations, their extension for aggregate and function types, the properties
of a quotient relationship, and quotient extension theorems for lifting aggregate
and function types. Section 7 describes an alternative design that avoids use of
the Axiom of Choice. Section 8 presents the main tool of the quotient package,
which lifts types, constants, and theorems across the quotients. The next sev-
eral sections discuss its work in more detail. Section 9 describes the definition
of new quotient types, and section 10 describes the definition of lifted versions
of constants. Section 11 describes the various input theorems needed by the tool
to automatically lift theorems. Section 12 describes the restrictions on theo-
rems in order for them to lift properly, and section 13 loosens these restrictions,
helpfully attempting to lift even some improper theorems. Section 14 discusses
lifting theorems about sets. In sections 15 through 17, we present Abadi and
Cardelli’s sigma calculus [1], its formulation in HOL and its lifting by quotients
over alpha-equivalence. Finally, our conclusions are presented in section 18.

We are grateful for the helpful comments and suggestions made by Rob
Arthan, Randolph Johnson, Sylvan Pinsky, Yvonne V. Shashoua, and Konrad
Slind, and especially Michael Mislove for identifying partial equivalence relations
and William Schneeberger for the key idea in the proof of theorem 27.

2 Quotient Sets

Quotient sets are a standard construction of set theory. They have found wide
application in many areas of mathematics, including algebra and logic. The
following description is abstracted from [5].

A binary relation∼ on S is an equivalence relation if it is reflexive, symmetric,
and transitive.

reflexive: ∀x ∈ S. x ∼ x
symmetric: ∀x, y ∈ S. x ∼ y ⇒ y ∼ x
transitive: ∀x, y, z ∈ S. x ∼ y ∧ y ∼ z ⇒ x ∼ z

Let ∼ be an equivalence relation. Then the equivalence class of x (modulo ∼) is
defined as [x]∼

def= {y | x ∼ y}. It follows [5] that

[x]∼ = [y]∼ ⇔ x ∼ y.

The quotient set S/∼ is defined as

S/∼ def= {[x]∼ | x ∈ S}.

This is the set of all equivalence classes modulo ∼ of elements in S.

4 Peter V. Homeier

3 Equivalence Relations and Equivalence Theorems

Before considering quotients, we examine equivalence relations, on which such
traditional quotients as those mentioned in the introduction have been based.

Let τ be any type. A binary relation R on τ can be represented in HOL as a
curried function of type τ → (τ → bool). We will take advantage of the curried
nature of R, where R x y = (R x) y.

An equivalence relation is a binary relation E satisfying

reflexivity: ∀x : τ. E x x
symmetry: ∀x y : τ. E x y ⇒ E y x
transitivity: ∀x y z : τ. E x y ∧ E y z ⇒ E x z

These three properties are encompassed in the equivalence property:

equivalence: EQUIV E
def= ∀x y : τ. E x y ⇔ (E x = E y)

A theorem of the form ` EQUIV E is called an equivalence theorem on type τ .
Given an equivalence theorem, we can obtain the reflexive, symmetric, and

transitive properties, or given those three, construct the corresponding equiva-
lence theorem, using the following Standard ML functions of our package.

equiv refl : thm -> thm
equiv sym : thm -> thm

equiv trans : thm -> thm
refl sym trans equiv : thm -> thm -> thm -> thm

3.1 Equivalence Extension Theorems

Given an equivalence relation E : τ → τ → bool on values of type τ , there is a
natural extension of E to values of lists of τ . This is expressed as LIST REL E ,
which forms an equivalence relation of type τ list→ τ list→ bool. Similarly,
equivalence relations on pairs, sums, and options may be formed from their
constituent types’ equivalence relations by the following operators.

Type Operator Type of operator

list LIST REL : (’a -> ’a -> bool) ->
’a list -> ’a list -> bool

pair ### : (’a -> ’a -> bool) -> (’b -> ’b -> bool) ->
’a # ’b -> ’a # ’b -> bool

sum +++ : (’a -> ’a -> bool) -> (’b -> ’b -> bool) ->
’a + ’b -> ’a + ’b -> bool

option OPTION REL : (’a -> ’a -> bool) ->
’a option -> ’a option -> bool

These operators are defined as indicated below.

Higher Order Quotients in Higher Order Logic 5

Definition 1. LIST REL R [] [] = true
LIST REL R (a::as) [] = false
LIST REL R [] (b::bs) = false
LIST REL R (a::as) (b::bs) = R a b ∧ LIST REL R as bs

Definition 2. (R1 ### R2) (a1, a2) (b1, b2) = R1 a1 b1 ∧ R2 a2 b2

Definition 3. (R1 +++ R2) (INL a1) (INL b1) = R1 a1 b1

(R1 +++ R2) (INL a1) (INR b2) = false
(R1 +++ R2) (INR a2) (INL b1) = false
(R1 +++ R2) (INR a2) (INR b2) = R2 a2 b2

Definition 4. OPTION REL R NONE NONE = true
OPTION REL R (SOME a) NONE = false
OPTION REL R NONE (SOME b) = false
OPTION REL R (SOME a) (SOME b) = R a b

They take arguments which are the equivalence relations for component sub-
types, and return an equivalence relation for the aggregate type.

Since the pair and sum relation operators have two arguments, they are infix,
whereas the list and option relation operators are unary, prefix operators. The
operator definitions may be needed to prove respectfulness (see §11.1, 11.3).

Given equivalence theorems for the constituent subtypes, the equivalence
theorems for the natural extensions to aggregate types (e.g., lists, pairs, sums,
and options) may be created by the following SML functions of our package.

list equiv : thm -> thm
pair equiv : thm -> thm -> thm
sum equiv : thm -> thm -> thm

option equiv : thm -> thm

identity equiv : hol type -> thm
make equiv : thm list -> hol type -> thm

identity equiv ty creates the trivial equivalence theorem for the given type
ty, using equality (=) as the equivalence relation.

make equiv equivs ty creates an equivalence theorem for the given type ty,
which may be a complex type expression with lists, pairs, etc. Here equivs is a
list of both equivalence theorems for the base types and equivalence extension
theorems for type operators (see section 3.1).

Equivalence extension theorems for type operators have the form:

` ∀E1 ... En.
(∀(x:α1) (y:α1). E1 x y ⇔ (E1 x = E1 y)) ⇒ ...
(∀(x:αn) (y:αn). En x y ⇔ (En x = En y)) ⇒
(∀(x:(α1, ..., αn)op) (y:(α1, ..., αn)op).

OP REL E1 ... En x y ⇔
(OP REL E1 ... En x = OP REL E1 ... En y))

6 Peter V. Homeier

Given the type operator (α1, ..., αn)op, OP REL should be an operator which
takes n arguments, which are the equivalence relations E1 through En on the
types α1 through αn, yielding an equivalence relation for the type (α1, ..., αn)op.

Using the above relation extension operators, the aggregate type operators
list, prod, sum, and option have the following equivalence extension theorems:

LIST EQUIV: ` ∀E. EQUIV E ⇒ EQUIV (LIST REL E)
PAIR EQUIV: ` ∀E1 E2. EQUIV E1 ⇒ EQUIV E2 ⇒ EQUIV (E1 ### E2)
SUM EQUIV: ` ∀E1 E2. EQUIV E1 ⇒ EQUIV E2 ⇒ EQUIV (E1 +++ E2)
OPTION EQUIV: ` ∀E. EQUIV E ⇒ EQUIV (OPTION REL E)

4 Partial Equivalence Relations and Quotient Theorems

In this section we introduce a new definition of the quotient relationship, based
on partial equivalence relations (PERs), related to but different from equiva-
lence relations. Every equivalence relation is a partial equivalence relation, but
not every partial equivalence relation is an equivalence relation. An equivalence
relation is reflexive, symmetric and transitive, while a partial equivalence relation
is symmetric and transitive, but not necessarily reflexive on all of its domain.

Why use partial equivalence relations with a weaker reflexivity condition?
The reason involves forming quotients of higher order types, that is, functions
whose domains or ranges involve types being lifted. Unlike lists and pairs, the
equivalence relations for the domain and range do not naturally extend to a
useful equivalence relation for functions from the domain to the range.

The reason is that not all functions which are elements of the function type
are respectful of the associated equivalence relations, as described in section
11.1. For example, given an equivalence relation E : τ → τ → bool, the set of
functions from τ to τ may contain a function f? where for some x and y which
are equivalent (E x y), the results of f? are not equivalent (¬(E (f? x) (f? y))).
Such disrespectful functions cannot be worked with; they do not correspond to
any function at the abstract quotient level. Suppose instead that f? did lift.
Let dφe be the lifted version of φ. As df?e is the lifted version of f?, it should
act just like f? on its argument, except that it should not consider the lower
level details that E disregards. Thus ∀u. df?edue = df? ue. Then certainly
∀u v. E u v ⇔ (due = dve), and because E x y, we must have dxe = dye. Applying
df?e to both sides, df?edxe = df?edye. But this implies df? xe = df? ye, which
means that E (f? x) (f? y), which we have said is false, a contradiction. Therefore
such disrespectful functions cannot be lifted, and we must exclude them. Using
partial equivalence relations accomplishes this exclusion.

First, we say an element r respects R if and only if R r r.

Definition 5 (Quotient). A relation R with abstraction function abs and rep-
resentation function rep (between the representation, lower type τ and the ab-
stract, quotient type ξ) is a quotient (notated as 〈R,abs,rep〉) if and only if

Higher Order Quotients in Higher Order Logic 7

(1) ∀a : ξ. abs (rep a) = a
(2) ∀a : ξ. R (rep a) (rep a)
(3) ∀r, s : τ. R r s ⇔ R r r ∧ R s s ∧ (abs r = abs s)

Property 1 states that rep is a right inverse of abs.
Property 2 states that the range of rep respects R.
Property 3 states that two elements of τ are related by R if and only if each

element respects R and their abstractions are equal.
These three properties (1-3) describe the way the partial equivalence relation

R works together with abs and rep to establish the correct quotient relationship
between the lower type τ and the quotient type ξ. The precise definition of this
quotient relationship is a central contribution of this work. This relationship is
defined in the HOL logic as a new predicate:

QUOTIENT (R:’a -> ’a -> bool) (abs:’a -> ’b) (rep:’b -> ’a) ⇔
(∀a. abs (rep a) = a) ∧
(∀a. R (rep a) (rep a)) ∧
(∀r s. R r s ⇔ R r r ∧ R s s ∧ (abs r = abs s))

The relationship that R with abs and rep is a quotient is expressed in HOL as

` QUOTIENT R abs rep .

A theorem of this form is called a quotient theorem. The identity is ` 〈$=, I, I〉.
These three properties support the inference of a quotient theorem for a

function type, given quotient theorems for the domain and the range. This key
inference is central and necessary to enable higher order quotients.

5 Quotient Types

The user may specify a quotient of a type τ by a relation R (written τ/R) by
giving either a theorem that the relation is an equivalence relation, of the form

` ∀x y. R x y ⇔ (R x = R y) , (1)

or one that the relation is a nonempty partial equivalence relation, of the form

` (∃x. R x x) ∧ (∀x y. R x y ⇔ R x x ∧R y y ∧ (R x = R y)) . (2)

Alternatively, these theorems may be equivalently expressed as ` EQUIV R or
` PARTIAL EQUIV R, respectively, defined in EQUIV def and PARTIAL EQUIV def.
In this section we will develop the second, more difficult case (2). The first follows
immediately. In the following, x, y, r, s : τ , c : τ → bool, and a : τ/R.

New types may be defined in HOL using the function new type definition
[7, sections 18.2.2.3-5]. This function requires us to choose a representing type,
and a predicate on that type denoting a subset that is nonempty.

8 Peter V. Homeier

Definition 6. We define the new quotient type τ/R as isomorphic to the subset
of the representing type τ → bool by the predicate P : (τ → bool) → bool,
where P c

def= ∃x. R x x ∧ (c = R x).

P is nonempty because P (R x) for the x : τ such that R x x by (2). Let ξ = τ/R.
The HOL tool define new type bijections [7] automatically defines a function
absc : (τ → bool) → ξ and its right inverse repc : ξ → (τ → bool) satisfying

Definition 7. (a) ∀a : ξ. absc (repc a) = a
(b) ∀c : τ → bool. P c ⇔ repc (absc c) = c

PER classes are subsets of τ (of type τ → bool) which satisfy P . Then absc

and repc map between the quotient type ξ and PER classes (hence the “c”).

Lemma 8 (repc maps to PER classes). ∀a. P (repc a).

Proof: By Definition 7(a), absc (repc a) = a, so taking the repc of both sides,
repc (absc (repc a)) = repc a. By Definition 7(b), P (repc a). 2

Lemma 9. ∀r. R r r ⇒ (repc (absc (R r)) = R r).

Proof: Assume R r r; then P (R r). By Definition 7(b), the goal follows.

Lemma 10 (absc is one-to-one on PER classes).
∀r s. R r r ⇒ R s s ⇒ (absc (R r) = absc (R s) ⇔ R r = R s).

Proof: Assume R r r and R s s. The right-to-left implication of the biconditional
is trivial. Assume absc (R x) = absc (R y). Applying repc to both sides gives us
repc (absc (R x)) = repc (absc (R y)). Then by Lemma 9 twice, R x = R y. 2

The functions absc and repc map between PER classes of type τ → bool and
the quotient type ξ. Using these functions, we can define new functions abs and
rep between the original type τ and the quotient type ξ as follows.

Definition 11 (Quotient abstraction and representation functions).

abs : τ → ξ abs r
def= absc (R r)

rep : ξ → τ rep a
def= $@ (repc a) (= @r. repc a r)

The @ operator is a higher order version of Hilbert’s choice operator ε [7, 12].
It has type (α → bool) → α, and is usually used as a binder, where $@ P =
@x. P x. (The $ converts an operator to prefix syntax.) @ satisfies the HOL axiom
∀P x. P x ⇒ P ($@ P). Given any predicate P on a type, if any element of the
type satisfies the predicate, then $@ P returns an arbitrary element of that type
which satisfies P . If no element of the type satisfies P , then $@ P will return
simply some arbitrary, unknown element of the type. Such definitions have been
questioned by constructivist critics of the Axiom of Choice. An alternative design
for quotients avoiding the Axiom of Choice is described in section 7.

Higher Order Quotients in Higher Order Logic 9

Lemma 12. ∀r. R r r ⇒ (R ($@ (R r)) = R r).

Proof: The axiom for the @ operator is ∀P x. P x ⇒ P ($@ P). Taking P = R r
and x = r, we have R r r ⇒ R r ($@ R r). Assuming R r r, R r ($@ (R r))
follows. Then by (2), R r ($@ (R r)) implies the equality R r = R ($@ (R r)). 2

Theorem 13. ∀a. abs (rep a) = a

Proof: By Lemma 8 and the definition of P , for each a there exists an r such
that R r r and repc a = R r. Then by Lemma 12, R ($@ (R r)) = R r. Now
by Definition 11, abs (rep a) = absc (R ($@ (repc a))), which simplifies by the
above and Definition 7(a) to a. 2

Theorem 14. ∀a. R (rep a) (rep a).

Proof: As before, for each a there exists an r such that R r r and repc a = R r.

R (rep a) (rep a) ⇔ R ($@ (repc a)) ($@ (repc a)) Definition 11
⇔ R ($@ (R r)) ($@ (R r)) selection of r
⇔ R r ($@ (R r)) Lemma 12
⇔ R ($@ (R r)) r symmetry of R
⇔ R r r ⇔ T Lemma 12, selection of r

2

Theorem 15. ∀r s. R r s ⇔ R r r ∧ R s s ∧ (abs r = abs s)

Proof: R r s ⇔ R r r ∧ R s s ∧ (R r = R s) (2)
⇔ R r r ∧ R s s ∧ (absc (R r) = absc (R s)) Lemma 10
⇔ R r r ∧ R s s ∧ (abs r = abs s) Definition 11

2

Theorem 16. 〈R, abs, rep〉.

Proof: By Theorems 13, 14, and 15, with Definition 5. 2

6 Aggregate and Higher Order Quotient Theorems

Traditional quotients that lift τ to a set of τ also lift lists of τ to sets of lists of
τ . These sets are isomorphic to lists, but they are not lists. In this design, when
τ is lifted to ξ, then we lift lists of τ to lists of ξ. We preserve the type operator
structure built on top of the types being lifted. Similarly, we want to preserve
polymorphic constants. Thus we need not create a new type for each lifted version
of lists, but simply reuse the existing list type operator, now applied to ξ. This
preserves the type structure and enables direct use of the polymorphic constants
of that type operator, such as HD for lists. In a theorem being lifted, we want
an occurrence of HD : τ list → τ to lift to an occurrence of HD : ξ list → ξ. If
such a constant is not lifted to itself, the lifted version of the theorem will not

10 Peter V. Homeier

look like the original. Hence Definition 5 was intentionally designed to preserve
the vital type operator structure.

At times one wishes to not only lift a number of types across a quotient
operation, but also lift by extension a number of other types which are dependent
on the first set. For example, if we lift the type of terms of the lambda calculus
across alpha-equivalence, then we would also expect that the types of lists or
pairs involving the lifted terms would follow naturally.

In fact these do follow; one merely has to apply the type operator, say list,
to the lifted type term to produce the type of lists of lifted terms (term)list.
All of the theorems about lists in general now apply to lists of lifted terms, and
all of the theorems about lifted terms apply to the elements of these lifted lists.

In the process of lifting constants and theorems, quotient theorems are needed
for each argument and result type of each constant being lifted. For aggregate and
higher order types, the tool automatically proves any needed quotient theorems
from the available quotient theorems for the constituent subtypes. To accomplish
this, the tool uses quotient extension theorems (section 6.2). These are provided
preproven for some standard type operators. For others, new quotient extension
theorems may be manually proven and then included to extend the tool’s power.

6.1 Aggregate and Higher Order PERs and Map Operators

Some aggregate equivalence relation operators have been already described in
section 3, and these can equally be used to build aggregate partial equivalence
relations. In addition, for function types, the following is added:

Type Operator Type of operator

fun ===> : (’a -> ’a -> bool) -> (’b -> ’b -> bool) ->
(’a -> ’b) -> (’a -> ’b) -> bool

Definition 17. (R1 ===> R2) f g ⇔ ∀x y. R1 x y ⇒ R2 (f x) (g y).

Note R1 ===> R2 is not in general an equivalence relation (it is not reflexive).
It is reflexive at a function f , (R1 ===> R2) f f , if and only if f is respectful.

To ease the creation of quotient theorems, we provide several Standard ML
functions that automatically prove the necessary quotient theorems for lists,
pairs, sums, options, and function types, given the quotient theorems for the
subtypes which are the arguments to these type operators.

list quotient : thm -> thm
pair quotient : thm -> thm -> thm
sum quotient : thm -> thm -> thm

option quotient : thm -> thm
fun quotient : thm -> thm -> thm

identity quotient : hol type -> thm
make quotient : thm list -> hol type -> thm

Higher Order Quotients in Higher Order Logic 11

These functions prove and return quotient theorems, of the form

` QUOTIENT R abs rep

The first five functions all take as arguments quotient theorems for the con-
stituent subtypes that are arguments to the aggregate type operator. The last
two take an hol type as an argument, which is the type of elements compared
by the partial equivalence relation of the desired quotient theorem. None of these
create any new types, they simply apply existing type operators.

Sometimes one desires to perform the quotient operation on some arguments
of the type operator but not on others. In these cases, to indicate an argument
which is not to be changed, supply in that place a quotient theorem created
by the identity quotient function, which takes any HOL type and returns the
identity quotient theorem for that type, using equality and the identity function,

` QUOTIENT ($= : ty -> ty -> bool) (I: ty -> ty) (I: ty -> ty)

In case one would need to create a quotient theorem for a complex type, the
make quotient function takes a list of quotient theorems and an HOL type, and
returns a quotient theorem for that type, automatically constructing it recur-
sively according to the structure of the type and the supplied quotient theorems.

The quotient theorems created for aggregate types involve not only aggregate
partial equivalence relations, but also aggregate abstraction and representation
functions. These are constructed from the component abstraction and represen-
tation functions using the following “map” operators.

Type Operator Type of operator, examples of abs and rep fns

list MAP : (’a -> ’b) -> ’a list -> ’b list
examples: (MAP abs) , (MAP rep)

pair ## : (’a -> ’b) -> (’c -> ’d) ->
’a # ’c -> ’b # ’d

examples: (abs1 ## abs2) , (rep1 ## rep2)

sum ++ : (’a -> ’b) -> (’c -> ’d) ->
’a + ’c -> ’b + ’d

examples: (abs1 ++ abs2) , (rep1 ++ rep2)

option OPTION MAP : (’a -> ’b) -> ’a option -> ’b option
examples: (OPTION MAP abs) , (OPTION MAP rep)

fun --> : (’a -> ’b) -> (’c -> ’d) ->
(’b -> ’c) -> ’a -> ’d

examples: (rep1 --> abs2) , (abs1 --> rep2)

The definitions of the above operators are indicated below. They are created
either in the quotient package or in standard HOL.

12 Peter V. Homeier

Definition 18. MAP f [] = []
MAP f (a::as) = (f a) :: (MAP f as)

Definition 19. (f1 ## f2) (a1, a2) = (f1 a1, f2 a2)

Definition 20. (f1 ++ f2) (INL a1) = INL (f1 a1)
(f1 ++ f2) (INR a2) = INR (f2 a2)

Definition 21. OPTION MAP f NONE = NONE
OPTION MAP f (SOME a) = SOME (f a)

The function map operator definition is of special interest:

Definition 22. (f --> g) h x
def= g (h (f x)).

MAP and OPTION MAP are prefix operators, and the others are infix. The identity
quotient map operator is the identity operator I : α → α.

These map operators are inserted automatically in the quotient theorems
created for extended types. Each resulting quotient theorem establishes that
the extended type’s partial equivalence relation, abstraction function, and rep-
resentation function properly relate together to form a quotient of the extended
type.

6.2 Quotient Extension Theorems

Here are the quotient extension theorems for the list, prod, sum, option, and,
most significantly, fun type operators:

LIST QUOTIENT:
` ∀R abs rep. 〈R, abs, rep〉 ⇒ 〈LIST REL R, MAP abs, MAP rep〉

PAIR QUOTIENT:
` ∀R1 abs1 rep1. 〈R1, abs1, rep1〉 ⇒ ∀R2 abs2 rep2. 〈R2, abs2, rep2〉 ⇒

〈R1 ### R2, abs1 ## abs2, rep1 ## rep2〉

SUM QUOTIENT:
` ∀R1 abs1 rep1. 〈R1, abs1, rep1〉 ⇒ ∀R2 abs2 rep2. 〈R2, abs2, rep2〉 ⇒

〈R1 +++ R2, abs1 ++ abs2, rep1 ++ rep2〉

OPTION QUOTIENT:
` ∀R abs rep. 〈R, abs, rep〉 ⇒

〈OPTION REL R, OPTION MAP abs, OPTION MAP rep〉

FUN QUOTIENT:
` ∀R1 abs1 rep1. 〈R1, abs1, rep1〉 ⇒ ∀R2 abs2 rep2. 〈R2, abs2, rep2〉 ⇒

〈R1 ===> R2, rep1 --> abs2, abs1 --> rep2〉

Higher Order Quotients in Higher Order Logic 13

This last theorem is of central and critical importance to forming higher
order quotients. We present here its proof in detail.

Theorem 23 (Function quotients). If relations R1 and R2 with abstraction
functions abs1 and abs2 and representation functions rep1 and rep2, respectively,
are quotients, then R1 ===> R2 with abstraction function rep1 --> abs2 and
representation function abs1 --> rep2 is a quotient.

Proof: We need to prove the three properties of Definition 5:
Property 1. Prove for all a, (rep1 --> abs2) ((abs1 --> rep2) a) = a.

Proof: The equality here is between functions, and by extension, true if for all
values x in a’s domain, (rep1 --> abs2) ((abs1 --> rep2) a) x = a x.
By the definition of -->, this is abs2 ((abs1 --> rep2) a (rep1 x)) = a x, and
then abs2 (rep2 (a (abs1 (rep1 x)))) = a x. By Property 1 of 〈R1,abs1,rep1〉,
abs1 (rep1 x) = x, and by Property 1 of 〈R2,abs2,rep2〉, ∀b. abs2 (rep2 b) = b,
so this reduces to a x = a x, true.

Property 2. Prove (R1 ===> R2) ((abs1 --> rep2) a) ((abs1 --> rep2) a).
Proof: By the definition of ===>, this is
∀x, y. R1 x y ⇒ R2 ((abs1 --> rep2) a x) ((abs1 --> rep2) a y). Assume R1 x y,
and show R2 ((abs1 --> rep2) a x) ((abs1 --> rep2) a y). By the definition of
-->, this is R2 (rep2 (a (abs1 x))) (rep2 (a (abs1 y))). Now since R1 x y, by
Property 3 of 〈R1,abs1,rep1〉, abs1 x = abs1 y. Substituting this into our goal,
we must prove R2 (rep2 (a (abs1 y))) (rep2 (a (abs1 y))). But this is an instance
of Property 2 of 〈R2,abs2,rep2〉, and so the goal is proven.

Property 3. Prove (R1 ===> R2) r s ⇔
(R1 ===> R2) r r ∧ (R1 ===> R2) s s ∧ ((rep1 --> abs2) r = (rep1 --> abs2) s).
The last conjunct on the right side is equality between functions, so by extension
this is (R1 ===> R2) r s ⇔ (R1 ===> R2) r r ∧ (R1 ===> R2) s s ∧

(∀x. (rep1 --> abs2) r x = (rep1 --> abs2) s x).
By the definitions of ===> and -->, this is (1) ⇔ (2) ∧ (3) ∧ (4), where

(1) (∀x y. R1 x y ⇒ R2 (r x) (s y))
(2) (∀x y. R1 x y ⇒ R2 (r x) (r y))
(3) (∀x y. R1 x y ⇒ R2 (s x) (s y))
(4) (∀x. (abs2 (r (rep1 x)) = abs2 (s (rep1 x))).

We prove (1) ⇔ (2) ∧ (3) ∧ (4) as a biconditional with two goals.
Goal 1. (⇒) Assume (1). Then we must prove (2), (3), and (4).
Subgoal 1.1. (Proof of (2)) Assume R1 x y. We must prove R2 (r x) (r y).

From R1 x y and Property 3 of 〈R1,abs1,rep1〉, we also have R1 x x and R1 y
y. From (1) and R1 x y, we have R2 (r x) (s y). From (1) and R1 y y, we have
R2 (r y) (s y). Then by symmetry and transitivity of R2, the goal is proven.

Subgoal 1.2. (Proof of (3)) Similar to the previous subgoal.
Subgoal 1.3. (Proof of (4)) R1 (rep1 x) (rep1 x) follows from Property 2 of

〈R1,abs1,rep1〉. From (1), we have R2 (r (rep1 x)) (s (rep1 x)). Then the goal
follows from this and the third conjunct of Property 3 of 〈R2,abs2,rep2〉.

14 Peter V. Homeier

Goal 2. (⇐) Assume (2), (3), and (4). We must prove (1). Assume R1 x y.
Then we must prove R2 (r x) (s y). From R1 x y and Property 3 of 〈R1,abs1,rep1〉,
we also have R1 x x, R1 y y, and abs1 x = abs1 y. By Property 3 of 〈R2,abs2,rep2〉,
the goal is R2 (r x) (r x) ∧ R2 (s y) (s y) ∧ abs2 (r x) = abs2 (s y). This breaks
into three subgoals.

Subgoal 2.1. Prove R2 (r x) (r x). This follows from R1 x x and (2).
Subgoal 2.2. Prove R2 (s y) (s y). This follows from R1 y y and (3).
Subgoal 2.3. Prove abs2 (r x) = abs2 (s y).

Lemma. If 〈R,abs,rep〉 and R z z, then R (rep (abs z)) z.
R (rep (abs z)) (rep (abs z)), by Property 2 of 〈R,abs,rep〉.
From the hypothesis, R z z. From Property 1 of 〈R,abs,rep〉,
abs (rep (abs z)) = abs z. From these three statements and
Property 3 of 〈R,abs,rep〉, we have R (rep (abs z)) z. 2

By the lemma and R1 x x, we have R1 (rep1 (abs1 x)) x. Similarly, by
the lemma and R1 y y, we have R1 (rep1 (abs1 y)) y. Then by (2), we have
R2 (r (rep1 (abs1 x))) (r x), and by (3), R2 (s (rep1 (abs1 y))) (s y). From these
and Property 3 of 〈R2,abs2,rep2〉,

abs2 (r (rep1 (abs1 x))) = abs2 (r x) and
abs2 (s (rep1 (abs1 y))) = abs2 (s y).

But by abs1 x = abs1 y and (4), the left hand sides of these two equations are
equal, so their right hand sides must be also, abs2 (r x) = abs2 (s y), which
proves the goal. 2

7 The Axiom of Choice

Gregory Moore wrote that “Rarely have the practitioners of mathematics, a dis-
cipline known for the certainty of its conclusions, differed so vehemently over one
of its central premises as they have done over the Axiom of Choice. Yet without
the Axiom, mathematics today would be quite different” [13]. Today, this discus-
sion continues. Some theorem provers are based on classical logic, and others on
a constructivist logic. In higher order logic, the Axiom of Choice is represented
by Hilbert’s ε-operator [12, §4.4], also called the indefinite description opera-
tor. Paulson’s lucid recent work [17] exhibits an approach to quotients which
avoids the use of Hilbert’s ε-operator, by instead using the definite description
operator ι [14, §5.10]. These two operators may be axiomatized as follows:

∀P x. P x ⇒ P (ε P) or ∀P. (∃x. P x) ⇒ P (ε P)
∀P x. P x ⇒ (∀y. P y ⇒ x = y) ⇒ P (ι P) or ∀P. (∃!x. P x) ⇒ P (ι P)

The ι-operator yields the single element of a singleton set, ι{z} = z, but its result
on non-singleton sets is indeterminate. By contrast, the ε-operator chooses some
indeterminate element of any non-empty set, even if nondenumerable. The ι-
operator is weaker than the ε-operator, and less objectionable to constructivists.

Higher Order Quotients in Higher Order Logic 15

Thus it is of interest to determine if a design for higher order quotients may
be formulated using only ι, not ε. Inspired by Paulson, we investigate this by
forming an alternative design, eliminating the representation functions.

Definition 24 (Constructive quotient, replacing Definition 5).
A relation R with abstraction function abs (between the representation type τ
and the abstraction type ξ) is a quotient (notated as 〈R, abs〉) if and only if

(1) ∀a : ξ. ∃r : τ. R r r ∧ (abs r = a)
(2) ∀r s : τ. R r s ⇔ R r r ∧ R s s ∧ (abs r = abs s)

Property 1 states that for every abstract element a of ξ there exists a repre-
sentative in τ which respects R and whose abstraction is a.

Property 2 states that two elements of τ are related by R if and only if each
element respects R and their abstractions are equal.

The quotients for new quotient types based on (partial) equivalence relations
may now be constructed by a modified version of §5, where the representation
function rep is omitted from Definition 11, so there is no use of the Hilbert
ε-operator. Property 1 follows from Lemma 8. The identity quotient is 〈$=, I〉.
From Definition 24 also follow analogs of the quotient extension theorems, e.g.,

∀R abs. 〈R, abs〉 ⇒ 〈LIST REL R, MAP abs〉

for lists and similarly for pairs, sums and option types. Functions are lifted by
the abstraction operation for functions, which requires two new definitions:

(abs ⇓ R) a r
def= R r r ∧ abs r = a

(reps +-> abs) f x
def= ι (IMAGE abs (IMAGE f (reps x)))

Note that for the identity quotient, (I ⇓ $=) = $=.
The critical quotient extension theorem for functions has also been proven:

Theorem 25 (Function quotient extension).

〈R1, abs1〉 ⇒ 〈R2, abs2〉 ⇒ 〈R1 ===> R2, (abs1 ⇓ R1) +-> abs2〉

Unfortunately, the proof requires using the Axiom of Choice. In fact, this theorem
implies the Axiom of Choice, in that it implies the existence of an operator which
obeys the axiom of the Hilbert ε-operator, as seen by the following development.

Theorem 26 (Partial abstraction quotients). If f is any function from
type α to β, and Q is any predicate on α, such that ∀y:β. ∃x:α. Q x∧ (f x = y),
then the partial equivalence relation R = λr s. Q r ∧ Q s ∧ (f r = f s) with
abstraction function f is a quotient (〈R, f〉).

Proof: Follows easily from substituting R in Definition 24 and simplifying. 2

Theorem 27 (Partial inverses exist). If f is any function from type α to β,
and Q is any predicate on α, such that ∀y:β. ∃x:α. Q x ∧ (f x = y), then there
exists a function g such that f ◦ g = I and ∀y. Q (g y). [William Schneeburger]

16 Peter V. Homeier

Proof: Assuming the function quotient extension theorem 25, we apply it to two
quotient theorems; first, the identity quotient 〈$=, I〉 for type β, and second, the
partial abstraction quotient 〈R, f〉 from Theorem 26. This yields the quotient
〈$= ===> R, $= +-> f〉, since (I ⇓ $=) = $=. By Property 1 of Definition 24,
∀a. ∃r. ($= ===> R) r r ∧ (($= +-> f)r = a). Specializing a = I : β → β,
and renaming r as g, we obtain ∃g. ($= ===> R) g g ∧ ($= +-> f)g = I). By the
definition of ===>, ($= ===> R)g g is ∀x y. x = y ⇒ R (g x) (g y), which simplifies
by the definition of R to ∀y. Q (g y). The right conjunct is ($= +-> f)g = I, which
by the definition of +-> is (λx. ι (IMAGE f (IMAGE g ($= x)))) = I. But $= x is the
singleton {x}, so since IMAGE h {z} = {h z}, ι{z} = z, and (λx. f (g x)) = f ◦g,
this simplifies to f ◦ g = I, and the conclusion follows. 2

Theorem 28 (Existence of Hilbert choice). There exists an operator c :
(α → bool) → α which obeys the Hilbert choice axiom, ∀P x. P x ⇒ P (c P).

Proof: In Theorem 27, let Q = (λ(P :α → bool, a:α). (∃x. P x) ⇒ P a) and
f = FST. Then its antecedent is ∀P ′.∃(P, a). ((∃x.P x) ⇒ P a)∧(FST(P, a) = P ′).
For any P ′, take P = P ′, and if ∃x. P x, then take a to be such an x. Otherwise
take a to be any value of α. In either case the antecedent is true. Therefore by
Theorem 27 there exists a function g such that FST ◦ g = I and ∀P. Q (g P),
which is ∀P. (∃x. (FST (g P)) x) ⇒ (FST (g P)) (SND (g P)). The operator c is
taken as SND ◦ g, and since FST (g P) = P , the Hilbert choice axiom follows. 2

The significance of Theorem 28 is that even if we are able to avoid all use
of the Axiom of Choice up to this point, it is not possible to prove the function
quotient extension theorem 25 without it. This section’s design may be used to
build a theory of quotients which is constructive and which extends naturally to
quotients of lists, pairs, sums, and options. However, it is not possible to extend
it to higher order quotients while remaining constructive. Therefore the designs
presented in this paper cannot be used to create higher order quotients in strictly
constructive theorem provers. Alternatively, in theorem provers like HOL which
admit the Hilbert choice operator, if higher order quotients are desired, there is
no advantage in avoiding using the Axiom of Choice through using the design
of this section. The main design presented earlier is much simpler to automate.

Higher Order Quotients in Higher Order Logic 17

8 Lifting Types, Constants, and Theorems

The definition of new types corresponding to the quotients of existing types by
equivalence relations is called “lifting” the types from a lower, more representa-
tional level to a higher, more abstract level. Both levels describe similar objects,
but some details which are apparent at the lower level are no longer visible at
the higher level. The logic is simplified.

However, simply forming a new type does not complete the quotient opera-
tion. Rather, one wishes to recreate the pre-existing logical environment at the
new, higher, and more abstract level. This includes not only the new types, but
also new versions of the constants that form and manipulate values of those
types, and also new versions of the theorems that describe properties of those
constants. All of these form a logical layer, above which all the lower represen-
tational details may be safely and forever forgotten.

This can be done in a single call of the main tool of this package.

define_quotient_types :
{types: {name: string,

equiv: thm} list,
defs: {def_name: string,

fname: string,
func: Term.term,
fixity: Parse.fixity} list,

tyop_equivs : thm list,
tyop_quotients : thm list,
tyop_simps : thm list,
respects : thm list,
poly_preserves : thm list,
poly_respects : thm list,
old_thms : thm list} ->

thm list

define quotient types takes a single argument which is a record with the
following fields.

types is a list of records, each of which contains two fields: name, which is
the name of a new quotient type to be created, and equiv, which is either 1) a
theorem that a binary relation R is an equivalence relation (see section 3), or 2)
a theorem that R is a nonempty partial equivalence relation, of the form

` (∃x. R x x) ∧ (∀x y. R x y ⇔ R x x ∧R y y ∧ (R x = R y))

or using the abbreviated forms ` EQUIV R or ` PARTIAL EQUIV R, respectively.
defs is a list of records specifying the constants to be lifted. Each record

contains the following four fields: func is an HOL term, which must be a single
constant, which is the constant to be lifted. fname is the name of the new
constant being defined as the lifted version of func. fixity is the HOL fixity
of the new constant being created, as specified in the HOL structure Parse.

18 Peter V. Homeier

def name is the name under which the new constant definition is to be stored in
the current theory. The process of defining lifted constants is described in §10.

tyop equivs is a list of equivalence extension theorems for type operators
(see §3.1). These are used for bringing into regular form theorems on new type
operators, so that they can be lifted (see sections 12 and 13).

tyop quotients is a list of quotient extension theorems for type operators (see
§6.2). These are used for lifting both constants and theorems.

tyop simps is a list of theorems used to simplify type operator relations and
map functions for identity quotients, e.g., for pairs, ` ($= ### $=) = $= and
` (I ## I) = I, or for lists, ` LIST REL $= = $= and ` MAP I = I.

The rest of the arguments refer to the general process of lifting theorems over
the quotients being defined, as described in section 11.

respects is a list of theorems about the respectfulness of the constants being
lifted. These theorems are described in section 11.1.

poly preserves is a list of theorems about the preservation of polymorphic
constants in the HOL logic across a quotient operation. In other words, they
state that any quotient operation preserves these constants as a homomorphism.
These theorems are described in section 11.2.

poly respects is a list of theorems showing the respectfulness of the polymor-
phic constants mentioned in poly preserves. These are described in §11.3.

old thms is a list of theorems concerning the lower, representative types and
contants, which are to be automatically lifted and proved at the higher, more
abstract quotient level. These theorems are described in section 11.4.

define quotient types returns a list of theorems, which are the lifted ver-
sions of the old thms.

A similar function, define quotient types rule, takes a single argument
which is a record with the same fields as above except for old thms, and returns
an SML function of type thm -> thm. This result, typically called LIFT RULE, is
then used to lift the old theorems individually, one at a time.

In addition to these, two related functions, define quotient full types
and define quotient full types rule, are provided that automatically in-
clude the standard pre-proven quotient, equivalence, and simplification theorems
relating to the list, pair, sum, option, and function type operators, along with all
the pre-proven polymorphic respectfulness and preservation theorems for many
standard polymorphic operators of those theories in HOL. Other type operators
and/or polymorphic operators may be supported by including their theorems in
the appropriate input fields, which are named the same as before.

The function define quotient types full rule can be defined in terms of
define quotient types rule as

fun define_quotient_types_full_rule
{types, defs, tyop_equivs, tyop_quotients, tyop_simps,
respects, poly_preserves, poly_respects} =

let
val tyop_equivs = tyop_equivs @

[LIST_EQUIV, PAIR_EQUIV, SUM_EQUIV, OPTION_EQUIV]

Higher Order Quotients in Higher Order Logic 19

val tyop_quotients = tyop_quotients @
[LIST_QUOTIENT, PAIR_QUOTIENT,
SUM_QUOTIENT, OPTION_QUOTIENT, FUN_QUOTIENT]

val tyop_simps = tyop_simps @
[LIST_MAP_I, LIST_REL_EQ, PAIR_MAP_I, PAIR_REL_EQ,
SUM_MAP_I, SUM_REL_EQ, OPTION_MAP_I, OPTION_REL_EQ,
FUN_MAP_I, FUN_REL_EQ]

val poly_preserves = poly_preserves @
[CONS_PRS, NIL_PRS, MAP_PRS, LENGTH_PRS, APPEND_PRS,
FLAT_PRS, REVERSE_PRS, FILTER_PRS, NULL_PRS,
SOME_EL_PRS, ALL_EL_PRS, FOLDL_PRS, FOLDR_PRS,
FST_PRS, SND_PRS, COMMA_PRS, CURRY_PRS,
UNCURRY_PRS, PAIR_MAP_PRS,
INL_PRS, INR_PRS, ISL_PRS, ISR_PRS, SUM_MAP_PRS,
NONE_PRS, SOME_PRS, IS_SOME_PRS, IS_NONE_PRS,
OPTION_MAP_PRS,
FORALL_PRS, EXISTS_PRS,
EXISTS_UNIQUE_PRS, ABSTRACT_PRS,
COND_PRS, LET_PRS,
I_PRS, K_PRS, o_PRS, C_PRS, W_PRS]

val poly_respects = poly_respects @
[CONS_RSP, NIL_RSP, MAP_RSP, LENGTH_RSP, APPEND_RSP,
FLAT_RSP, REVERSE_RSP, FILTER_RSP, NULL_RSP,
SOME_EL_RSP, ALL_EL_RSP, FOLDL_RSP, FOLDR_RSP,
FST_RSP, SND_RSP, COMMA_RSP, CURRY_RSP,
UNCURRY_RSP, PAIR_MAP_RSP,
INL_RSP, INR_RSP, ISL_RSP, ISR_RSP, SUM_MAP_RSP,
NONE_RSP, SOME_RSP, IS_SOME_RSP, IS_NONE_RSP,
OPTION_MAP_RSP,
RES_FORALL_RSP, RES_EXISTS_RSP,
RES_EXISTS_EQUIV_RSP, RES_ABSTRACT_RSP,
COND_RSP, LET_RSP,
I_RSP, K_RSP, o_RSP, C_RSP, W_RSP]

in
define_quotient_types_rule

{types=types,
defs=defs,
tyop_equivs=tyop_equivs,
tyop_quotients=tyop_quotients,
tyop_simps=tyop_simps,
respects=respects,
poly_preserves=poly_preserves,
poly_respects=poly_respects}

end;

20 Peter V. Homeier

Furthermore, two more related functions, define quotient types std and
define quotient types std rule, are provided. These are the same as the
“full” functions above, but without the input record fields for tyop equivs,
tyop quotients, tyop simps, poly preserves, or poly respects. The “std”
functions may be the easiest to use, providing much of the power of higher order
quotients without the need for the user to worry about choosing theorems to
include. For many applications the “std” functions will be all that is needed.

Similar to the above, the define quotient types std function is defined in
terms of define quotient types full as

fun define_quotient_types_std {types, defs, respects, old_thms} =
define_quotient_types_full

{types=types, defs=defs,
tyop_equivs=[], tyop_quotients=[],
tyop_simps=[],
respects=respects,
poly_preserves=[], poly_respects=[],
old_thms=old_thms};

For backwards compatibility with John Harrison’s excellent quotients pack-
age [9] (which provided much inspiration), the following function is also provided:

define_equivalence_type :
{name: string,
equiv: thm,
defs: {def_name: string,

fname: string,
func: Term.term,
fixity: Parse.fixity} list,

welldefs : thm list,
old_thms : thm list} ->

thm list

This function is defined in terms of define quotient types as

fun define_equivalence_type {name,equiv,defs,welldefs,old_thms} =
define_quotient_types
{types=[{name=name, equiv=equiv}], defs=defs, tyop_equivs=[],
tyop_quotients=[FUN_QUOTIENT],
tyop_simps=[FUN_REL_EQ,FUN_MAP_I], respects=welldefs,
poly_preserves=[FORALL_PRS,EXISTS_PRS],
poly_respects=[RES_FORALL_RSP,RES_EXISTS_RSP],
old_thms=old_thms};

9 New Quotient Type Definitions

In this section we describe how the function define quotient types creates
new quotient types. It automates the reasoning described in section 5, creating

Higher Order Quotients in Higher Order Logic 21

the quotient type as a new type in the HOL logic. It also defines the mapping
functions between the types, forming a quotient as described in theorem 16.

All definitions are accomplished as definitional extensions of HOL, and thus
preserve HOL’s consistency.

Before invoking define quotient types, the user should define a relation
on the original type τ , and prove that it is either 1) an equivalence relation on
the original type τ , as described in section 3, as a theorem of the form:

R EQUIV ` (∀x y. R x y ⇔ (R x = R y))

or 2) that the relation is a nonempty partial equivalence relation, of the form

R EQUIV ` (∃x. R x x) ∧ (∀x y. R x y ⇔ R x x ∧R y y ∧ (R x = R y)).

Equivalently, R EQUIV may be of the form ` EQUIV R or ` PARTIAL EQUIV R,
respectively. These abbreviations are defined in the theorems EQUIV def and
PARTIAL EQUIV def. Evaluating define quotient types with the argument
types containing the record {name="tyname", equiv=R EQUIV} automatically
declares a new type tyname in the HOL logic as the quotient type τ/R, which
we will refer to from here on as ξ, and declares two new constants abs : τ → ξ
with name “tyname ABS” and rep : ξ → τ with name “tyname REP”, such that
the relation R with abs and rep is a quotient, as described in Definition 5 of
section 4. The define quotient types tool proves the quotient theorem

` QUOTIENT R abs rep

according to the development of Section 5, and stores it in the current theory
under the automatically-generated name tyname QUOTIENT.

10 Lifting Definitions of Constants

The previous section (§9) dealt with lifting types across a quotient operation.
This section deals with lifting constants, including functions, whose types involve
the lifted types.

Evaluating define quotient types with the argument field defs containing
the record

{ def name = "defname",
fname = "fname",
func = function,
fixity = fixity }

automatically declares a new constant fname as a lifted version of the existing
constant function. Here function is an HOL term which is a single existing con-
stant of the HOL logic. The new constant fname is given the fixity specified
as fixity; this is typically Prefix, but might be, e.g., Infix(NONASSOC,150), or
some other fixity as supported by the structure Parse. The definition of the new
constant is stored in the current theory under the name defname.

22 Peter V. Homeier

The theorem which is produced as the definition of the new constant has the
same form as the preservation theorems of section 11.2, but without antecedents.
After the quotient operation, the definition theorem will not usually be of further
value, as the lifted theorems will be the basis for all further proof efforts.

Here are the values related to fixity from the structure Parse:

LEFT : associativity
RIGHT : associativity
NONASSOC : associativity

Infixl : int -> fixity
Infixr : int -> fixity
Infix : associativity * int -> fixity
TruePrefix : int -> fixity
Closefix : fixity
Suffix : int -> fixity
fixity : string -> fixity

11 Lifting Theorems of Properties

Previously we have seen how to lift types, and how to lift constants on those
types. This section describes how to lift general theorems on those constants,
to restate them in terms of the lifted versions of the constants and prove them
correct, given the existing theorems relating the lower versions of the constants.

This turns out to be a substantially more complex process than those pre-
viously described for lifting types and functions. Because of its difficulty, the
define quotient types tool automates the process completely, and greatly
eases the entire task of forming quotients. In order for the tool to work effectively
and exert its full power, several ingredients need to be provided by the user in
the form of lists of theorems that describe key properties of the type operators
and constants used in the theorem to be lifted. These kinds of theorems will be
described in detail in the subsections that follow. First we review the arguments
of define quotient types for lifting theorems.

define_quotient_types :
{types: {name: string, equiv: thm} list,
defs: {def_name: string, fname: string,

func: Term.term, fixity: Parse.fixity} list,
tyop_equivs : thm list,
tyop_quotients : thm list,
tyop_simps : thm list,
respects : thm list,
poly_preserves : thm list,
poly_respects : thm list,
old_thms : thm list} ->

thm list

Higher Order Quotients in Higher Order Logic 23

The last four fields of the argument to define quotient types are lists of theo-
rems. The last field (old thms) is the list of theorems to be lifted, and the result
produced by the tool is the list of the lifted versions of those theorems. The
meanings of the other three fields (respects, poly preserves, poly respects)
are described in the following subsections.

11.1 Respectfulness theorems: respects

respects is a list of theorems demonstrating the respectfulness of all constants
used in old thms (except polymorphic operators). These state that for each such
constant, considered as a function, the equivalence class of the result yielded de-
pends only on the equivalence classes of the inputs, not on any input’s particular
value within the class.

Not all functions defined at the lower level respect the equivalence relations
involved in the lifting process. Theorems that mention such disrespectful func-
tions cannot in general be lifted. The respectfulness of each function involved
must be demonstrated through a theorem of the general form

` ∀(x1:γ1) (y1:γ1) ... (xn:γn) (yn:γn).
R1 x1 y1 ∧ ... ∧ Rn xn yn ⇒
Rc (C x1 ... xn) (C y1 ... yn)

where the constant C has type γ1 -> ... -> γn -> γc (n ≥ 0), and each rela-
tion Ri has type γi -> γi -> bool for all i. Depending on the types involved,
the partial equivalence relations R1, ..., Rn, Rc may be simple equality, equiv-
alence relations, aggregate partial equivalence relations, or higher-order partial
equivalence relations (see section 6.1), as illustrated in examples below.

In fact, in the special case where one of the relations Ri is simple equality
(which happens when the type γi is not a type being lifted), the above general
form may be simplified, in the following ways. The two variables xi and yi
may be combined into one, say (zi:γi), e.g. in the list of universally quantified
variables. The antecedent conjunct Ri xi yi, which here is xi = yi, may be
omitted. In the conclusion Rc (C x1 ... xn) (C y1 ... yn), the same vari-
able zi may be used in place of both xi in the first operand of Rc and yi in the
second operand. This simpler version is not completely standard, but may be
more convenient for the user to provide. The package will compensate by auto-
matically creating the standard version from this simplified one. Also, if all the
antecedents thus simplify, or if n = 0 with no antecedents, then the implication
simplifies to just the consequent, Rc (C z1 ... zn) (C z1 ... zn).

To illustrate this, the following functions are taken from an example of syn-
tactic terms of the untyped lambda calculus, where the term type term1 is being
lifted to a new type term by identifying terms that are equivalent according to
the equivalence relation ALPHA: term1 -> term1 -> bool.

The function Var1 : var -> term1 is used to construct lambda calculus
terms which are single variables. The respectfulness theorem for Var1 is

` ∀x1 x2. (x1 = x2) ⇒ ALPHA (Var1 x1) (Var1 x2)

24 Peter V. Homeier

or possibly the simplified (but nonstandard) form

` ∀x. ALPHA (Var1 x) (Var1 x)

Var1 has one argument of type var, which type is not lifted, so the partial
equivalence relation of this argument is simple equality. The result type is term1,
so the partial equivalence relation for the result is ALPHA.

The function App1 : term1 -> term1 -> term1 is used to construct terms
which are applications of a function to an argument. The respectfulness theorem
for App1 is

` ∀t1 t2 u1 u2.
ALPHA t1 t2 ∧ ALPHA u1 u2 ⇒
ALPHA (App1 t1 u1) (App1 t2 u2)

App1 has two arguments. The first argument has type term1, so the partial
equivalence relation of this argument is ALPHA. The second argument also has
type term1, so the partial equivalence relation of this argument is also ALPHA.
The result type is term1, so the partial equivalence relation for the result is
ALPHA.

The function HEIGHT1 : term1 -> num is used to calculate the height of a
term as a tree. The respectfulness theorem for HEIGHT1 is

` ∀t1 t2. ALPHA t1 t2 ⇒ (HEIGHT1 t1 = HEIGHT1 t2)

HEIGHT1 has one argument, which has type term1, so the partial equivalence
relation of the argument is ALPHA. The result type is num, which is not being
lifted, so the partial equivalence relation for the result is simple equality.

The function FV1 : term1 -> (var -> bool) is used to calculate the set
of free variables of a term. The respectfulness theorem for FV1 is

` ∀t1 t2. ALPHA t1 t2 ⇒ (FV1 t1 = FV1 t2)

FV1 has one argument, which has type term1, so the partial equivalence
relation of the argument is ALPHA. The result type is var -> bool. Even though
this is a functional type, it is not affected by lifting, so the partial equivalence
relation for the result is simple equality.

The function <[: term1 -> (var # term1) list -> term1 is used to si-
multaneously substitute a list of terms for a corresponding list of variables where
they occur free across a target term. The respectfulness theorem for <[is

` ∀t1 t2 s1 s2.
ALPHA t1 t2 ∧ LIST REL ($= ### ALPHA) s1 s2 ⇒
ALPHA (t1 <[s1) (t2 <[s2)

<[has two arguments. The first argument has type term1, so the partial
equivalence relation of this argument is ALPHA. The second argument is a substi-
tution, which has type (var # term1) list, so the partial equivalence relation
of this argument is LIST REL ($= ### ALPHA). The result type is term1, so the
partial equivalence relation for the result is ALPHA.

Higher Order Quotients in Higher Order Logic 25

Please note how the antecedents of each theorem relate to the arguments of
the function. The arguments which have types not being lifted are compared
by equality, while the arguments which have types being lifted are compared by
the corresponding partial equivalence relation. Similarly, the consequent of each
of the theorems above is either a partial equivalence or an equality, depending
on whether the type of the value returned by the function is of a type being
lifted or not. There is a direct one-to-one relationship between the type of the
argument/result and the partial equivalence relation used to compare its values.

Therefore the antecedent of the theorem on the respectfulness of Var1 is
an equality, since the type of the argument is var which is not being lifted,
while the antecedents of the theorem on the respectfulness of App1 are both
partial equivalences, since the type of those arguments is term1, which is being
lifted according to the equivalence relation ALPHA. Also, the consequent of the
theorem on the respectfulness of HEIGHT1 is an equality, since the type of the
value returned by HEIGHT1 is num, which is not being lifted. If the arguments
and the value returned by a function are all of types not being lifted, then there
is no need for a respectfulness theorem for that function.

Also, where a function has an argument of an aggregate type, the correspond-
ing partial equivalence relation is created by an aggregate operator. For example,
in the theorem on the respectfulness of <[, the type of the second argument is
(var # term1) list. The partial equivalence relation that corresponds to this
type is LIST REL ($= ### ALPHA), constructed by first using the ### operator
to create the relation for var # term1, and then using the LIST REL operator to
create the relation for (var # term1) list. These partial equivalence relation
operators are described in section 6.1.

Whenever there are arguments to the constant, there are multiple equivalent
ways to state the respectfulness theorem. For example, the respectfulness the-
orem for FV1:term1 -> var -> bool may be given equally well as any of the
following completely equivalent versions:

` ∀t1 t2 x1 x2.
ALPHA t1 t2 ∧ (x1 = x2) ⇒ (FV1 t1 x1 = FV1 t2 x2)

` ∀t1 t2. ALPHA t1 t2 ⇒ (FV1 t1 = FV1 t2)
` (ALPHA ===> $=) FV1 FV1

The last version has higher order and lesser arity than the earlier versions.
In fact, the three theorems above have arities 2, 1, and 0, respectively, while the
last theorem is the only one with a higher order partial equivalence relation. The
earlier versions may be easier to understand and prove than the last version. For
the quotient package’s internal use, all respectfulness theorems are automatically
converted to the highest order and lowest arity possible, usually with arity zero.

11.2 Preservation of polymorphic functions: poly preserves

poly preserves is a list of theorems expressing the preservation of generic, poly-
morphic functions across quotient operations. This is expressed as an equality

26 Peter V. Homeier

between the value of the function applied to arguments of lifted types, and the
lifted version of the value of the same function applied to arguments of the lower
types. The equalities are conditioned on the component types being quotients.

These preservation theorems have the following general form.

` ∀R1 (abs1:α1->β1) rep1. QUOTIENT R1 abs1 rep1 ⇒
...
∀Rn (absn:αn->βn) repn. QUOTIENT Rn absn repn ⇒
∀(x1:δ1) ... (xk:δk).

C’ x1 ... xk = absc (C (rep1 x1) ... (repk xk))

where

1. the constant C has a polymorphic type with n > 0 type variables, α1, ..., αn,
2. C’ is usually C, but may be a different constant in case C is not preserved,
3. the type of C is of the form γ1 -> ... -> γk -> γc (k ≥ 0)

(C is a curried function of k arguments, with a return value of type γc),
with all type variables in the γ1, ..., γk, γc types contained within α1, ..., αn,

4. the type of C’ is of the form δ1 -> ... -> δk -> δc (k ≥ 0)
(C’ is a curried function of k arguments, with a return value of type δc),

5. δi is the lifted version of γi for all i = 1, ..., k, c
(δi = γi[αj 7→ βj for all j = 1, ..., n]),
with all type variables in the δ1, ..., δk, δc types contained within β1, ..., βn,
and

6. absi:γi -> δi and repi:δi -> γi are the (possibly identity, aggregate, or
higher-order) abstraction and representation functions for the type γi, for
all i = 1, ..., k, c. These are expressions, not simply an absi or repi variable.

Depending on the types involved, some of the abstraction or representation
functions may be the identity function I, in which case they disappear, as illus-
trated in some of the examples below.

For clarity, we will discuss examples for particular polymorphic operators,
beginning with simpler ones. In each case, the main driver of the form of the
resulting theorem is the the operator’s type, in particular the number of argu-
ments, the type of each argument, and the type returned by the operator.

The preservation theorem for NIL is

` ∀R (abs:’a -> ’b) rep. QUOTIENT R abs rep ⇒
([] = MAP abs [])

The operator NIL has polymorphic type (’a)list. It has one type variable,
’a, so n = 1. It has no arguments, so k = 0. The result type is (’a)list, for
which the abstraction function is MAP abs.

The preservation theorem for LENGTH is

` ∀R (abs:’a -> ’b) rep. QUOTIENT R abs rep ⇒
∀l. LENGTH l = LENGTH (MAP rep l)

Higher Order Quotients in Higher Order Logic 27

The operator LENGTH has polymorphic type (’a)list -> num. It has one
type variable, ’a, so n = 1. It has one argument, so k = 1. The argument type
is (’a)list, for which the representation function is MAP rep. The result type
is num, for which the abstraction function is I, which disappears.

The preservation theorem for CONS is

` ∀R (abs:’a -> ’b) rep. QUOTIENT R abs rep ⇒
∀t h. h::t = MAP abs (rep h::MAP rep t)

The operator CONS has polymorphic type ’a -> (’a)list -> (’a)list. It
has one type variable, ’a, so n = 1. It has two arguments, so k = 2. The first
argument type is ’a, for which the representation function is rep. The second
argument type is (’a)list, for which the representation function is MAP rep.
The result type is (’a)list, for which the abstraction function is MAP abs.

The preservation theorem for FST is

` ∀R1 (abs1:’a -> ’c) rep1. QUOTIENT R1 abs1 rep1 ⇒
∀R2 (abs2:’b -> ’d) rep2. QUOTIENT R2 abs2 rep2 ⇒
∀p:’c # ’d. FST p = abs1 (FST ((rep1 ## rep2) p))

The operator FST has polymorphic type (’a # ’b) -> ’a. It has two type
variables, ’a and ’b, so n = 2. It has one argument, so k = 1. The argument
type is (’a # ’b), for which the representation function is rep1 ## rep2. The
result type is ’a, for which the abstraction function is abs1.

The preservation theorem for the composition operator o is

` ∀R1 (abs1:’a -> ’d) rep1. QUOTIENT R1 abs1 rep1 ⇒
∀R2 (abs2:’b -> ’e) rep2. QUOTIENT R2 abs2 rep2 ⇒
∀R3 (abs3:’c -> ’f) rep3. QUOTIENT R3 abs3 rep3 ⇒
∀f g. f o g =

(rep1 --> abs3) ((abs2 --> rep3) f o (abs1 --> rep2) g)

The operator o has type (’b -> ’c) -> (’a -> ’b) -> (’a -> ’c), which
is polymorphic and also higher order. It has three type variables, ’a, ’b, and ’c,
so n = 3. It has two arguments, so k = 2. The first argument type is ’b -> ’c,
for which the representation function is abs2 --> rep3. The second argument
type is ’a -> ’b, for which the representation function is abs1 --> rep2. The
result type is ’a -> ’c, for which the abstraction function is rep1 --> abs3.

Since the types of these functions are polymorphic, instances of the functions
may be applied on arguments of either the types being lifted or the higher,
lifted types. In a style very similar to the definition theorems constructed by
define quotient types for the new versions of the constants being lifted, each
theorem expresses that the value of the operator applied to arguments of the
lifted types is equal to the lifted version of the value of the same operator applied
to arguments of the lower types, computed by lowering the original arguments.

So for example, in the CONS example above, the CONS operator is equal to
taking its arguments h and t, lowering each argument as rep h and MAP rep t,

28 Peter V. Homeier

then applying CONS to these two lowered arguments to compute the result at the
lower level, and then raising the result to the lifted level by MAP abs.

These express the use of each polymorphic function at the lifted level in terms
of its use at the lower level.

These theorems differ from the definition theorems for new constants is that
each theorem conditions the preservation statement upon the polymorphic types
being proper quotients. The conditions follow the form of a quotient theorem as
given in section 9, but each describes a quotient for a polymorphic type variable
instead of for a specific type. If the function is polymorphic in more than one
type, then the theorem will be conditioned on all of the type variables being
quotient types.

Thus in the o example above, the preservation of the composition operator
o is conditioned on three types being lifted, where ’a is being lifted to ’d, ’b is
being lifted to ’e, and ’c is being lifted to ’f. This calls for three antecedents
which are quotient theorems of ’a, ’b, and ’c. In a theorem to be lifted, when
the composition operator is actually applied to arguments which are functions
from specific domains to specific ranges, the o preservation theorem will be
instantiated with those types, to be resolved against actual quotient theorems
for those types.

A substantial collection of these preservation theorems for various standard
polymorphic functions of the HOL logic have been proven already and is available
in the theories of the quotient library (see Table 1). If there is a need to use
a polymorphic function not covered by these, the corresponding preservation
theorem can be proven by the user, using the same approach as for the example
theorems above, as shown in the theory scripts of the quotient library.

Whenever there are arguments to the constant, there are multiple equivalent
ways to state the preservation theorem. For example, the consequent of the
preservation theorem for o may be given equally well as any of the following
completely equivalent versions:

∀f g x. (f o g) x =
abs3 (((abs2 --> rep3) f o (abs1 --> rep2) g) (rep1 x))

∀f g. f o g =
(rep1 --> abs3) ((abs2 --> rep3) f o (abs1 --> rep2) g)

∀f. $o f =
((abs1 --> rep2) --> (rep1 --> abs3)) ($o ((abs2 --> rep3) f))

$o = ((abs2 --> rep3) --> (abs1 --> rep2) --> (rep1 --> abs3)) $o

In each of the versions, the type of the $o on the left hand side of the equality
is (’e -> ’f) -> (’d -> ’e) -> (’d -> ’f), while the type of the $o on
the right hand side is (’b -> ’c) -> (’a -> ’b) -> (’a -> ’c). The last
version has higher order and lesser arity than the earlier versions. In fact, the
four versions above have arities 3, 2, 1, and 0, respectively. The earlier versions
may be easier to understand and prove than the last version. For the quotient
package’s internal use, all preservation theorems are automatically converted to
the lowest order and highest arity possible, and then all higher order versions
are produced and used for lifting theorems which involve the operator.

Higher Order Quotients in Higher Order Logic 29

TABLE 1.
Preservation and Respectfulness Theorems for Polymorphic Operators

Lifted Operators Preservation Theorems Respectfulness Theorems

∀ :: . → ∀ . FORALL PRS RES FORALL RSP

∃ :: . → ∃ . EXISTS PRS RES EXISTS RSP

∃!! :: . → ∃! . EXISTS UNIQUE PRS RES EXISTS EQUIV RSP

λ :: . → λ . ABSTRACT PRS RES ABSTRACT RSP

COND COND PRS COND RSP

LET LET PRS LET RSP

FST FST PRS FST RSP

SND SND PRS SND RSP

, COMMA PRS COMMA RSP

CURRY CURRY PRS CURRY RSP

UNCURRY UNCURRY PRS UNCURRY RSP

PAIR MAP PRS PAIR MAP RSP

INL INL PRS INL RSP

INR INR PRS INR RSP

ISL ISL PRS ISL RSP

ISR ISR PRS ISR RSP

++ SUM MAP PRS SUM MAP RSP

CONS CONS PRS CONS RSP

NIL NIL PRS NIL RSP

MAP MAP PRS MAP RSP

LENGTH LENGTH PRS LENGTH RSP

APPEND APPEND PRS APPEND RSP

FLAT FLAT PRS FLAT RSP

REVERSE REVERSE PRS REVERSE RSP

FILTER FILTER PRS FILTER RSP

NULL NULL PRS NULL RSP

SOME EL SOME EL PRS SOME EL RSP

ALL EL ALL EL PRS ALL EL RSP

FOLDL FOLDL PRS FOLDL RSP

FOLDR FOLDR PRS FOLDR RSP

NONE NONE PRS NONE RSP

SOME SOME PRS SOME RSP

IS SOME IS SOME PRS IS SOME RSP

IS NONE IS NONE PRS IS NONE RSP

OPTION MAP OPTION MAP PRS OPTION MAP RSP

I I PRS I RSP

K K PRS K RSP

o o PRS o RSP

C C PRS C RSP

W W PRS W RSP

An arrow (lower → higher) indicates that in preservation theorems, the lower operator
is different from the higher, else it is the same. Respectfulness theorems concern lower.

30 Peter V. Homeier

11.3 Respectfulness of polymorphic functions: poly respects

poly respects is a list of theorems expressing the respectfulness of generic,
polymorphic functions.

Since the types of these functions are polymorphic, instances of the functions
may be applied to arguments of the types being lifted. Each theorem expresses
that an operator respects the partial equivalence relations involved, just as for
the respects field (§11.1), except that the theorem conditions the respectfulness
of the operator upon the polymorphic types being quotients. The conditioning is
the same as that described in the previous section for poly preserves (§11.2).

These theorems have the following general form.

` ∀R1 (abs1:α1->β1) rep1. QUOTIENT R1 abs1 rep1 ⇒
...
∀Rn (absn:αn->βn) repn. QUOTIENT Rn absn repn ⇒
∀(x1:γ1) (y1:γ1) ... (xk:γk) (yk:γk).

R1 x1 y1 ∧ ... ∧ Rk xk yk ⇒
Rc (C x1 ... xk) (C y1 ... yk)

where

1. the constant C has a polymorphic type with n type variables, α1, ..., αn,
2. β1, ..., βn are n other type variables,
3. the type of C is of the form γ1 -> ... -> γk -> γc

(C is a curried function of k arguments, with a return value of type γc),
with all type variables in the γ1, ..., γk, γc types contained within α1, ..., αn,
and

4. Ri:γi -> γi -> bool is the (possibly equality, aggregate, or higher-order)
partial equivalence relation for the type γi, for all i = 1, ..., k, c. This is an
expression, not simply an Ri variable.

For clarity, we will discuss examples for particular polymorphic operators,
beginning with simpler ones. In each case, the main driver of the form of the
resulting theorem is the operator’s type, in particular the number of arguments,
the type of each, and the type returned by the operator.

The respectfulness theorem for NIL is

` ∀R (abs:’a -> ’b) rep. QUOTIENT R abs rep ⇒
LIST REL R [] []

The operator NIL has polymorphic type (’a)list. It has one type variable,
’a, so n = 1. It has no arguments, so k = 0. The result type is (’a)list, for
which the partial equivalence relation is LIST REL R.

The respectfulness theorem for LENGTH is

` ∀R (abs:’a -> ’b) rep. QUOTIENT R abs rep ⇒
∀l1 l2. LIST REL R l1 l2 ⇒

(LENGTH l1 = LENGTH l2)

Higher Order Quotients in Higher Order Logic 31

The operator LENGTH has polymorphic type (’a)list -> num. It has one
type variable, ’a, so n = 1. It has one argument, so k = 1. The argument type is
(’a)list, for which the partial equivalence relation is LIST REL R. The result
type is num, for which the partial equivalence relation is =.

The respectfulness theorem for CONS is

` ∀R (abs:’a -> ’b) rep. QUOTIENT R abs rep ⇒
∀t1 t2 h1 h2.

R h1 h2 ∧ LIST REL R t1 t2 ⇒
LIST REL R (h1::t1) (h2::t2)

The operator CONS has polymorphic type ’a -> (’a)list -> (’a)list. It
has one type variable, ’a, so n = 1. It has two arguments, so k = 2. The
first argument type is ’a, for which the partial equivalence relation is R. The
second argument type is (’a)list, for which the partial equivalence relation
is LIST REL R. The result type is (’a)list, for which the partial equivalence
relation is LIST REL R.

The respectfulness theorem for FST is

` ∀R1 (abs1:’a -> ’c) rep1. QUOTIENT R1 abs1 rep1 ⇒
∀R2 (abs2:’b -> ’d) rep2. QUOTIENT R2 abs2 rep2 ⇒
∀p1 p2. (R1 ### R2) p1 p2 ⇒

R1 (FST p1) (FST p2)

The operator FST has polymorphic type (’a # ’b) -> ’a. It has two type
variables, ’a and ’b, so n = 2. It has one argument, so k = 1. The argument
type is (’a # ’b), for which the partial equivalence relation is R1 ### R2. The
result type is ’a, for which the partial equivalence relation is R1.

The respectfulness theorem for the composition operator o is

` ∀R1 (abs1:’a -> ’d) rep1. QUOTIENT R1 abs1 rep1 ⇒
∀R2 (abs2:’b -> ’e) rep2. QUOTIENT R2 abs2 rep2 ⇒
∀R3 (abs3:’c -> ’f) rep3. QUOTIENT R3 abs3 rep3 ⇒
∀f1 f2 g1 g2.

(R2 ===> R3) f1 f2 ∧ (R1 ===> R2) g1 g2 ⇒
(R1 ===> R3) (f1 o g1) (f2 o g2)

The operator o has type (’b -> ’c) -> (’a -> ’b) -> (’a -> ’c), which
is polymorphic and also higher order. It has three type variables, ’a, ’b, and ’c,
so n = 3. It has two arguments, so k = 2. The first argument type is ’b -> ’c,
for which the partial equivalence relation is R2 ===> R3. The second argument
type is ’a -> ’b, for which the partial equivalence relation is R1 ===> R2. The
result type is ’a -> ’c, for which the partial equivalence relation is R1 ===>
R3.

Whenever there are arguments to the constant, there are multiple equivalent
ways to state the respectfulness theorem. For example, the respectfulness theo-
rem for o may be given equally well with any of the following as the main part,
after the QUOTIENT conditions:

32 Peter V. Homeier

... ∀f1 f2 g1 g2 x1 x2.
(R2 ===> R3) f1 f2 ∧ (R1 ===> R2) g1 g2 ∧ R1 x1 x2 ⇒

R3 ((f1 o g1) x1) ((f2 o g2) x2)
... ∀f1 f2 g1 g2. (R2 ===> R3) f1 f2 ∧ (R1 ===> R2) g1 g2 ⇒

(R1 ===> R3) (f1 o g1) (f2 o g2)
... ∀f1 f2. (R2 ===> R3) f1 f2 ⇒

((R1 ===> R2) ===> (R1 ===> R3)) ($o f1) ($o f2)
... ((R2 ===> R3) ===> (R1 ===> R2) ===> (R1 ===> R3)) $o $o

The last version has higher order and lesser arity than the earlier versions. In
fact, the four versions above have arities 3, 2, 1, and 0, respectively. Interestingly,
the last version contains no variables (outside of the relation variables). The
earlier versions may be easier to understand and prove than the last version. For
the quotient package’s internal use, all respectfulness theorems are automatically
converted to the highest order and lowest arity possible, usually with arity zero.

A substantial collection of these respectfulness theorems for various stan-
dard polymorphic functions of the HOL logic have been proven already and is
available in the quotient library theories (see Table 1). If there is a need to use
a polymorphic function not covered by these, the corresponding respectfulness
theorem can be proven by the user, using the same approach as for the example
theorems above, as shown in the theory scripts of the quotient library.

11.4 Theorems to be lifted: old thms

old thms are the theorems to be lifted. They should involve only constants
(including functions) of the lower, original level, with no mention of any lifted
constants or functions. The constants involved must respect the equivalence
relations involved, as justified by theorems included in respects (see section
11.1) and poly respects (see section 11.3). The constants must also be either
constants being lifted, or else constants preserved by the quotient, as justified
by theorems included in poly preserves (see section 11.2). Each theorem must
not have any free variables, and it also must not have any hypotheses, only a
conclusion.

12 Restrictions on lifting of theorems

This section describes the restrictions needed for theorems to lift; the next section
relaxes these somewhat, but properly, theorems should obey these restrictions.

It is important to remember that even if all the necessary information is
provided properly, not all theorems of the lower level can be successfully lifted.

To successfully lift, all of the functions a theorem mentions must respect the
equivalence relations involved in creating the lifted types. While for the most
part properties that are intended to be true at both levels will be expressed in
theorems that will lift, there are significant issues that can arise.

The first issue is that the normal equality relation (=) between elements of
a lower type is a function that does not respect the equivalence relation for that

Higher Order Quotients in Higher Order Logic 33

type. This means that theorems that mention the equality of elements of the
lower type will not in general lift. Usually the statement of the theorem should
be revised, with the equivalence relation substituted for the equality relation;
this is a different theorem which will in general require its own proof. Then
if the lifting is successful, it will lift to a higher version where the equivalence
between lower values has been replaced by equality between higher values.

The second issue is that the universal and existential quantification operators
are not in general respectful. In particular, quantification over function types may
consider functions that are not respectful. For example, in the lambda calculus
example, one theorem to be lifted is the induction theorem:

` ∀P.
(∀v. P (Var1 v)) ∧
(∀t t0. P t ∧ P t0 ⇒ P (App1 t t0)) ∧
(∀t. P t ⇒ ∀v. P (Lam1 v t)) ⇒
(∀t. P t)

In this theorem the variable P has type term1 -> bool. This variable is
universally quantified, so all possible functions of this type are considered as
possible values of P. Unfortunately, some functions of this type do not respect
the alpha-equivalence of terms. This respectfulness would be expressed as

∀t1 t2. ALPHA t1 t2 ⇒ (P t1 = P t2)

But this is not true of all functions of the type term1 -> bool. For example,
consider the particular function P1 defined by structural recursion as

(∀x. P1 (Var1 x) = F) ∧
(∀t u. P1 (App1 t u) = P1 t ∨ P1 u) ∧
(∀x u. P1 (Lam1 x u) = P1 u ∨ (x = "a"))

Then P1 t is true if and only if the term t contains a subexpression of the
form Lam1 "a" u, where the bound variable is "a". This P1 does not satisfy
the respectfulness principle since, for example, ALPHA (Lam1 "a" (Var1 "a"))
(Lam1 "b" (Var1 "b")) but then P1 (Lam1 "a" (Var1 "a")) is true while
P1 (Lam1 "b" (Var1 "b")) is false.

The point is that if such non-respectful functions are considered as possible
values of P, then it becomes impossible to lift the theorem, and in fact in general
it would be unsound to do so. The higher version of the theorem will describe
quantification over functions of the higher types, and these functions correspond
only to respectful functions of the lower types. Non-respectful functions at the
lower level have no corresponding function at the higher level. So the statement
of the theorem needs to be revised to quantify only over functions which are
respectful. For the example above, the theorem needs to be rephrased as

` ∀P :: respects (ALPHA ===> $=).
(∀v. P (Var1 v)) ∧
(∀t t0 :: respects ALPHA. P t ∧ P t0 ⇒ P (App1 t t0)) ∧
(∀t :: respects ALPHA. P t ⇒ ∀v. P (Lam1 v t)) ⇒
(∀t :: respects ALPHA. P t)

34 Peter V. Homeier

This notation uses the restricted quantifier notation ∀x :: restriction. body,
the same as RES FORALL restriction (λx. body), introduced in the res quan
library. It also uses the respects operator, defined in quotientTheory as

respects R (x:’a) = R x x

The rephrased induction theorem states that the variable P is universally quan-
tified over all functions of type term1 -> bool such that those functions respect
alpha-equivalence on their domain term1 (and equality on their range, bool),
i.e., respects (ALPHA ===> $=) P, which is equal to

∀t, t0 : term1. ALPHA t t0 ⇒ (P t = P t0).

Then the revised version of the induction theorem can be successfully lifted.
In general, the ∀ and ∃ operators should be replaced by the RES FORALL and

RES EXISTS operators, with respects R as the restriction, where R is the partial
equivalence relation for the type being quantified over. This replacement applies
even if R is simply an equivalence relation, where of course R x x always holds
by reflexivity, and so no elements of the quantification are excluded. However,
when R is simple equality, as for types not being lifted, no replacement of ∀ or
∃ is necessary. RES FORALL and RES EXISTS can be expressed more conveniently
using the “∀ :: . ” and “∃ :: . ” restriction notation, as shown above.

Finally, on occasion we wish to lift a theorem to create a higher version that
contains a unique existance quantifier (∃!). Such a theorem states that for one
and only one instance of the quantified variable, a property holds. But that
single element at the higher level corresponds to an entire equivalence class of
elements at the lower level. To lift some lower theorem to such a statement, the
lower theorem must state that the property holds just and only for elements of
that equivalence class, rather than for some single element. Therefore one cannot
simply lift from a lower version of ∃! to a higher version of ∃!. Instead, we must
introduce a new operator, RES EXISTS EQUIV of type (’a -> ’a -> bool) ->
(’a -> bool) -> bool.

RES EXISTS EQUIV R P =
(∃x::respects R. P x) ∧
(∀x y::respects R. P x ∧ P y ⇒ R x y)

The first argument R is the partial equivalence relation for the type being
quantified over, and the second argument P is the predicate which is being stated
as true for some element of that type which respects R. RES EXISTS EQUIV R P
means that there exist some elements which are respectful of R and which satisfy
P, and all such elements are equivalent according to R.

For convenience, RES EXISTS EQUIV can also be represented using a new re-
stricted quantification binder, ∃!!. The parser will translate ∃!!x::R. P x into
RES EXISTS EQUIV R (λx. P x), and the prettyprinter will reverse this. In or-
der to use this notation, in each HOL session one must first execute

val _ = associate_restriction ("?!!", "RES_EXISTS_EQUIV");

Higher Order Quotients in Higher Order Logic 35

When attempting to lift a theorem, all instances of quantifying by ∃! over
types being lifted should be replaced by instances of ∃!! (RES EXISTS EQUIV)
along with the appropriate partial equivalence relation. Instances of quantifying
by ∃! over types not being lifted need not be modified at all. Note that where the
restricted quantifier versions of ∀ and ∃ use restrictions of the form respects R,
the restricted quantifier version of ∃!! uses just R as the restriction.

For example, this arises naturally in the function existence theorem proposed
by Gordon and Melham for the lambda calculus [8]:

` ∀var app abs.
∃!hom.
(∀x. hom (Var x) = var x) ∧
(∀t u. hom (App t u) = app (hom t) (hom u)) ∧
(∀x u. hom (Lam x u) = abs (λy. hom (u <[[(x,Var y)])))

To create the above theorem, we need to prove the proper lower version

` ∀var app abs.
∃!!hom :: (ALPHA ===> $=).

(∀x. hom (Var1 x) = var x) ∧
(∀t u :: respects ALPHA.

hom (App1 t u) = app (hom t) (hom u)) ∧
(∀x (u :: respects ALPHA).

hom (Lam1 x u) = abs (λy. hom (u <[[(x,Var1 y)])))

which will then lift.

13 Support for non-standard lifting

The define quotient types tool for lifting theorems is actually less demanding
and more forgiving than has been described up to this point. Automation has
been added to recognize several common situations of theorems which may not
be in the proper form, but are strong enough to imply the proper form. These
are quietly converted and then lifted.

Despite the objections to the use of equality in theorems to be lifted men-
tioned above, in practice equality is commonly used. Many theorems to be lifted
have the form ` a = b, for some expressions a and b whose type is being lifted.
In fact, if ∼ is an equivalence relation, this equality implies ` a ∼ b. The tool
recognizes this common case and automatically proves the needed revised theo-
rem that only mentions equivalence instead of equality. This can then be lifted.

Similarly, theorems of the form ` P ⇒ (a = b), or even more general ex-
amples, can also be automatically revised and then lifted.

Universal or existential restricted quantification, where the restriction is of
the form respects R, for R an equivalence relation, do not actually restrict any
elements from the quantification. Thus these are really equal to the original
ordinary quantification, and the tool is able to create and prove the version

36 Peter V. Homeier

with such restricted quantifications from a user-supplied theorem with normal
quantification in those places.

In addition, theorems which are universal quantifications at the outer level
of the theorem, may imply the restricted universal quantifications (their proper
form) over respectful values. The proper form is automatically proven and then
lifted. For example, the tool can lift the lambda calculus induction theorem given
earlier without the user first converting it to proper form.

Finally, theorems which involve unique existance quantification ∃! restricted
over functions which are respectful, may imply the corresponding theorem using
the restricted ∃!! operator. For example, in the lambda calculus example, we
have proven at the lower level

` ∀var app abs.
∃!hom :: respects (ALPHA ===> $=).
(∀x. hom (Var1 x) = var x) ∧
(∀t u. hom (App1 t u) = app (hom t) (hom u)) ∧
(∀x u. hom (Lam1 x u) = abs (λy. hom (u <[[(x,Var1 y)])))

The tool will first automatically prove the proper version:

` ∀var app abs.
∃!!hom :: ALPHA ===> $=.

(∀x. hom (Var1 x) = var x) ∧
(∀t u :: respects ALPHA.

hom (App1 t u) = app (hom t) (hom u)) ∧
(∀x (u :: respects ALPHA).

hom (Lam1 x u) = abs (λy. hom (u <[[(x,Var1 y)])))

and then lift the proper version to the desired higher version of this theorem:

` ∀var app abs.
∃!hom.
(∀x. hom (Var x) = var x) ∧
(∀t u. hom (App t u) = app (hom t) (hom u)) ∧
(∀x u. hom (Lam x u) = abs (λy. hom (u <[[(x,Var y)])))

In general, of course, this revising may not work. If the tool cannot automat-
ically prove the proper version from the theorem it is given, it will print out an
error message showing the needed revised proper form. The user should prove
the proper version manually and then submit it to the tool for lifting.

Finally, we would like to describe some possible reasons to consider when
theorems do not lift, apart from improper form as above. First, every constant
mentioned in the theorem that takes or returns values of types being lifted
must be described in a respectfulness theorem, whether in the respects or
poly respects arguments. Also, every such constant in the theorem must be
either one being lifted to a new constant in the defs argument, or described in
a preservation theorem in the poly preserves argument. Every partial equiva-
lence relation mentioned in any of these theorems should be either one of those

Higher Order Quotients in Higher Order Logic 37

mentioned in the types argument, or an extension of these, using the relation
operators mentioned in sections 3 and 4. If the type of any constant in any
theorem involves type operators, like lists or functions, then the associated quo-
tient extension theorems must be provided in the tyop quotients argument.
Likewise, the equivalence extension theorems (if available), and the associated
relation and map function simplification theorems should be provided in the
tyop equivs and tyop simps arguments. The error message associated with the
exception thrown may help localize the error. The process of the quotient opera-
tion may be observed in more detail by setting the variable quotient.chatting
:= true. Lastly, during development it may be more convenient to use the
define quotient types rule tool, so that the LIFT RULE function it returns
may be applied to candidate lower theorems individually and repeatedly. This
helps to retry lifting a troublesome theorem in isolation until it successfully lifts.

14 Lifting Sets

The facilities provided so far for higher order quotients are flexible and extensi-
ble for the addition of support for new type operators, with their own associated
quotient extension theorems, simplification theorems, perhaps equivalence exten-
sion theorems, and respectfulness and preservation theorems for the constants
associated with the type operator.

One commonly used type is sets, which are implemented in the Higher Order
Logic theorem prover through the library pred set. No actual new type is used
here, but sets are represented by the function type ’a -> bool, where ’a is
the underlying type of the elements of the set. In fact, there is a close identity
between a set and its characteristic function. Nevertheless, it is helpful and
intuitive at times to think of sets as sets, not functions, and many normal set
operators, such as INSERT, SUBSET, and UNION, are provided.

For this type of sets, if the partial equivalence relation on the underlying type
is R, then the extension of R to the set type is R ===> ($=:bool->bool->bool).
Essentially, sets behave as a specialization of the function quotient extention
theorem, where the domain is the base type of R and the range is bool, as in

SET QUOTIENT:
` ∀R abs rep. 〈R, abs, rep〉 ⇒ 〈R ===> $=, rep --> I, abs --> I〉

The associated abstraction function is rep --> I, and the associated represen-
tation function is abs --> I. Note that the use of abs vs. rep is counterintuitive.

When lifting theorems that contain instances of polymorphic set operators
applied to values of types being lifted, some of the normal set operators are
preserved across the quotient operation, but several are not. For these operators,
we have provided new, similar operators which take into account the partial
equivalence relation(s) involved, and thus do successfully lift to their normal set
operator counterpart.

For example, for the set operator DIFF, no problems arise, and we can prove
its respectfulness and preservation theorems of the normal form.

38 Peter V. Homeier

DIFF PRS:
` ∀R (abs:’a -> ’b) rep. QUOTIENT R abs rep ⇒

∀s t. s DIFF t =
(rep --> I) (((abs --> I) s) DIFF ((abs --> I) t))

DIFF RSP:
` ∀R (abs:’a -> ’b) rep. QUOTIENT R abs rep ⇒

∀s1 s2 t1 t2.
(R ===> $=) s1 s2 ∧ (R ===> $=) t1 t2 ⇒
(R ===> $=) (s1 DIFF t1) (s2 DIFF t2)

But the following operators are not preserved, and have the indicated asso-
ciated “regular” versions:

Normal Regular
INSERT INSERTR
DELETE DELETER
SUBSET SUBSETR
PSUBSET PSUBSETR
DISJOINT DISJOINTR
FINITE FINITER
GSPEC GSPECR
IMAGE IMAGER

Even if the original operator is infix, all of the new operators are prefix
operators, to ease the addition of the new arguments.

Most of these regular operators take one new argument, which is the partial
equivalence relation of the underlying type of the set. For GSPECR and IMAGER,
there are two new arguments, which are the partial equivalence relations of the
types used for the polymorphic type variables of the original GSPEC or IMAGE. To
make this clearer, here are the preservation theorems for these two operators.

GSPEC PRS:
` ∀R1 (abs1:’a -> ’c) rep1. QUOTIENT R1 abs1 rep1 ⇒
∀R2 (abs2:’b -> ’d) rep2. QUOTIENT R2 abs2 rep2 ⇒
∀f. GSPEC f =

(rep2 --> I) (GSPECR R1 R2 ((abs1 --> (rep2 ## I)) f))

IMAGE PRS:
` ∀R1 (abs1:’a -> ’c) rep1. QUOTIENT R1 abs1 rep1 ⇒
∀R2 (abs2:’b -> ’d) rep2. QUOTIENT R2 abs2 rep2 ⇒
∀f s. IMAGE f s =

(rep2 --> I) (IMAGER R1 R2 ((abs1 --> rep2) f)
((abs1 --> I) s))

The polymorphic preservation and respectfulness theorems for all these op-
erators are found in quotient pred setTheory, where e.g. the names of these
theorems for the INSERT operator are INSERT PRS and INSERTR RSP, respectively.

Higher Order Quotients in Higher Order Logic 39

To ease the process of formulating the appropriate regular version of a the-
orem that a user wishes to lift, the tools will examine a given theorem to see if
it is regular, and if not, will construct a regular version which if proved by the
user will (hopefully) lift. Here are some examples.

val LIFT RULE =
define quotient types full rule
{types = [{name = "term", equiv = ALPHA EQUIV}],
defs = fnlist,
tyop equivs = [],
tyop quotients = [],
tyop simps = [],
respects = respects,
poly preserves = [IN PRS,EMPTY PRS,UNIV PRS,UNION PRS,

INTER PRS,SUBSET PRS,PSUBSET PRS,
DELETE PRS,INSERT PRS,DIFF PRS,GSPEC PRS,
DISJOINT PRS,FINITE PRS,IMAGE PRS],

poly respects = [IN RSP,EMPTY RSP,UNIV RSP,UNION RSP,
INTER RSP,SUBSETR RSP,PSUBSETR RSP,
DELETER RSP,INSERTR RSP,DIFF RSP,GSPECR RSP,
DISJOINTR RSP,FINITER RSP,IMAGER RSP],

- LIFT RULE (INST TYPE [alpha |-> ‘‘:’a term1‘‘] EXTENSION)
handle e => Raise e;

Exception raised at quotient.REGULARIZE:
Could not lift the irregular theorem
` ∀s t. (s = t) ⇔ ∀x. x IN s ⇔ x IN t
May try proving and then lifting
∀s t::respects (ALPHA ===> $=).
(ALPHA ===> $=) s t ⇔ ∀x::respects ALPHA. x IN s ⇔ x IN t

! Uncaught exception:
! HOL ERR

- LIFT RULE (INST TYPE [alpha |-> ‘‘:’a term1‘‘] SUBSET TRANS)
handle e => Raise e;

Exception raised at quotient.REGULARIZE:
Could not lift the irregular theorem
` ∀s t u. s SUBSET t ∧ t SUBSET u ⇒ s SUBSET u
May try proving and then lifting
∀s t u::respects (ALPHA ===> $=).
SUBSETR ALPHA s t ∧ SUBSETR ALPHA t u ⇒ SUBSETR ALPHA s u

! Uncaught exception:
! HOL ERR

40 Peter V. Homeier

- LIFT RULE
(INST TYPE [alpha |-> ‘‘:’a term1‘‘, beta |-> ‘‘:’b term1‘‘]
INJECTIVE IMAGE FINITE);

Exception raised at quotient.REGULARIZE:
Could not lift the irregular theorem
` ∀f. (∀x y. (f x = f y) ⇔ (x = y)) ⇒

∀s. FINITE (IMAGE f s) ⇔ FINITE s
May try proving and then lifting
∀f::respects (ALPHA ===> ALPHA).
(∀x y::respects ALPHA. ALPHA (f x) (f y) ⇔ ALPHA x y) ⇒
∀s::respects (ALPHA ===> $=).
FINITER ALPHA (IMAGER ALPHA ALPHA f s) ⇔ FINITER ALPHA s

! Uncaught exception:
! HOL ERR

In each case the suggested regular version of the theorem can be copied from
the error message, proven by hand, and then submitted to the tool for lifting.

Here are the names of the preservation and respectfulness theorems for poly-
morphic set operators provided in the quotient library.

TABLE 2.
Preservation and Respectfulness Theorems for Polymorphic Set Operators

Lifted Operators Preservation Theorems Respectfulness Theorems

IN IN PRS IN RSP

EMPTY EMPTY PRS EMPTY RSP

UNIV UNIV PRS UNIV RSP

INTER INTER PRS INTER RSP

UNION UNION PRS UNION RSP

DIFF DIFF PRS DIFF RSP

INSERTR → INSERT INSERT PRS INSERTR RSP

DELETER → DELETE DELETE PRS DELETER RSP

DISJOINTR → DISJOINT DISJOINT PRS DISJOINTR RSP

GSPECR → GSPEC GSPEC PRS GSPECR RSP

SUBSETR → SUBSET SUBSET PRS SUBSETR RSP

PSUBSETR → PSUBSET PSUBSET PRS PSUBSETR RSP

FINITER → FINITE FINITE PRS FINITER RSP

IMAGER → IMAGE IMAGE PRS IMAGER RSP

An arrow (lower → higher) indicates that in preservation theorems, the lower operator
is different from the higher, else it is the same. Respectfulness theorems concern lower.

In addition, several related theorems are provided, including the definitions
of the new operators and some of their interactions with other set operators.

Higher Order Quotients in Higher Order Logic 41

IN INSERTR:
` ∀Rx s y. y IN INSERTR R x s ⇔ R y x ∨ y IN s

IN DELETER:
` ∀R s x y. y IN DELETER R s x ⇔ y IN s ∧ ~R x y

IN GSPECR:
` ∀R1 R2 f v.

v IN GSPECR R1 R2 f ⇔
∃x::respects R1. (R2 ### $=) (v,T) (f x)

IN IMAGER:
` ∀R1 R2 y f s.

y IN IMAGER R1 R2 f s ⇔
∃x::respects R1. R2 y (f x) ∧ x IN s

These facilities for set operators are presented to be helpful, but they are in
development, and should be considered experimental and subject to change.

15 The Sigma Calculus

The untyped sigma calculus was introduced by Abadi and Cardelli in A Theory
of Objects [1]. It highlights the concept of objects, rather than functions.

We will use the sigma calculus as an example to demonstrate the quotient
package tools. We will first define an initial or “pre-”version of the language
syntax, and then create the refined or “pure” version by performing a quotient
operation on the initial version.

The pre-sigma calculus contains terms denoting objects and methods. We
define the sets of object terms O1 and method terms M1 inductively as

(1) x ∈ O1 for all variables x;
(2) m1, . . . , mn ∈ M1 ⇒ [l1 =m1, . . . , ln =mn] ∈ O1 for all labels l1, . . . , ln;
(3) a ∈ O1 ⇒ a.l ∈ O1 for all labels l;
(4) a ∈ O1 ∧ m ∈ M1 ⇒ a.l W m ∈ O1 for all labels l;
(5) a ∈ O1 ⇒ ς(x)a ∈ M1 for all varibles x.
[l1 =m1, . . . , ln =mn] denotes a method dictionary, as a finite list of entries,

each li = mi consisting of a label and a method. There should be no duplicates
among the labels, but if there are, the first one takes precedence.

The form a.l denotes the invocation of the method labelled l in the object a.
The form a.l W m denotes the update of the object a, where the method labelled
l (if any) is replaced by the new method m. The form ς(x)a denotes a method
with one formal parameter, x, and a body a. ς is a binder, like λ in the lambda
calculus. x is a bound variable, and the scope of x is the body a. In this scope,
x represents the “self” parameter, the object itself which contains this method.

Given the pre-sigma calculus, we define the pure sigma calculus by identify-
ing object and method terms which are alpha-equivalent [2]. Thus in the pure
sigma calculus, ς(x)x.l1 = ς(y)y.l1, [l1 = ς(x)x] = [l1 = ς(y)y], et cetera. This is
accomplished by forming the quotients of the types of pre-sigma calculus object
and method terms by their alpha-equivalence relations. Thus O = O1/≡o

α and
M = M1/≡m

α , where ≡o
α and ≡m

α are the respective alpha-equivalence relations.

42 Peter V. Homeier

16 The Pre-Sigma Calculus in HOL

HOL supports the definition of new nested mutually recursive types by the
Hol datatype function in the bossLib library.

The syntax of the pre-sigma calculus is defined as follows.

val _ = Hol_datatype

(* obj1 ::= x | [li=mi] i in 1..n | a.l | a.l:=m *)
‘ obj1 = OVAR1 of var

| OBJ1 of (string # method1) list
| INVOKE1 of obj1 => string
| UPDATE1 of obj1 => string => method1 ;

(* method1 ::= sigma(x)a *)
method1 = SIGMA1 of var => obj1 ‘ ;

This creates the new mutually recursive types obj1 and method1, and also the
constructor functions

OVAR1 : var -> obj1
OBJ1 : (string # method1) list -> obj1
INVOKE1 : obj1 -> string -> obj1
UPDATE1 : obj1 -> string -> method1 -> obj1
SIGMA1 : var -> obj1 -> method1

It also creates associated theorems for induction, function existance, and
one-to-one and distinctiveness properties of the constructors.

The definition above goes beyond simple mutual recursion of types, to involve
what is called “nested recursion,” where a type being defined may appear deeply
nested under type operators such as list, prod, or sum. In the above definition,
in the line defining the OBJ1 constructor function, the type method1 is nested,
first as the right part of a pair type, and then as the element type of a list type.

The Hol definition tool automatically compensates for this complexity,
creating in effect four new types, not simply two. It is as if the tool created the
intermediate types

entry1 = string # method1
dict1 = (entry1)list

except that these types are actually formed by the prod and list type operators,
not by creating new types. It turns out that when defining mutually recursive
functions on these types, there must be four related functions defined simulta-
neously, one for each of the types obj1, dict1, entry1, and method1. Similarly,
when proving theorems about these functions, one must use mutually recursive
structural induction, where the goal has four parts, one for each of the types.

Now we will construct the pure sigma calculus from the pre-sigma calculus.

Higher Order Quotients in Higher Order Logic 43

17 The Pure Sigma Calculus in HOL

We here define the pure sigma calculus in HOL.
Let us assume that we have defined alpha-equivalence relations for each of

the two types obj1 and method1, called ALPHA obj and ALPHA method, and that
we have proven the equivalence theorems for these,

ALPHA obj EQUIV:
` ∀x y. ALPHA obj x y = (ALPHA obj x = ALPHA obj y)

ALPHA method EQUIV:
` ∀x y. ALPHA method x y = (ALPHA method x = ALPHA method y)

We specify the constants that are to be lifted:

- val defs = [{def_name="OVAR_def", fname="OVAR",
func= (--‘OVAR1‘--), fixity=Prefix},

{def_name="OBJ_def", fname="OBJ",
func= (--‘OBJ1‘--), fixity=Prefix},

{def_name="INVOKE_def", fname="INVOKE",
func= (--‘INVOKE1‘--), fixity=Prefix},

{def_name="UPDATE_def", fname="UPDATE",
func= (--‘UPDATE1‘--), fixity=Prefix},

{def_name="SIGMA_def", fname="SIGMA",
func= (--‘SIGMA1‘--), fixity=Prefix},

{def_name="HEIGHT_def", fname="HEIGHT",
func= (--‘HEIGHT1‘--), fixity=Prefix},

{def_name="FV_def", fname="FV",
func= (--‘FV1‘--), fixity=Prefix},

{def_name="SUB_def", fname="SUB",
func= (--‘SUB1‘--), fixity=Prefix},

{def_name="FV_subst_def", fname="FV_subst",
func= (--‘FV_subst1‘--), fixity=Prefix},

{def_name="SUBo_def", fname="SUBo",
func= (--‘SUB1o :^obj -> ^subs -> ^obj‘--),
fixity=Infix(NONASSOC,150)},

{def_name="SUBd_def", fname="SUBd",
func= (--‘SUB1d :^dict -> ^subs -> ^dict‘--),
fixity=Infix(NONASSOC,150)},

{def_name="SUBe_def", fname="SUBe",
func= (--‘SUB1e :^entry -> ^subs -> ^entry‘--),
fixity=Infix(NONASSOC,150)},

{def_name="SUBm_def", fname="SUBm",
func= (--‘SUB1m :^method -> ^subs -> ^method‘--),
fixity=Infix(NONASSOC,150)},

{def_name="vsubst_def", fname="/",
func= (--‘$//‘--), fixity=Infix(NONASSOC,150)},

...
];

44 Peter V. Homeier

We specify the respectfulness theorems to assist the lifting:

val respects =
[OVAR1_RSP, OBJ1_RSP, INVOKE1_RSP, UPDATE1_RSP, SIGMA1_RSP,
HEIGHT_obj1_RSP, HEIGHT_dict1_RSP, HEIGHT_entry1_RSP,
HEIGHT_method1_RSP, FV_obj1_RSP, FV_dict1_RSP, FV_entry1_RSP,
FV_method1_RSP, SUB1_RSP, FV_subst_RSP, vsubst1_RSP,
SUBo_RSP, SUBd_RSP, SUBe_RSP, SUBm_RSP,
...]

We specify the polymorphic preservation theorems to assist the lifting:

val polyprs = [BV_subst_PRS, COND_PRS, CONS_PRS, NIL_PRS,
COMMA_PRS, FST_PRS, SND_PRS,
LET_PRS, o_PRS, UNCURRY_PRS,
FORALL_PRS, EXISTS_PRS,
EXISTS_UNIQUE_PRS, ABSTRACT_PRS];

We specify the polymorphic respectfulness theorems to assist the lifting:

val polyrsp = [BV_subst_RSP, COND_RSP, CONS_RSP, NIL_RSP,
COMMA_RSP, FST_RSP, SND_RSP,
LET_RSP, o_RSP, UNCURRY_RSP,
RES_FORALL_RSP, RES_EXISTS_RSP,
RES_EXISTS_EQUIV_RSP, RES_ABSTRACT_RSP];

The old theorems to be lifted are too many to list, but some will be shown
later.

- val old_thms = [...];

We now define the pure sigma calculus types obj and method, and lift all
constants and theorems:

- val new_thms =
define_quotient_types

{types = [{name = "obj", equiv = ALPHA_obj_EQUIV},
{name = "method", equiv = ALPHA_method_EQUIV}],

defs = defs,
tyop_equivs = [LIST_EQUIV, PAIR_EQUIV],
tyop_quotients = [LIST_QUOTIENT, PAIR_QUOTIENT,

FUN_QUOTIENT],
tyop_simps = [LIST_REL_EQ, LIST_MAP_I,

PAIR_REL_EQ, PAIR_MAP_I,
FUN_REL_EQ, FUN_MAP_I],

respects = respects,
poly_preserves = polyprs,
poly_respects = polyrsp,
old_thms = old_thms};

Higher Order Quotients in Higher Order Logic 45

The tool is able to lift many theorems to the abstract, quotient level. Here
is the original definition of substitution on a variable:

` (∀y. SUB1 [] y = OVAR1 y) ∧
(∀y x c s. SUB1 ((x,c)::s) y = (if y = x then c else SUB1 s y))

This theorem lifts to its abstract version:

` (∀y. SUB [] y = OVAR y) ∧
(∀y x c s. SUB ((x,c)::s) y = (if y = x then c else SUB s y))

Note how the different constants lift, e.g., SUB1 to SUB, OVAR1 to OVAR. Also
note that the quantification of c:obj1 has now become of obj. What may not
be so obvious is how the polymorphic operators lift to the abstract versions of
themselves: [], ,, ::, if...then...else. In fact, though the operators look the
same, all the types have changed from the lower to the higher versions. Proving
this lifted theorem took considerable automation, hidden behind the simplicity
of the result. In addition, the original theorem was not regular; before lifting, it
actually was first quietly converted to:

` (∀y. ALPHA obj (SUB1 [] y) (OVAR1 y)) ∧
(∀y x (c :: respects ALPHA obj)

(s :: respects (LIST REL ($= ### ALPHA obj))).
ALPHA obj (SUB1 ((x,c)::s) y) (if y = x then c else SUB1 s y))

Similarly, here is a version of this definition which uses the let...in form:

` (∀p s y.
SUB1 (p::s) y =
(let (x,c) = p in (if y = x then c else SUB1 s y))) ∧

(∀y. SUB1 [] y = OVAR1 y)

This lifts to the following abstract version:

` (∀p s y.
SUB (p::s) y =
(let (x,c) = p in (if y = x then c else SUB s y))) ∧

(∀y. SUB [] y = OVAR y)

In addition to the previous issues, this involves the LET operator, which is
higher-order, taking a function as an argument. Furthermore, because the let
involves a pair, the pair is implemented by the UNCURRY operator, which is also
higher-order. The following regular version was quietly proven and then lifted:

` (∀(p :: respects ($= ### ALPHA obj))
(s :: respects (LIST REL ($= ### ALPHA obj))) y.
ALPHA obj (SUB1 (p::s) y)
(LET

(UNCURRY
(λx (c::respects ALPHA obj).

(if y = x then c else SUB1 s y))) p)) ∧
(∀y. ALPHA obj (SUB1 [] y) (OVAR1 y))

46 Peter V. Homeier

One of the most difficult theorems to lift is the induction theorem, because
it is higher-order, as it involves quantification over predicates.

` ∀P0 P1 P2 P3.
(∀v. P0 (OVAR1 v)) ∧ (∀l. P2 l ⇒ P0 (OBJ1 l)) ∧
(∀o’. P0 o’ ⇒ ∀s. P0 (INVOKE1 o’ s)) ∧
(∀o’ m. P0 o’ ∧ P1 m ⇒ ∀s. P0 (UPDATE1 o’ s m)) ∧
(∀o’. P0 o’ ⇒ ∀v. P1 (SIGMA1 v o’)) ∧ P2 [] ∧
(∀p l. P3 p ∧ P2 l ⇒ P2 (p::l)) ∧
(∀m. P1 m ⇒ ∀s. P3 (s,m)) ⇒
(∀o’. P0 o’) ∧ (∀m. P1 m) ∧ (∀l. P2 l) ∧ (∀p. P3 p)

This lifts to the abstract version:

` ∀P0 P1 P2 P3.
(∀v. P0 (OVAR v)) ∧ (∀l. P2 l ⇒ P0 (OBJ l)) ∧
(∀o’. P0 o’ ⇒ ∀s. P0 (INVOKE o’ s)) ∧
(∀o’ m. P0 o’ ∧ P1 m ⇒ ∀s. P0 (UPDATE o’ s m)) ∧
(∀o’. P0 o’ ⇒ ∀v. P1 (SIGMA v o’)) ∧ P2 [] ∧
(∀p l. P3 p ∧ P2 l ⇒ P2 (p::l)) ∧
(∀m. P1 m ⇒ ∀s. P3 (s,m)) ⇒
(∀o’. P0 o’) ∧ (∀m. P1 m) ∧ (∀l. P2 l) ∧ (∀p. P3 p)

Note how the quantifications over P0:obj1 -> bool, etc. lift to quantifica-
tion over P0:obj -> bool, etc. The following regular version was quietly proven
and then lifted:

` ∀(P0::respects (ALPHA obj ===> $=))
(P1::respects (ALPHA method ===> $=))
(P2::respects (LIST REL ($= ### ALPHA method) ===> $=))
(P3::respects (($= ### ALPHA method) ===> $=)).

(∀v. P0 (OVAR1 v)) ∧
(∀l::respects (LIST REL ($= ### ALPHA method)).

P2 l ⇒ P0 (OBJ1 l)) ∧
(∀o’::respects ALPHA obj. P0 o’ ⇒ ∀s. P0 (INVOKE1 o’ s)) ∧
(∀(o’::respects ALPHA obj) (m::respects ALPHA method).

P0 o’ ∧ P1 m ⇒ ∀s. P0 (UPDATE1 o’ s m)) ∧
(∀o’::respects ALPHA obj. P0 o’ ⇒ ∀v. P1 (SIGMA1 v o’)) ∧
P2 [] ∧
(∀(p::respects ($= ### ALPHA method))

(l::respects (LIST REL ($= ### ALPHA method))).
P3 p ∧ P2 l ⇒ P2 (p::l)) ∧

(∀m::respects ALPHA method. P1 m ⇒ ∀s. P3 (s,m)) ⇒
(∀o’::respects ALPHA obj. P0 o’) ∧
(∀m::respects ALPHA method. P1 m) ∧
(∀l::respects (LIST REL ($= ### ALPHA method)). P2 l) ∧
(∀p::respects ($= ### ALPHA method). P3 p)

Higher Order Quotients in Higher Order Logic 47

Finally, the most difficult theorem to lift is the function existance theorem, af-
ter the style proposed by Gordon and Melham [8]. This uses higher-order unique
existance quantification, where the unique existance is not of a simple function,
but a tuple of four functions, involving a higher-order partial equivalence relation
of tuples of functions. This relation is not an equivalence relation.

` ∀var
(obj::respects($= ===> LIST REL ($= ### ALPHA method) ===> $=))
(inv::respects($= ===> ALPHA obj ===> $= ===> $=))
(upd::respects
($= ===> $= ===> ALPHA obj ===> $= ===> ALPHA method ===> $=))

(cns::respects($= ===> $= ===> ($= ### ALPHA method) ===>
LIST REL ($= ### ALPHA method) ===> $=))

nil (par::respects($= ===> $= ===> ALPHA method ===> $=))
(sgm::respects($= ===> ($= ===> ALPHA obj) ===> $=)).
∃!(hom o,hom d,hom e,hom m)::respects

((ALPHA obj ===> $=) ###
(LIST REL ($= ### ALPHA method) ===> $=) ###
(($= ### ALPHA method) ===> $=) ###
(ALPHA method ===> $=)).

(∀x. hom o (OVAR1 x) = var x) ∧
(∀d. hom o (OBJ1 d) = obj (hom d d) d) ∧
(∀a l. hom o (INVOKE1 a l) = inv (hom o a) a l) ∧
(∀a l m. hom o (UPDATE1 a l m) =

upd (hom o a) (hom m m) a l m) ∧
(∀e d. hom d (e::d) = cns (hom e e) (hom d d) e d) ∧
(hom d [] = nil) ∧
(∀l m. hom e (l,m) = par (hom m m) l m) ∧
(∀x a. hom m (SIGMA1 x a) =

sgm (λy. hom o (a <[[(x,OVAR1 y)]))
(λy. a <[[(x,OVAR1 y)]))

This lifts to the abstract version:

` ∀var obj inv upd cns nil par sgm.
∃!(hom o,hom d,hom e,hom m).
(∀x. hom o (OVAR x) = var x) ∧
(∀d. hom o (OBJ d) = obj (hom d d) d) ∧
(∀a l. hom o (INVOKE a l) = inv (hom o a) a l) ∧
(∀a l m. hom o (UPDATE a l m) =

upd (hom o a) (hom m m) a l m) ∧
(∀e d. hom d (e::d) = cns (hom e e) (hom d d) e d) ∧
(hom d [] = nil) ∧
(∀l m. hom e (l,m) = par (hom m m) l m) ∧
(∀x a. hom m (SIGMA x a) =

sgm (λy. hom o (a SUBo [(x,OVAR y)]))
(λy. a SUBo [(x,OVAR y)]))

48 Peter V. Homeier

Note how the restricted unique existance quantification over (hom o :obj1->’a,
...) lifts to unique existance quantification over (hom o :obj->’a, ...). To
accomplish this, the following regular version was quietly proven and then lifted:

` ∀var
(obj::respects($= ===> LIST REL ($= ### ALPHA method) ===> $=))
(inv::respects($= ===> ALPHA obj ===> $=))
(upd::respects
($= ===> $= ===> ALPHA obj ===> $= ===> ALPHA method ===> $=))

(cns::respects($= ===> $= ===> ($= ### ALPHA method) ===>
LIST REL ($= ### ALPHA method) ===> $=))

nil
(par::respects ($= ===> $= ===> ALPHA method ===> $=))
(sgm::respects ($= ===> ($= ===> ALPHA obj) ===> $=)).

∃!!(hom o,hom d,hom e,hom m)::
(ALPHA obj ===> $=) ###
(LIST REL ($= ### ALPHA method) ===> $=) ###
(($= ### ALPHA method) ===> $=) ###
(ALPHA method ===> $=).

(∀x. hom o (OVAR1 x) = var x) ∧
(∀d::respects (LIST REL ($= ### ALPHA method)).

hom o (OBJ1 d) = obj (hom d d) d) ∧
(∀(a::respects ALPHA obj) l.

hom o (INVOKE1 a l) = inv (hom o a) a l) ∧
(∀(a::respects ALPHA obj) l (m::respects ALPHA method).

hom o (UPDATE1 a l m) =
upd (hom o a) (hom m m) a l m) ∧

(∀(e::respects ($= ### ALPHA method))
(d::respects (LIST REL ($= ### ALPHA method))).

hom d (e::d) = cns (hom e e) (hom d d) e d) ∧
(hom d [] = nil) ∧
(∀l (m::respects ALPHA method).

hom e (l,m) = par (hom m m) l m) ∧
(∀x (a::respects ALPHA obj).

hom m (SIGMA1 x a) =
sgm (λy. hom o (a <[[(x,OVAR1 y)]))

(λy. a <[[(x,OVAR1 y)]))

This automatic higher order lifting was not available before this package.
Now we have SIGMA x (OVAR x) = SIGMA y (OVAR y), etc., as true equality

within the HOL logic, as intended. This accomplishes the creation of the pure
sigma calculus by identifying alpha-equivalent terms.

18 Conclusions

We have implemented a package for mechanically defining higher-order quotient
types which is a conservative, definitional extension of the HOL logic. The pack-

Higher Order Quotients in Higher Order Logic 49

age automatically lifts not only types, but also constants and theorems from the
original level to the quotient level.

Higher order quotients require the use of partial equivalence relations, as
symmetric and transitive but not necessarily reflexive on all their domains.

The relationship between the lower type and the quotient type is charac-
terized by the partial equivalence relation, the abstraction function, and the
representation function. As a key contribution, three necessary properties have
been identified for these to properly describe a quotient, which are preserved in
the creation of both aggregate and higher order quotients. Most normal polymor-
phic operators both respect and are preserved across such quotients, including
higher order quotients.

The Axiom of Choice was used in this design. We showed that an alternative
design may be constructed without dependence on the Axiom of Choice, but that
it may not be extended to higher order quotients while remaining constructive.

Prior to this work, only Harrison [9] went beyond support for modeling the
quotient types to provide automation for the lifting of constant definitions and
theorems from their original statements concerning the original types to the
corresponding analogous statements concerning the new quotient types. This is
important for the practical application of quotients to sizable problems like quo-
tients on the syntax of complex, realistic programming or specification languages.
These may be modelled as recursive types, where terms which are partially equiv-
alent by being well-typed and alpha-equivalent are identified by taking quotients.
This eases the traditional problem of the capture of bound variables [8].

Such quotients may now be more easily modeled within a theorem prover,
using the package described here.

Soli Deo Gloria.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer-Verlag 1996.

2. Barendregt, H.P.: TheLambdaCalculus, Syntax and Semantics. North-Holland, 1981.

3. Bruce, K., Mitchell, J. C.: ‘PER models of subtyping, recursive types and higher-
order polymorphism’, in Principles of Programming Languages 19, Albequerque,
New Mexico, 1992, pp. 316-327.

4. Chicli, L., Pottier, L., Simpson C.: ‘Mathematical Quotients and Quotient Types in
Coq’, Proceedings of TYPES 2002, Lecture Notes in Computer Science, vol. 2646
(Springer-Verlag, 2002).

5. Enderton, H. B.: Elements of Set Theory. Academic Press, 1977.

6. Geuvers, H., Pollack, R., Wiekijk, F., Zwanenburg, J.: ‘A constructive algebraic
hierarchy in Coq’, in Journal of Symbolic Computation, 34(4), 2002, pp. 271-286.

7. Gordon, M. J. C., Melham, T. F.: Introduction to HOL. Cambridge University Press,
Cambridge, 1993.

8. Gordon, A. D., Melham, T. F.: ‘Five Axioms of Alpha Conversion’, in Theorem
Proving in Higher Order Logics: 9th International Conference, TPHOLs’96, edited
by J. von Wright, J. Grundy and J. Harrison, Lecture Notes in Computer Science,
vol. 1125 (Springer-Verlag, 1996), pp. 173-190.

50 Peter V. Homeier

9. Harrison, J.: Theorem Proving with the Real Numbers, §2.11, pp. 33-37. Springer-
Verlag 1998.

10. Hofmann, M.: ‘A simple model for quotient types,’ in Typed Lambda Calculus and
Applications, Lecture Notes in Computer Science, vol. 902 (Springer-Verlag, 1995),
pp. 216-234.

11. Kalker, T.: at www.ftp.cl.cam.ac.uk/ftp/hvg/info-hol-archive/00xx/0082.
12. Leisenring, A. C.: Mathematical Logic and Hilbert’s ε-Symbol. Gordon and Breach,

1969.
13. Moore, G. H.: Zermelo’s Axiom of Choice: It’s Origins, Development, and Influ-

ence. Springer-Verlag 1982.
14. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. Springer-Verlag 2002.
15. Owre, S., Shankar, N.: Theory Interpretations in PVS, Technical Report SRI-CSL-

01-01, Computer Science Laboratory, SRI International, Menlo Park, CA, April
2001.

16. Nogin, A.: ‘Quotient Types: A Modular Approach,’ in Theorem Proving in
Higher Order Logics: 15th International Conference, TPHOLs 2002, edited by
V. A. Carreño, C. Muñoz, and S. Tahar, Lecture Notes in Computer Science, vol.
2410 (Springer-Verlag, 2002), pp. 263-280.

17. Paulson, L.: ‘Defining Functions on Equivalence Classes,’ ACM Transactions on
Computational Logic, in press. Previously issued as Report, Computer Lab, Univer-
sity of Cambridge, April 20, 2004.

18. Robinson, E.: ‘How Complete is PER?’, in Fourth Annual Symposium on Logic in
Computer Science (LICS), 1989, pp. 106-111.

19. Slotosch, O.: ‘Higher Order Quotients and their Implementation in Isabelle
HOL’, in Theorem Proving in Higher Order Logics: 10th International Conference,
TPHOLs’97, edited by Elsa L. Gunter and Amy Felty, Lecture Notes in Computer
Science, vol. 1275 (Springer-Verlag, 1997), pp. 291-306.

