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is it possible to find A-terms M, to M that make

Quiz

Assuming that a and b are distinct variables,

the following pairs cr-equivalent?

If there is one solution for a pair, can you describe

all its solutions?

and Ab.\a.(a M)
and Ab.\a.(a M3)
and Ab.\a.(a M5)
and Aa.\a.(a My)



Nominal Unification
Hitting a Sweet Spot

Christian Urban

initial spark from Roy Dyckhoft in November 2001
joint work with Andy Pitts and Jamie Gabbay
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One Motivation

Typing implemented in Prolog (from a textbook)

type (Gamma, var(X), T) :- member (X, T) Gamma.

type (Gamma, app(M, N), T") :-
type (Gamma, M, arrow(T, T%)),
type (Gamma, N, T).

type (Gamma, lam(X, M), arrow(T, T)) :-
type (X, T)::Gamma, M, T").

member X X::Tail.
member X Y::Tail :- member X Tail.



Typi
€yps
€yps

One Motivation

.| The problem is that Axz.Az.(x )

will have the types

T — (T —S)— Sand
(T —-8S)—>T—S

type (Gamma, lam(X, M), arrow(T, T)) :-
type (X, T)::Gamma, M, T").

N\

ok)

amima.

t;qr)e (Gamma; N , .

member X X::Tail.
member X Y::Tail :- member X Tail.



Higher-Order Unification

State of the art at the time:

e Lambda Prolog with full Higher-Order
Unification
(no mgus, undecidable, modulo a/3)

e Higher-Order Pattern Unification
(has mgus, decidable, some restrictions, modulo

)
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Underlying Ideas

e Unification (only) up to
o Swappings / Permutations

(ab)-Aa.b (ab)e«Ac.b
= Ab.a = Ac.a

(ab)+t & swap all occurrences of
bandaint

Unlike for [b:=al+(—), for (a b)+(—) we do have
ift =, t' then wet =, wot'.
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Underlying Ideas

e Unification (only) up to
e Swappings / Permutations
@ Variables (or holes)

Azs. (‘ ys)

ys are the parameters the hole can depend on,
but then you need 3y-reduction
y

(Az.t)y —p, t[r =y



Underlying Ideas

e Unification (only) up to
e Swappings / Permutations
@ Variables (or holes)

AZS. ‘

we will record the information about which
parameters a hole cannot depend on
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o () Units
® (t,t') Pairs

e Ft Funct.



Terms

o () Units ® a Atoms
® (t,t') Pairs

e Ft Funct.

Atoms are constants (inﬁnitely many of them)



Terms

o () Units ® a Atoms
® (t,t’) Pairs ® a.t  Abstractions

e Ft Funct.

"Aa.a'— fna.a
constructions like fn X.X are not allowed



Terms

o () Units ® a Atoms
® (t,t’) Pairs ® a.t  Abstractions
o Ft Funct. ® m-X Suspensions

X is a variable standing for a term
7 is an explicit permutation (a; by) . . . (ay by,), waiting to
be applied to the term that is substituted for X



Permutations

a permutation applied to a term

def
© Jec = ¢
a if rec=">
® (ab)umec = b ifrec=a

mec otherwise



Permutations

a permutation applied to a term

© Jec = ¢
a if tfec=0>
® (ab):mec = b ifrec=a
mwec otherwise

def
° mea.t = Tea.mwet



Permutations

a permutation applied to a term

© Jec = ¢
a if tfec=0>
® (ab)umec € (b ifrec=a
mwec otherwise
) meat ¥ mea.met

def

o wenw'eX = (m@7n').X
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Freshness Constraints
Recall A\a. @
We therefore will identify

fna.X = fnb.(ab)X

provided that ‘b is fresh for X — (b # X)’, i.e.,
does not occur freely in any ground term that
might be substituted for X.

If we know more about X, e.g., if we knew that
a # X and b # X, then we can replace
(ab)+X by X.



Equivalence Judgements

Our equality is not just

t =t «a-equivalence
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Equivalence Judgements

but judgements

VEt=t a-equivalence
V Ea#t freshness

where
V=Aa # X1,....a, # X,,}

is a finite set of freshness assumptions.

{a# X,b# X}FfnaX ~fmbX
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Rules for Equivalence

VEFa=xa

VEtxt
VEFEat=a.t

azb ViEtx(ab)st/ ViEa#lt
VEat=bt




Rules for Equivalence
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for all @ with wea # w’+a
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Rules for Equivalence

(a# X)eVvV
for all @ with wea # 7w'+a

VFaX~n'-X

for example

{a#X,b#X}F X = (ab)-X



Rules for Equivalence

(a# X)eV
for all @ with wea # 7w'+a

VFaX~n'-X

for example
{a #X,c#X}F (ac)(ab): X = (bc): X

because (ac)(ab): a+—b (bec): a+— a
b—c b—c
c—a c—b
disagree at a and c.



Rules for Freshness

Excerpt
(i.e. only the interesting rules)



Rules for Freshness

a#b
VEa#b

a#b Via#ti
VEkatita.t V F a # b.t

(mlea # X)EV
ViEa#mX




~ is an Equivalence

Theorem: = is an equivalence relation.

(Reflexivity) V -t =t
(Symmetry) if VEt =t, then VFt, =t

(Transitivity) if V-1, = t; and V -1, = ¢
then V - t; = t3



~ is an Equivalence

Theorem: = is an equivalence relation.

o VHEtx=t'thenV F et = mwet’
o VikEa#tthenV - mea # ot



~ is an Equivalence

Theorem: = is an equivalence relation.

VEtxt then VEF met = mwet’
ViEa#tthenV FE mwea # et
VEtxmt'thenV I (m 1)t =t/
Vika#ntthenVE (nh)ea#t



~ is an Equivalence

Theorem: = is an equivalence relation.

VEtxt' thenV F mwet = mwot/
VEkEa#tthenV - mwea # wet
VEtxmt'thenV I (m 1)t =t/
Vika#ntthenVE (nh)ea#t
VkFa#tandVEt=t' thenVEa#lt
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where [a := b|t replaces all free occurrences of
abybint.



Comparison =
Traditionally =, is defined as

least congruence which identifies a.t with
b.la := b|t provided b is not free in t

where [a := b|t replaces all free occurrences of
abybint.

For ground terms:

Theorem: t=,t if oFt~1t
a & FA(t) if oFa#t



Comparison =
Traditionally =, is defined as

least congruence which identifies a.t with
b.la := b|t provided b is not free in t

where [a := b|t replaces all free occurrences of
abybint.

In general =, and = are distinct!

a.X =, b.X butnot
gFa.X ~bX (a@a#b



Comparison =,

7

\

That is a crucial point: if we had

o+ aX~bX,

then applying [ X :=a], [X :=b], ...
give two terms that are not a-equivalent.

The freshness constraints a # X and b # X
rule out the problematic substitutions.
Therefore

{a# X,b# X} Fa.X =bX
does hold.




Substitution
o(a.t)E a.o(t)
f]lmeo(X) ifo(X)#X

e X otherwise



Substitution

PY o(a. t) “ a. o(t)
o o(mX)Z {:..XU(X) iofttlje(r)v(vzszé :

for example
a.(@b):X [X := (b, Y)]



Substitution

PY o(a. t) “ a. o(t)
o o(mX)Z {:..XU(X) ioft(l;e(fvzszé :

for example
a.(ab)- X [X = (b,Y)]
= a,.(a, b)OX[X = <b7 Y>]




Substitution

PY o(a. t) “ a. o(t)
o o(mX)Z {:..XU(X) lft(}:e(fvzszé :

for example
a.(@b)-X [X = (b,Y)
= a,.(a, b)OX[X = <b7 Y>]
= a.(ab)+(b,Y)




Substitution

PY o(a. t) “ a. o(t)
o o(mX)Z {:..XU(X) i)ft(}:e(fvzszé :

for example
ab): X [X :=(b,Y)]
ab)X[X = <b, Y)

a.(

a.(

a.(ab)«(b,Y)
= a.(a,(ab):Y)



Substitution

def

® o(a.t) = a.c(t)
LSS te

e ifVHtxtand V'I0o(V)
then V, [ O'(t) ~ O-(t/)



Substitution

o o(a.t)E a.o(t)

o o(mX)H weo(X) ifo(X)#X
)l weX otherwise

e ifViHtxt and(V’ + a‘(V))
then V' I o(t) = o(t)

(this means
V'ka# o0(X)
holds for all
(a# X) eV




Substitution

def

® o(a.t) = a.c(t)
LSS te

e ifVHtxtand V'I0o(V)
then V, [ O'(t) ~ O-(t/)



Substitution

o(a.t)E a.o(t)
ot = {1 L

ifVEtxtand V'} (V)
then V' I o(t) = o(t)
o(met) = weo(t)



Equational Problems
An equational problem
t=7t
is solved by

® a substitution o (terms for variables)

® and a set of freshness assumptions V

sothat VI o(t) = o(t).



Unifying equations may entail solving freshness
problems.

E.g. assuming that a # a’, then
a.t=?a'.t
can only be solved if
t =? (aa')st’ and a #?t

can be solved.



Freshness Problems

A freshness problem
a #7t
is solved by

® asubstitution o

® and a set of freshness assumptions V

sothat VI a # o(t).



Existence of MGUs

Theorem: There is an algorithm which, given a
nominal unification problem P, decides whether
or not it has a solution (o, V), and returns a
most general one if it does.



Existence of MGUs

Theorem: There is an algorithm which, given a
nominal unification problem P, decides whether
or not it has a solution (o, V), and returns a
most general one if it does.

most general:
straightforward definition
“iff there exists a T such that ...”




Existence of MGUs

Theorem: There is an algorithm which, given a
nominal unification problem P, decides whether
or not it has a solution (o, V), and returns a
most general one if it does.

Proof: one can reduce all the equations to ‘solved
form’ first (creating a substitution), and then solve
the freshness problems (easy).



Remember the Quiz?

Assuming that a and b are distinct variables,
is it possible to find A-terms M, to M7 that make
the following pairs c-equivalent?

and Ab.\a.(a M)
and Ab.\a.(a Ms3)
and Ab.\a.(a M5)

and Aa.\a.(a My)

If there is one solution for a pair, can you describe
all its solutions?



Answers to the Quiz

Aa.Ab.(M; b) and Ab.Aa.(a M)
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Answers to the Quiz

a.b.(Ml,b) ~? b.a.(a,Ml)
= b.(My,b) =? b.(b,(ab)*M,) , a #? a.(a, M)

= (M,,b) =7 (b,(ab)*M;), a #? a.(a, M)
= M, =?b, b=x? (ab)*M, , a #? a.(a, M)



Answers to the Quiz

a.b.(M;,b) =? b.a.(a, M)
= b.(My,b) =? b.(b,(ab)*M,) , a #? a.(a, M)
= (M, b) =7 (b,(ab)*M,) , a #? a.(a, M)
:"‘> M, =~?b, bx? (ab)*M, , a #? a.{a, M)

M b 7 (ab)eb , a #7 a.(a,b)



Answers to the Quiz

a.b.(Ml,b) ~? b.a.(a,Ml)
= b.(My,b) =? b.(b,(ab)*M,) , a #? a.(a, M)

£

= (M,,b) =7 (b,(ab)*M;), a #? a.(a, M)
= M, =?b, bx?(ab)*M,, a #? a.(a, M)

M h x7 a , a #7 a.{(a,b)



Answers to the Quiz

a.b.(M;,b) =? b.a.(a, M)
= b.(My,b) =? b.(b,(ab)*M,) , a #? a.(a, M)
= (M, b) =7 (b,(ab)*M,) , a #? a.(a, M)
= M, =?b, bx?(ab)*M,, a #? a.(a, M)
M h x7 a , a #7 a.{(a,b)

= FAIL



Answers to the Quiz

a.b.(M,,b) =7 b.a.(a, M)

b.(M;,b) =7 b.(b, (ab)*M,) , a #? a.(a, M)

(M,,b) =? (b,(ab)*M,;) , a #? a.(a, M)

M, =?b, b=x? (ab)*M; , a #? a.{a, M)
~?a, a#?a.(a,b)

= FAIL

o Jo g

[M:=b]
=

[ Aa.\b.(M; b) =, Ab.Aa.(a M) has no solution ]




Answers to the Quiz

Aa.\b.(b M) and Aa.Aa.(a M)
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a.b.(b, M) =? a.a.(a, M)
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Answers to the Quiz

a.b.(b, M) =? a.a.(a, M)
= b.(b, M) =7 a.(a, M;)
= (b, M) =? (b, (ba)*M;) , b #? (a, M)
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Answers to the Quiz

a.b.(b, M) =? a.a.(a, M)
= b.(b, M) =7 a.(a, M;)
= (b, M) =? (b, (ba)*M;) , b #? (a, M)
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Answers to the Quiz

a.b.(b, M) =? a.a.(a, M)
= b.(b, M) =7 a.(a, M;)
= (b, M) =? (b, (ba)*M;) , b #? (a, M)
= br?b, Mg ~? (ba)sM, b#? (a, M)
= Mg ~? (ba)*M; , b #? (a, M)

[MG:Zibzg) ® M~

"o #7 (a, M)



Answers to the Quiz
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Answers to the Quiz

a.b.(b, M) =? a.a.(a, M)

= b.(b, M) =7 a.(a, M;)

= (b, M) =? (b, (ba)*M;) , b #? (a, M)

= br?b, Mg ~? (ba)sM, b#? (a, M)

= Mg ~? (ba)*M; , b #? (a, M)
MR M b 47 (a, M)
2 b#?a, b#? M
= b #? M;



Answers to the Quiz

a.b.(b, M) =? a.a.(a, M)
=> b.(b, M) =7 a.(a, M)
= (b, M) =? (b, (ba)*M;) , b #? (a, M)
= br?b, Mg ~? (ba)sM, b#? (a, M)
= Mg ~? (ba)*M; , b #? (a, M)

7

]
b #7? (a, M Xa.\b.(b M) =, Aa.\a.(a M)

%]
= b #7a, b#? ] wecan take My to be any A-term that
does not contain free occurrences of b,

[MG:Zg):g) ® M~

1%}
= b #7? M; so long as we take M to be the result
{bﬁ\;h} of swapping all occurrences of b and a

throughout M7
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Properties

e An interesting feature of nominal unification is
that it does not need to create new atoms.

{a.t =?bt'}UP = {t =? (ab)et/,a #? '} U P

@ The alternative rule

{a.t =?bt'}UP =
{(ac)*t =7 (be)*t',c #? t,c #?t'} U P

leads to a more complicated notion of mgu.
{a. X =?7bY}= {a#Y,c# Y}, [ X :=(ac)(bc)*Y))



Is it Useful?
Yes. aProlog by James Cheney (main developer)

type (Gamma, var(X), T) :- member (X,T) Gamma.

type (Gamma, app(M, N), T") :-
type (Gamma, M, arrow(T, T?)),
type (Gamma, N, T).

type (Gamma, lam(x.M), arrow(T, T%) / x # Gamma :-
type ((x, T)::Gamma, M, T).

member X X::Tail.
member X Y::Tail :- member X Tail.



( )

One problem: If we ask whether

?- type ([x, T}, lam(x. Var(x)), T)

-+

is typable, we expect an answer for T. nma.

" 7
7 L

type (Gamma, lam(x.M), arrow(T, T%) / x # Gamma :-
type ((x, T)::Gamma, M, T).

member X X::Tail.
member X Y::Tail :- member X Tail.




( )

One problem: If we ask whether

?- type ([x, T}, lam(x. Var(x)), T)

-+

is typable, we expect an answer for T. nma.

-+

Solution: Before back-chaining freshen all
variables and atoms in a program (clause).

" 7
7 L

type (Gamma, lam(x.M), arrow(T, T%) / x # Gamma :-
type ((x, T)::Gamma, M, T).

member X X::Tail.
member X Y::Tail :- member X Tail.



Equivariant Unification
James Cheney proposed

V,o,m

t=?t = Vo) =mo(t)



Equivariant Unification

James Cheney proposed
ta?t XXV o(t) & meo(t)

But he also showed this problem is undecidable
in general. :(



Taking Atoms as Variables

Instead of a.X, have A.X.



Taking Atoms as Variables

Instead of a.X, have A.X.

Unfortunately this breaks the mgu-property:
a.Z =7 X.Y.v(a)
can be solved by

(X :=a,Z :=Y.v(a)] and
Y =a,Z :=Y.v(Y)]



HOPU vs. NOMU

e James Cheney showed

HOPU = NOMU

e Jordi Levy and Mateu Villaret established

HOPU <= NOMU

The translations ‘explode’ the problems
quadratically.



From: Zhenyu Qian <zhqgian@microsoft.com>

To: Christian Urban <urbanc@in.tum.de>

Subject: RE: Linear Higher-Order Pattern Unification
Date: Mon, 14 Apr 2008 09:56:47 +0800

Hi Christian,

Thanks for your interests and asking. I know that that
paper is complex. As I told Tobias when we met last time,
I have raised the question to myself many times whether
the proof could have some flaws, and so making it through
a theorem prover would definitely bring piece to my mind
(no matter what the result would be). The only problem for
me is the time.

Thanks/Zhenyu



Complexity

o Christiopher Calves and Maribel Fernandez
showed first that it is polynomial and then also
quadratic

e Jordi Levy and Mateu Villaret showed that it is

quadratic by a translation into a subset of
NOMU and using ideas from Martelli/Montenari.
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Conclusion

e Nominal Unification is a completely first-order
language, but implements unification modulo c.

(verification...Ramana Kumar and Michael
Norrish)

e NOMU has been applied in term-rewriting and
logic programming. (Maribel Fernandez et al has
a KB-completion procedure.) I hope it will also
be used in typing systems.

e NOMU and HOPU are ‘equivalent’ (it took a
long time and considerable research to find this
out).

o The question about complexity is still an ongoing
story.



Thank you very much!

Questions?



Most General Unifiers

Definition: For a unification problem P, a solution
(o1, V1) is more general than another solution
(09, V), iff there exists a substitution 7 with

] VQ [ T(Vl)

® Voloy=To00,



Most General Unifiers

Definition: For a unification problem P, a solution
(o1, V1) is more general than another solution
(09, V), iff there exists a substitution 7 with

o VQ I—’T(Vl)

@ VolkFosx 100y

Vo bk a # o(X)holds forall (a # X) € V,



Most General Unifiers

Definition: For a unification problem P, a solution
(o1, V1) is more general than another solution
(09, V), iff there exists a substitution 7 with

] VQ [ T(Vl)

@ VolFos= 100y

Vs 09(X) = o(o1(X)) holds for all
X € dom(os) U dom(o o o)



