
Welcome!
Files and Programme at: http://goo.gl/Aslc9

Have you already installed Nominal Isabelle?

If yes, good.
isabelle jedit -l HOL-Nominal2 Tutorial1.thy

If no, install it now.

Austin, 23. January 2010 � p. 1/51

http://goo.gl/Aslc9


Nominal Isabelle

Cezary Kaliszyk and Christian Urban

Quick overview:

_−→cbv* _

machine_ ⇓ _

+ type preservation and progress

Austin, 23. January 2010 � p. 2/51



A Quick and Dirty Overview
of Nominal Isabelle

Nominal Isabelle is a de�nitional extension of
Isabelle/HOL (i.e. no additional axioms, only
HOL),

provides an infrastructure for reasoning about
named binders,
for example lets you de�ne

nominal_datatype lam =
Var "name"
| App "lam" "lam"
| Lam x::"name" l::"lam" bind x in l ("Lam [_]. _")

which give you named α-equivalence classes:
Lam [x].(Var x) = Lam [y].(Var y)

Austin, 23. January 2010 � p. 3/51



A Quick and Dirty Overview
of Nominal Isabelle

Nominal Isabelle is a de�nitional extension of
Isabelle/HOL (i.e. no additional axioms, only
HOL),
provides an infrastructure for reasoning about
named binders,

for example lets you de�ne

nominal_datatype lam =
Var "name"
| App "lam" "lam"
| Lam x::"name" l::"lam" bind x in l ("Lam [_]. _")

which give you named α-equivalence classes:
Lam [x].(Var x) = Lam [y].(Var y)

Austin, 23. January 2010 � p. 3/51



A Quick and Dirty Overview
of Nominal Isabelle

Nominal Isabelle is a de�nitional extension of
Isabelle/HOL (i.e. no additional axioms, only
HOL),
provides an infrastructure for reasoning about
named binders,
for example lets you de�ne

nominal_datatype lam =
Var "name"
| App "lam" "lam"
| Lam x::"name" l::"lam" bind x in l ("Lam [_]. _")

which give you named α-equivalence classes:
Lam [x].(Var x) = Lam [y].(Var y)

Austin, 23. January 2010 � p. 3/51



A Six-Slides
Crash-Course on How
to Use Isabelle and

jEdit

Austin, 23. January 2010 � p. 4/51



Isabelle/jEdit

Important points:

the complete buffer is checked
checking also as you type

Austin, 23. January 2010 � p. 5/51



Symbols
. . . jEdit provides a nice way to input non-ascii
characters; for example:

∀ , ∃ , ⇓, #,
∧
, Γ ,×, 6=, ∈, . . .

they need to be input via the combination

name-of-symbol or \<name-of-symbol>

short-cuts for often used symbols

==> . . . =⇒
=> . . . ⇒

/\ . . . ∧
\/ . . . ∨

Austin, 23. January 2010 � p. 6/51



Symbols
. . . jEdit provides a nice way to input non-ascii
characters; for example:

∀ , ∃ , ⇓, #,
∧
, Γ ,×, 6=, ∈, . . .

they need to be input via the combination

name-of-symbol or \<name-of-symbol>

short-cuts for often used symbols

==> . . . =⇒
=> . . . ⇒

/\ . . . ∧
\/ . . . ∨

Austin, 23. January 2010 � p. 6/51



Isabelle Theories

Every theory is of the form

theory Name
imports T1...Tn
begin
...
end

Normally, one T will be the theory Main.

Austin, 23. January 2010 � p. 7/51



Isabelle Theories

Every theory is of the form

theory Name
imports T1...Tn
begin
...
end

Normally, one T will be the theory Main.

Austin, 23. January 2010 � p. 7/51



Types
Isabelle is typed, has polymorphism and
overloading.

Base types: nat, bool, string, lam. . .
Type-formers: 'a list, 'a× 'b, 'c set, 'a⇒ 'b. . .
Type-variables: 'a, 'b, 'c, . . .

Types can be queried in Isabelle using:
typ nat
typ bool
typ lam
typ "('a× 'b)"
typ "'c set"
typ "'a list"
typ "lam⇒ nat"

Austin, 23. January 2010 � p. 8/51



Types
Isabelle is typed, has polymorphism and
overloading.

Base types: nat, bool, string, lam. . .
Type-formers: 'a list, 'a× 'b, 'c set, 'a⇒ 'b. . .
Type-variables: 'a, 'b, 'c, . . .

Types can be queried in Isabelle using:
typ nat
typ bool
typ lam
typ "('a× 'b)"
typ "'c set"
typ "'a list"
typ "lam⇒ nat"

Austin, 23. January 2010 � p. 8/51



Terms
The well-formedness of terms can be queried using:

term c
term "1::nat"
term 1
term "{1, 2, 3::nat}"
term "[1, 2, 3]"
term "(True, ''c'')"
term "Suc 0"
term "Lam [x].Var x"
term "App t1 t2"
term "atom (x::name)"

Isabelle provides some useful colour feedback
term "True" gives "True" :: "bool"
term "true" gives "true" :: "'a"
term "∀ x. P x" gives "∀ x. P x" :: "bool"

Austin, 23. January 2010 � p. 9/51



Terms
The well-formedness of terms can be queried using:

term c
term "1::nat"
term 1
term "{1, 2, 3::nat}"
term "[1, 2, 3]"
term "(True, ''c'')"
term "Suc 0"
term "Lam [x].Var x"
term "App t1 t2"
term "atom (x::name)"

Isabelle provides some useful colour feedback
term "True" gives "True" :: "bool"
term "true" gives "true" :: "'a"
term "∀ x. P x" gives "∀ x. P x" :: "bool"

Austin, 23. January 2010 � p. 9/51



Formulae
Every formula in Isabelle needs to be of type bool

term "True"
term "True ∧ False"
term "{1,2,3} = {3,2,1}"
term "∀ x. P x"
term "A−→ B"
term "atom x # t"

When working with Isabelle, one deals with an
object logic (that is HOL) and Isabelle's rule
framework (called Pure).

term "A−→ B" '=' term "A =⇒ B"
term "∀ x. P x" '=' term "

∧
x. P x"

Austin, 23. January 2010 � p. 10/51



Formulae
Every formula in Isabelle needs to be of type bool

term "True"
term "True ∧ False"
term "{1,2,3} = {3,2,1}"
term "∀ x. P x"
term "A−→ B"
term "atom x # t"

When working with Isabelle, one deals with an
object logic (that is HOL) and Isabelle's rule
framework (called Pure).

term "A−→ B" '=' term "A =⇒ B"
term "∀ x. P x" '=' term "

∧
x. P x"

Austin, 23. January 2010 � p. 10/51



Inductive Predicates
and Theorems

Austin, 23. January 2010 � p. 11/51



inductive
eval :: "lam⇒ lam⇒ bool" ("_ ⇓ _" [60, 60] 60)

where
e_Lam[intro]: "Lam [x].t ⇓ Lam [x].t"
| e_App[intro]:

"[[t1 ⇓ Lam [x].t; t2 ⇓ v'; t[x::=v'] ⇓ v]] =⇒ App t1 t2 ⇓ v"

The type of the predicate is always something to
bool.
The attribute [intro] adds the corresponding
clause to the hint-theorem base.
The clauses correspond to the rules

Lam [x]. t ⇓ Lam [x]. t

t1 ⇓ Lam [x]. t t2 ⇓ v' t [x ::= v'] ⇓ v

App t1 t2 ⇓ v

Austin, 23. January 2010 � p. 12/51



inductive
eval :: "lam⇒ lam⇒ bool" ("_ ⇓ _" [60, 60] 60)

where
e_Lam[intro]: "Lam [x].t ⇓ Lam [x].t"
| e_App[intro]:

"[[t1 ⇓ Lam [x].t; t2 ⇓ v'; t[x::=v'] ⇓ v]] =⇒ App t1 t2 ⇓ v"

The type of the predicate is always something to
bool.
The attribute [intro] adds the corresponding
clause to the hint-theorem base.
The clauses correspond to the rules

Lam [x]. t ⇓ Lam [x]. t

t1 ⇓ Lam [x]. t t2 ⇓ v' t [x ::= v'] ⇓ v

App t1 t2 ⇓ v
Austin, 23. January 2010 � p. 12/51



Theorems
Isabelle's theorem database can be queried using

thm e_Lam
thm e_App
thm conjI
thm conjunct1

Austin, 23. January 2010 � p. 13/51

e_Lam: Lam [?x]. ?t ⇓ Lam [?x]. ?t
e_App: [[?t1.0 ⇓ Lam [?x]. ?t; ?t2.0 ⇓ ?v'; ?t [?x ::= ?v'] ⇓ ?v]]

=⇒ App ?t1.0 ?t2.0 ⇓ ?v
conjI: ?P =⇒ ?Q =⇒ ?P ∧ ?Q

conjunct1: ?P ∧ ?Q =⇒ ?P



Theorems
Isabelle's theorem database can be queried using

thm e_Lam
thm e_App
thm conjI
thm conjunct1

Austin, 23. January 2010 � p. 13/51

e_Lam: Lam [?x]. ?t ⇓ Lam [?x]. ?t
e_App: [[?t1.0 ⇓ Lam [?x]. ?t; ?t2.0 ⇓ ?v'; ?t [?x ::= ?v'] ⇓ ?v]]

=⇒ App ?t1.0 ?t2.0 ⇓ ?v
conjI: ?P =⇒ ?Q =⇒ ?P ∧ ?Q

conjunct1: ?P ∧ ?Q =⇒ ?P



Theorems
Isabelle's theorem database can be queried using

thm e_Lam
thm e_App
thm conjI
thm conjunct1

Austin, 23. January 2010 � p. 13/51

e_Lam: Lam [?x]. ?t ⇓ Lam [?x]. ?t
e_App: [[?t1.0 ⇓ Lam [?x]. ?t; ?t2.0 ⇓ ?v'; ?t [?x ::= ?v'] ⇓ ?v]]

=⇒ App ?t1.0 ?t2.0 ⇓ ?v
conjI: ?P =⇒ ?Q =⇒ ?P ∧ ?Q

conjunct1: ?P ∧ ?Q =⇒ ?P

schematic variables



Generated Theorems

Most de�nitions result in automatically generated
theorems; for example

thm eval.intros
thm eval.induct

Austin, 23. January 2010 � p. 14/51



Theorem / Lemma / Corollary
. . . they are of the form:

theorem theorem_name:
�xes x::"type"
. . .
assumes "assm1"
and "assm2"
. . .
shows "statement"
. . .

Grey parts are optional.

Austin, 23. January 2010 � p. 15/51



Theorem / Lemma / Corollary
. . . they are of the form:

theorem theorem_name:
�xes x::"type"
. . .
assumes "assm1"
and "assm2"
. . .
shows "statement"
. . .

Grey parts are optional.

Austin, 23. January 2010 � p. 15/51

lemma alpha_equ:
shows "Lam [x].Var x = Lam [y].Var y"

lemma Lam_freshness:
assumes a: "atom y # Lam [x].t"
shows "(y = x) ∨ (y 6= x ∧ atom y # t)"

lemma neutral_element:
�xes x::"nat"
shows "x + 0 = x"

. . .



Isar Proofs

Austin, 23. January 2010 � p. 16/51



An Isar Proof . . .

Austin, 23. January 2010 � p. 17/51



An Isar Proof . . .

Austin, 23. January 2010 � p. 17/51

assumptions

stepping stones

...

stepping stones

goal



An Isar Proof . . .
A rough schema of an Isar Proof:

have

n1:

"assumption"

by justi�cation

have

n2:

"assumption"

by justi�cation

. . .
have

n:

"statement"

by justi�cation

have

m:

"statement"

by justi�cation

. . .
show "statement"

by justi�cation

qed

each have-statement can be given a label / name

obviously, everything needs to have a justi�ation

Austin, 23. January 2010 � p. 18/51



An Isar Proof . . .
A rough schema of an Isar Proof:

have n1: "assumption"

by justi�cation

have n2: "assumption"

by justi�cation

. . .
have n: "statement"

by justi�cation

have m: "statement"

by justi�cation

. . .
show "statement"

by justi�cation

qed

each have-statement can be given a label / name

obviously, everything needs to have a justi�ation

Austin, 23. January 2010 � p. 18/51



An Isar Proof . . .
A rough schema of an Isar Proof:

have n1: "assumption" by justi�cation
have n2: "assumption" by justi�cation
. . .
have n: "statement" by justi�cation
have m: "statement" by justi�cation
. . .
show "statement" by justi�cation
qed

each have-statement can be given a label / name

obviously, everything needs to have a justi�ation

Austin, 23. January 2010 � p. 18/51



Justifications
Omitting proofs

sorry

Available facts
by fact

Automated proofs

by simp simpli�cation (equations, . . . )
by auto simpli�cation & proof search
by blast proof search
. . .

Austin, 23. January 2010 � p. 19/51



Justifications
Omitting proofs

sorry

Available facts
by fact

Automated proofs

by simp simpli�cation (equations, . . . )
by auto simpli�cation & proof search
by blast proof search
. . .

Austin, 23. January 2010 � p. 19/51

justi�cations can also be of the form:

using . . . by . . .

using ih by . . .
using n1 n2 n3 by . . .
using lemma_name. . . by . . .



Proofs by Induction
Proofs by induction involve cases, which can be
stated as:

proof (induct)
case (Case-Name x. . . )
have "assumption" by justi�cation
. . .
have "statment" by justi�cation
. . .
show "statment" by justi�cation

next
case (Another-Case-Name y. . . )
. . .

Austin, 23. January 2010 � p. 20/51



A Chain of Facts
Isar allows you to build a chain of facts as
follows:

have n1: �. . . �
have n2: �. . . �

. . .

have ni: �. . . �
have �. . . � using n1 n2 . . . ni

have �. . . �
moreover have �. . . �

. . .

moreover have �. . . �
ultimately have �. . . �

also works for show

Austin, 23. January 2010 � p. 21/51



Eval Implies Machine
theorem
assumes a: "t ⇓ t'"
shows "〈t,[]〉 7→* 〈t',[]〉"

using a
proof (induct)
case (e_Lam x t) (no assumption avail.)
show "〈Lam [x].t,[]〉 7→* 〈Lam [x].t,[]〉" sorry

next
case (e_App t1 x t t2 v' v)
have a1: "t1 ⇓ Lam [x].t" by fact (all assumptions)
have ih1: "〈t1,[]〉 7→* 〈Lam [x].t,[]〉" by fact
have a2: "t2 ⇓ v'" by fact
have ih2: "〈t2,[]〉 7→* 〈v',[]〉" by fact
have a3: "t[x::=v'] ⇓ v" by fact
have ih3: "〈t[x::=v'],[]〉 7→* 〈v,[]〉" by fact

show "〈App t1 t2,[]〉 7→* 〈v,[]〉" sorry
qed Austin, 23. January 2010 � p. 22/51



Eval Implies Machine
theorem
assumes a: "t ⇓ t'"
shows "〈t,[]〉 7→* 〈t',[]〉"

using a
proof (induct)
case (e_Lam x t) (no assumption avail.)
show "〈Lam [x].t,[]〉 7→* 〈Lam [x].t,[]〉" sorry

next
case (e_App t1 x t t2 v' v)
have a1: "t1 ⇓ Lam [x].t" by fact (all assumptions)
have ih1: "〈t1,[]〉 7→* 〈Lam [x].t,[]〉" by fact
have a2: "t2 ⇓ v'" by fact
have ih2: "〈t2,[]〉 7→* 〈v',[]〉" by fact
have a3: "t[x::=v'] ⇓ v" by fact
have ih3: "〈t[x::=v'],[]〉 7→* 〈v,[]〉" by fact

show "〈App t1 t2,[]〉 7→* 〈v,[]〉" sorry
qed Austin, 23. January 2010 � p. 22/51

a

a



Eval Implies Machine
theorem
assumes a: "t ⇓ t'"
shows "〈t,[]〉 7→* 〈t',[]〉"

using a
proof (induct)
case (e_Lam x t) (no assumption avail.)
show "〈Lam [x].t,[]〉 7→* 〈Lam [x].t,[]〉" sorry

next
case (e_App t1 x t t2 v' v)
have a1: "t1 ⇓ Lam [x].t" by fact (all assumptions)
have ih1: "〈t1,[]〉 7→* 〈Lam [x].t,[]〉" by fact
have a2: "t2 ⇓ v'" by fact
have ih2: "〈t2,[]〉 7→* 〈v',[]〉" by fact
have a3: "t[x::=v'] ⇓ v" by fact
have ih3: "〈t[x::=v'],[]〉 7→* 〈v,[]〉" by fact

show "〈App t1 t2,[]〉 7→* 〈v,[]〉" sorry
qed Austin, 23. January 2010 � p. 22/51

a

a

thm machine.intros
thm machines.intros
thm eval_to_val



Eval Implies Machine
theorem
assumes a: "t ⇓ t'"
shows "〈t,[]〉 7→* 〈t',[]〉"

using a
proof (induct)
case (e_Lam x t) (no assumption avail.)
show "〈Lam [x].t,[]〉 7→* 〈Lam [x].t,[]〉" sorry

next
case (e_App t1 x t t2 v' v)
have a1: "t1 ⇓ Lam [x].t" by fact (all assumptions)
have ih1: "〈t1,[]〉 7→* 〈Lam [x].t,[]〉" by fact
have a2: "t2 ⇓ v'" by fact
have ih2: "〈t2,[]〉 7→* 〈v',[]〉" by fact
have a3: "t[x::=v'] ⇓ v" by fact
have ih3: "〈t[x::=v'],[]〉 7→* 〈v,[]〉" by fact

show "〈App t1 t2,[]〉 7→* 〈v,[]〉" sorry
qed Austin, 23. January 2010 � p. 22/51

a

a

thm machine.intros
thm machines.intros
thm eval_to_val

Proof Idea:

〈App t1 t2,[]〉
7→* 〈t1,[CAppL � t2]〉
7→* 〈Lam [x].t,[CAppL � t2]〉
7→* 〈t2,[CAppR (Lam [x].t) �]〉
7→* 〈v',[CAppR (Lam [x].t) �]〉
7→* 〈t[x::=v'],[]〉
7→* 〈v,[]〉



Eval Implies Machine
theorem
assumes a: "t ⇓ t'"
shows "〈t,[]〉 7→* 〈t',[]〉"

using a
proof (induct)
case (e_Lam x t) (no assumption avail.)
show "〈Lam [x].t,[]〉 7→* 〈Lam [x].t,[]〉" sorry

next
case (e_App t1 x t t2 v' v)
have a1: "t1 ⇓ Lam [x].t" by fact (all assumptions)
have ih1: "〈t1,[]〉 7→* 〈Lam [x].t,[]〉" by fact
have a2: "t2 ⇓ v'" by fact
have ih2: "〈t2,[]〉 7→* 〈v',[]〉" by fact
have a3: "t[x::=v'] ⇓ v" by fact
have ih3: "〈t[x::=v'],[]〉 7→* 〈v,[]〉" by fact

show "〈App t1 t2,[]〉 7→* 〈v,[]〉" sorry
qed Austin, 23. January 2010 � p. 22/51

a

a

thm machine.intros
thm machines.intros
thm eval_to_val



Eval Implies Machine
theorem
assumes a: "t ⇓ t'"
shows "〈t,[]〉 7→* 〈t',[]〉"

using a
proof (induct)
case (e_Lam x t) (no assumption avail.)
show "〈Lam [x].t,[]〉 7→* 〈Lam [x].t,[]〉" sorry

next
case (e_App t1 x t t2 v' v)
have a1: "t1 ⇓ Lam [x].t" by fact (all assumptions)
have ih1: "〈t1,[]〉 7→* 〈Lam [x].t,[]〉" by fact
have a2: "t2 ⇓ v'" by fact
have ih2: "〈t2,[]〉 7→* 〈v',[]〉" by fact
have a3: "t[x::=v'] ⇓ v" by fact
have ih3: "〈t[x::=v'],[]〉 7→* 〈v,[]〉" by fact

show "〈App t1 t2,[]〉 7→* 〈v,[]〉" sorry
qed Austin, 23. January 2010 � p. 22/51

a

a

thm machine.intros
thm machines.intros
thm eval_to_val



Eval Implies Machine
theorem
assumes a: "t ⇓ t'"
shows "〈t,Es〉 7→* 〈t',Es〉"

using a
proof (induct arbitrary: Es)
case (e_Lam x t) (no assumption avail.)
show "〈Lam [x].t,Es〉 7→* 〈Lam [x].t,Es〉" sorry

next
case (e_App t1 x t t2 v' v)
have a1: "t1 ⇓ Lam [x].t" by fact (all assumptions)
have ih1: "

∧
Es. 〈t1,Es〉 7→* 〈Lam [x].t,Es〉" by fact

have a2: "t2 ⇓ v'" by fact
have ih2: "

∧
Es. 〈t2,Es〉 7→* 〈v',Es〉" by fact

have a3: "t[x::=v'] ⇓ v" by fact
have ih3: "

∧
Es. 〈t[x::=v'],Es〉 7→* 〈v,Es〉" by fact

show "〈App t1 t2,Es〉 7→* 〈v,Es〉" sorry
qed Austin, 23. January 2010 � p. 23/51

a

a

thm machine.intros
thm machines.intros
thm eval_to_val



Equational Reasoning in Isar
One frequently wants to prove an equation
t1 = tn by means of a chain of equations, like

t1 = t2 = t3 = t4 = . . . = tn

This kind of reasoning is supported in Isar as:

have "t1 = t2" by just.
also have "... = t3" by just.
also have "... = t4" by just.
. . .
also have "... = tn" by just.
�nally have "t1 = tn" .

Austin, 23. January 2010 � p. 24/51



Equational Reasoning in Isar
One frequently wants to prove an equation
t1 = tn by means of a chain of equations, like

t1 = t2 = t3 = t4 = . . . = tn

This kind of reasoning is supported in Isar as:

have "t1 = t2" by just.
also have "... = t3" by just.
also have "... = t4" by just.
. . .
also have "... = tn" by just.
�nally have "t1 = tn" .

Austin, 23. January 2010 � p. 24/51



Weakening Lemma
(trivial / routine)

Austin, 23. January 2010 � p. 25/51



Definition of Types
nominal_datatype ty =
tVar "string"
| tArr "ty" "ty" ("_→ _")

(x :T ) ∈ Γ valid Γ

Γ ` x : T
Γ ` t1 : T1→T2 Γ ` t2 : T1

Γ ` t1 t2 : T2

atom x # Γ (x :T1) ::Γ ` t : T2

Γ ` λx.t : T1→T2

valid []
atom x # Γ valid Γ

valid (x :T ) ::Γ

Austin, 23. January 2010 � p. 26/51



Definition of Types
nominal_datatype ty =
tVar "string"
| tArr "ty" "ty" ("_→ _")

(x :T ) ∈ Γ valid Γ
Γ ` x : T

Γ ` t1 : T1→T2 Γ ` t2 : T1

Γ ` t1 t2 : T2

atom x # Γ (x :T1) ::Γ ` t : T2

Γ ` λx.t : T1→T2

valid []
atom x # Γ valid Γ

valid (x :T ) ::Γ
Austin, 23. January 2010 � p. 26/51



Typing Judgements
types ty_ctx = "(name×ty) list"

inductive
valid :: "ty_ctx⇒ bool"

where
v1: "valid []"
| v2: "[[valid Γ ; atom x#Γ ]]=⇒ valid ((x,T)#Γ )"

inductive
typing :: "ty_ctx⇒ lam⇒ ty⇒ bool" ("_ ` _ : _")

where
t_Var: "[[valid Γ ; (x,T) ∈ set Γ ]] =⇒ Γ ` Var x : T"
| t_App: "[[Γ ` t1 : T1→T2; Γ ` t2 : T1]] =⇒ Γ ` App t1 t2 : T2"
| t_Lam: "[[atom x#Γ ; (x,T1)#Γ ` t : T2]] =⇒ Γ ` Lam [x].t : T1→ T2"

Austin, 23. January 2010 � p. 27/51



Typing Judgements
types ty_ctx = "(name×ty) list"

inductive
valid :: "ty_ctx⇒ bool"

where
v1: "valid []"
| v2: "[[valid Γ ; atom x#Γ ]]=⇒ valid ((x,T)#Γ )"

inductive
typing :: "ty_ctx⇒ lam⇒ ty⇒ bool" ("_ ` _ : _")

where
t_Var: "[[valid Γ ; (x,T) ∈ set Γ ]] =⇒ Γ ` Var x : T"
| t_App: "[[Γ ` t1 : T1→T2; Γ ` t2 : T1]] =⇒ Γ ` App t1 t2 : T2"
| t_Lam: "[[atom x#Γ ; (x,T1)#Γ ` t : T2]] =⇒ Γ ` Lam [x].t : T1→ T2"

Austin, 23. January 2010 � p. 27/51

#: list cons
#: freshness

(\<sharp>)



Freshness
Freshness is a concept automatically de�ned in
Nominal Isabelle; it corresponds roughly to the
notion of �not-free-in�.

lemma
�xes x::"name"
shows "atom x # Lam [x].t"
and "atom x # (t1, t2) =⇒ atom x # App t1 t2"
and "atom x # Var y =⇒ atom x # y"
and "[[atom x # t1; atom x # t2]] =⇒ atom x # (t1, t2)"
and "[[atom x # l1; atom x # l2]] =⇒ atom x # (l1 @ l2)"
and "atom x # y =⇒ x 6= y"
by (simp_all add: lam.fresh fresh_append fresh_at_base)

Austin, 23. January 2010 � p. 28/51



Freshness
Freshness is a concept automatically de�ned in
Nominal Isabelle; it corresponds roughly to the
notion of �not-free-in�.

lemma ty_fresh:
�xes x::"name"
and T::"ty"
shows "atom x # T"

by (induct T rule: ty.induct)
(simp_all add: ty.fresh pure_fresh)

Austin, 23. January 2010 � p. 29/51



The Weakening Lemma
abbreviation
"sub_ty_ctx" :: "ty_ctx⇒ ty_ctx⇒ bool" ("_v _")

where
"Γ 1 v Γ 2 ≡ ∀ x. x ∈ set Γ 1 −→ x ∈ set Γ 2"

lemma weakening:
�xes Γ 1 Γ 2::"(name×ty) list"
assumes a: "Γ 1 ` t : T"
and b: "valid Γ 2"
and c: "Γ 1 v Γ 2"
shows "Γ 2 ` t : T"

using a b c
proof (induct arbitrary: Γ 2)

Austin, 23. January 2010 � p. 30/51



Your Turn: Variable Case
lemma
�xes Γ 1 Γ 2::"ty_ctx"
assumes a: "Γ 1 ` t : T"
and b: "valid Γ 2"
and c: "Γ 1 v Γ 2"
shows "Γ 2 ` t : T"

using a b c
proof (induct arbitrary: Γ 2)
case (t_Var Γ 1 x T)
have a1: "valid Γ 1" by fact
have a2: "(x,T) ∈ set Γ 1" by fact
have a3: "valid Γ 2" by fact
have a4: "Γ 1 v Γ 2" by fact
. . .

show "Γ 2 ` Var x : T" sorry

Austin, 23. January 2010 � p. 31/51

a



Our Proof for the Variable Case
lemma
�xes Γ 1 Γ 2::"ty_ctx"
assumes a: "Γ 1 ` t : T"
and b: "valid Γ 2"
and c: "Γ 1 v Γ 2"
shows "Γ 2 ` t : T"

using a b c
proof (induct arbitrary: Γ 2)
case (t_Var Γ 1 x T)
have "Γ 1 v Γ 2" by fact
moreover
have "valid Γ 2" by fact
moreover
have "(x,T)∈ set Γ 1" by fact
ultimately show "Γ 2 ` Var x : T" by auto

Austin, 23. January 2010 � p. 32/51



Induction Principle for Typing
The induction principle that comes with the
typing de�nition is as follows:

∀Γ xT. (x :T ) ∈ Γ ∧ validΓ ⇒ P Γ (x) T

∀Γ t1 t2 T1 T2.
P Γ t1 (T1→T2) ∧ P Γ t2 T1 ⇒ P Γ (t1 t2) T2

∀Γ x t T1 T2.
x#Γ ∧ P ((x :T1) ::Γ ) t T2 ⇒ P Γ (λx.t) (T1→T2)

Γ ` t : T ⇒ P Γ t T

Austin, 23. January 2010 � p. 33/51

Note the quanti�ers!



Proof Idea for the Lambda Cs.
x # Γ (x :T1) ::Γ ` t : T2

Γ ` λx.t : T1→T2

If Γ1` t :T1 then ∀Γ2. validΓ2 ∧ Γ1vΓ2⇒Γ2` t :T2

For all Γ1, x, t, T1 and T2:

We know:
∀Γ3. validΓ3 ∧ (x :T1) ::Γ1vΓ3 ⇒ Γ3 ` t :T1

x # Γ1

validΓ2

Γ1vΓ2

We have to show:
Γ2`λx.t :T1→T2

Austin, 23. January 2010 � p. 34/51



Proof Idea for the Lambda Cs.
x # Γ (x :T1) ::Γ ` t : T2

Γ ` λx.t : T1→T2

If Γ1` t :T1 then ∀Γ2. validΓ2 ∧ Γ1vΓ2⇒Γ2` t :T2

For all Γ1, x, t, T1 and T2:

We know:
∀Γ3. validΓ3 ∧ (x :T1) ::Γ1vΓ3 ⇒ Γ3 ` t :T1

x # Γ1

validΓ2

Γ1vΓ2

We have to show:
Γ2`λx.t :T1→T2

Austin, 23. January 2010 � p. 34/51



Proof Idea for the Lambda Cs.
x # Γ (x :T1) ::Γ ` t : T2

Γ ` λx.t : T1→T2

If Γ1` t :T1 then ∀Γ2. validΓ2 ∧ Γ1vΓ2⇒Γ2` t :T2

For all Γ1, x, t, T1 and T2:

We know:
∀Γ3. validΓ3 ∧ (x :T1) ::Γ1vΓ3 ⇒ Γ3 ` t :T1

x # Γ1

validΓ2

Γ1vΓ2

We have to show:
Γ2`λx.t :T1→T2

Austin, 23. January 2010 � p. 34/51



Proof Idea for the Lambda Cs.
x # Γ (x :T1) ::Γ ` t : T2

Γ ` λx.t : T1→T2

If Γ1` t :T1 then ∀Γ2. validΓ2 ∧ Γ1vΓ2⇒Γ2` t :T2

For all Γ1, x, t, T1 and T2:

We know:
∀Γ3. validΓ3 ∧ (x :T1) ::Γ1vΓ3 ⇒ Γ3 ` t :T1

x # Γ1

validΓ2

Γ1vΓ2

We have to show:
Γ2`λx.t :T1→T2

Austin, 23. January 2010 � p. 34/51

Γ3 7→ (x :T1) ::Γ2



Your Turn: Lambda Case
lemma
�xes Γ 1 Γ 2::"ty_ctx"
assumes a: "Γ 1 ` t : T"
and b: "valid Γ 2"
and c: "Γ 1 v Γ 2"
shows "Γ 2 ` t : T"

using a b c
proof (induct arbitrary: Γ 2)
case (t_Lam x Γ 1 T1 t T2)
have ih: "

∧
Γ 3. [[valid Γ 3; (x,T1)#Γ 1 v Γ 3]] =⇒ Γ 3 ` t : T2" by fact

have a0: "atom x#Γ 1" by fact
have a1: "valid Γ 2" by fact
have a2: "Γ 1 v Γ 2" by fact
. . .

show "Γ 2 ` Lam [x].t : T1→ T2" sorry

Austin, 23. January 2010 � p. 35/51

a



Strong Induction Principle

Austin, 23. January 2010 � p. 36/51

Instead we are going to use the strong induction
principle and set up the induction so that the
binder �avoids� Γ2.



2nd Attempt
lemma
�xes Γ 1 Γ 2::"ty_ctx"
assumes a: "Γ 1 ` t : T"
and b: "valid Γ 2"
and c: "Γ 1 v Γ 2"
shows "Γ 2 ` t : T"

using a b c
proof (induct arbitrary: Γ 2)
case (t_Lam x Γ 1 T1 t T2)
have ih: "

∧
Γ 3. [[valid Γ 3; (x,T1)#Γ 1 v Γ 3]] =⇒ Γ 3 ` t : T2" by fact

have a0: "atom x#Γ 1" by fact
have a1: "valid Γ 2" by fact
have a2: "Γ 1 v Γ 2" by fact
. . .

show "Γ 2 ` Lam [x].t : T1→ T2" sorry

Austin, 23. January 2010 � p. 37/51



2nd Attempt
lemma
�xes Γ 1 Γ 2::"ty_ctx"
assumes a: "Γ 1 ` t : T"
and b: "valid Γ 2"
and c: "Γ 1 v Γ 2"
shows "Γ 2 ` t : T"

using a b c
proof (nominal_induct avoiding: Γ 2 rule: typing.strong_induct)
case (t_Lam x Γ 1 T1 t T2)
have vc: "atom x#Γ 2" by fact
have ih: "

∧
Γ 3. [[valid Γ 3; (x,T1)#Γ 1 v Γ 3]] =⇒ Γ 3 ` t : T2" by fact

have a0: "atom x#Γ 1" by fact
have a1: "valid Γ 2" by fact
have a2: "Γ 1 v Γ 2" by fact
. . .

show "Γ 2 ` Lam [x].t : T1→ T2" sorry
Austin, 23. January 2010 � p. 38/51

a

a



lemma weakening:
�xes Γ 1 Γ 2::"ty_ctx"
assumes a: "Γ 1 ` t : T" and b: "valid Γ 2" and c: "Γ 1 v Γ 2"
shows "Γ 2 ` t : T"

using a b c
proof (nominal_induct avoiding: Γ 2 rule: typing.strong_induct)
case (t_Lam x Γ 1 T1 t T2)
have vc: "atom x#Γ 2" by fact
have ih: "[[valid ((x,T1)#Γ 2); (x,T1)#Γ 1v(x,T1)#Γ 2]]

=⇒ (x,T1)#Γ 2 ` t:T2" by fact
have "Γ 1 v Γ 2" by fact
then have "(x,T1)#Γ 1 v (x,T1)#Γ 2" by simp
moreover
have "valid Γ 2" by fact
then have "valid ((x,T1)#Γ 2)" using vc by auto
ultimately have "(x,T1)#Γ 2 ` t : T2" using ih by simp
then show "Γ 2 ` Lam [x].t : T1→T2" using vc by auto

qed (auto)
Austin, 23. January 2010 � p. 39/51



How To Prove
False Using the

Variable Convention
(on Paper)

Austin, 23. January 2010 � p. 40/51



So Far So Good
A Faulty Lemma with the Variable Convention?

Variable Convention:

IfM1, . . . ,Mn occur in a certain mathematical context
(e.g. de�nition, proof), then in these terms all bound
variables are chosen to be different from the free variables.

Barendregt in �The Lambda-Calculus: Its Syntax and Semantics�

Inductive De�nitions:

prem1 . . . premn scs

concl

Rule Inductions:

1.) Assume the property for
the premises. Assume
the side-conditions.

2.) Show the property for
the conclusion.

Austin, 23. January 2010 � p. 41/51



Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:

Let t 7→ t′. If y # t then y # t′.

Austin, 23. January 2010 � p. 42/51



Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:

Let t 7→ t′. If y # t then y # t′.

Austin, 23. January 2010 � p. 42/51



Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:

Let t 7→ t′. If y # t then y # t′.

Cases 1 and 2 are trivial:

If y # x then y # x.
If y # t1 t2 then y # t1 t2.

Austin, 23. January 2010 � p. 42/51



Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:

Let t 7→ t′. If y # t then y # t′.

Case 3:

We know y # λx.t. We have to show y # t′.

The IH says: if y # t then y # t′.

So we have y # t. Hence y # t′ by IH. Done!

Austin, 23. January 2010 � p. 42/51



Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:

Let t 7→ t′. If y # t then y # t′.

Case 3:

We know y # λx.t. We have to show y # t′.

The IH says: if y # t then y # t′.

So we have y # t. Hence y # t′ by IH. Done!

Austin, 23. January 2010 � p. 42/51

Variable Convention:

If M1, . . . ,Mn occur in a certain mathematical context
(e.g. de�nition, proof), then in these terms all bound vari-
ables are chosen to be different from the free variables.

In our case:

The free variables are y and t′; the bound one is x.

By the variable convention we conclude that x 6= y.



Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:

Let t 7→ t′. If y # t then y # t′.

Case 3:

We know y # λx.t. We have to show y # t′.

The IH says: if y # t then y # t′.

So we have y # t. Hence y # t′ by IH. Done!

Austin, 23. January 2010 � p. 42/51

Variable Convention:

If M1, . . . ,Mn occur in a certain mathematical context
(e.g. de�nition, proof), then in these terms all bound vari-
ables are chosen to be different from the free variables.

In our case:

The free variables are y and t′; the bound one is x.

By the variable convention we conclude that x 6= y.

y 6∈fv(λx.t)⇐⇒ y 6∈fv(t)−{x} x6=y⇐⇒ y 6∈fv(t)



Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:

Let t 7→ t′. If y # t then y # t′.

Case 3:

We know y # λx.t. We have to show y # t′.

The IH says: if y # t then y # t′.
So we have y # t. Hence y # t′ by IH. Done!

Austin, 23. January 2010 � p. 42/51

Variable Convention:

If M1, . . . ,Mn occur in a certain mathematical context
(e.g. de�nition, proof), then in these terms all bound vari-
ables are chosen to be different from the free variables.

In our case:

The free variables are y and t′; the bound one is x.

By the variable convention we conclude that x 6= y.

y 6∈fv(λx.t)⇐⇒ y 6∈fv(t)−{x} x6=y⇐⇒ y 6∈fv(t)



Faulty Reasoning
Consider the two-place relation foo:

x 7→ x t1 t2 7→ t1 t2
t 7→ t′

λx.t 7→ t′

The lemma we going to prove:

Let t 7→ t′. If y # t then y # t′.

Case 3:

We know y # λx.t. We have to show y # t′.

The IH says: if y # t then y # t′.
So we have y # t. Hence y # t′ by IH. Done!

Austin, 23. January 2010 � p. 42/51



VC-Compatibility
We introduced two conditions that make the VC
safe to use in rule inductions:

the relation needs to be equivariant, and
the binder is not allowed to occur in the
support of the conclusion (not free in the
conclusion)

Austin, 23. January 2010 � p. 43/51



VC-Compatibility
We introduced two conditions that make the VC
safe to use in rule inductions:

the relation needs to be equivariant, and
the binder is not allowed to occur in the
support of the conclusion (not free in the
conclusion)

Austin, 23. January 2010 � p. 43/51

A relation R is equivariant iff

∀π t1 . . . tn
R t1 . . . tn ⇒ R(π·t1) . . . (π·tn)

This means the relation has to be invariant under
permutative renaming of variables.



VC-Compatibility
We introduced two conditions that make the VC
safe to use in rule inductions:

the relation needs to be equivariant, and
the binder is not allowed to occur in the
support of the conclusion (not free in the
conclusion)

Austin, 23. January 2010 � p. 43/51



Typing Judgements (2)
inductive
typing :: "ty_ctx⇒ lam⇒ ty⇒ bool" ("_ ` _ : _")

where
t_Var: "[[valid Γ ; (x,T) ∈ set Γ ]] =⇒ Γ ` Var x : T"
| t_App: "[[Γ ` t1 : T1→T2; Γ ` t2 : T1]] =⇒ Γ ` App t1 t2 : T2"
| t_Lam: "[[atom x#Γ ; (x,T1)#Γ ` t : T2]] =⇒ Γ ` Lam [x].t : T1→ T2"

equivariance typing
nominal_inductive typing
avoids t_Lam: "x"

unfolding fresh_star_def
by (simp_all add: fresh_Pair lam.fresh ty_fresh)

Austin, 23. January 2010 � p. 44/51



Typing Judgements (2)
inductive
typing :: "ty_ctx⇒ lam⇒ ty⇒ bool" ("_ ` _ : _")

where
t_Var: "[[valid Γ ; (x,T) ∈ set Γ ]] =⇒ Γ ` Var x : T"
| t_App: "[[Γ ` t1 : T1→T2; Γ ` t2 : T1]] =⇒ Γ ` App t1 t2 : T2"
| t_Lam: "[[atom x#Γ ; (x,T1)#Γ ` t : T2]] =⇒ Γ ` Lam [x].t : T1→ T2"

equivariance typing
nominal_inductive typing
avoids t_Lam: "x"

unfolding fresh_star_def
by (simp_all add: fresh_Pair lam.fresh ty_fresh)

Austin, 23. January 2010 � p. 44/51

Subgoals

1.
∧
x Γ T1 t T2.
[[atom x # Γ ; (x, T1)·Γ ` t : T2]] =⇒ {atom x} #* (Γ , Lam

[x]. t, T1→ T2)
2.

∧
x Γ T1 t T2. [[atom x # Γ ; (x, T1)·Γ ` t : T2]] =⇒ �nite

{atom x}



Typing Judgements (2)
inductive
typing :: "ty_ctx⇒ lam⇒ ty⇒ bool" ("_ ` _ : _")

where
t_Var: "[[valid Γ ; (x,T) ∈ set Γ ]] =⇒ Γ ` Var x : T"
| t_App: "[[Γ ` t1 : T1→T2; Γ ` t2 : T1]] =⇒ Γ ` App t1 t2 : T2"
| t_Lam: "[[atom x#Γ ; (x,T1)#Γ ` t : T2]] =⇒ Γ ` Lam [x].t : T1→ T2"

equivariance typing
nominal_inductive typing
avoids t_Lam: "x"
unfolding fresh_star_def
by (simp_all add: fresh_Pair lam.fresh ty_fresh)

Austin, 23. January 2010 � p. 44/51

Subgoals

1.
∧
x Γ T1 t T2.
[[atom x # Γ ; (x, T1)·Γ ` t : T2]] =⇒ {atom x} #* (Γ , Lam

[x]. t, T1→ T2)
2.

∧
x Γ T1 t T2. [[atom x # Γ ; (x, T1)·Γ ` t : T2]] =⇒ �nite

{atom x}



Capture-Avoiding
Substitution and the
Substitution Lemma

Austin, 23. January 2010 � p. 45/51



Capture-Avoiding Subst.
Lambda.thy contains a de�nition of capture-
avoiding substitution with the characteristic
equations:

"(Var x)[y ::= s] = (if x=y then s else (Var x))"

"(App t1 t2)[y ::= s] = App (t1[y::=s]) (t2[y::=s])"

"atom x # (y,s)
=⇒ (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"

Despite its looks, this is a total function!

Austin, 23. January 2010 � p. 46/51



Capture-Avoiding Subst.
Lambda.thy contains a de�nition of capture-
avoiding substitution with the characteristic
equations:

"(Var x)[y ::= s] = (if x=y then s else (Var x))"

"(App t1 t2)[y ::= s] = App (t1[y::=s]) (t2[y::=s])"

"atom x # (y,s)
=⇒ (Lam [x].t)[y::=s] = Lam [x].(t[y::=s])"

Despite its looks, this is a total function!

Austin, 23. January 2010 � p. 46/51



Substitution Lemma: If x 6≡ y and x 6∈ fv(L), then
M [x := N ][y := L] ≡M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .

Case 1: M is a variable.
Case 1.1. M ≡ x. Then both sides equal N [y := L] since

x 6≡ y.
Case 1.2.M ≡ y. Then both sides equal L, for x 6∈ fv(L)

implies L[x := . . .] ≡ L.
Case 1.3.M ≡ z 6≡ x, y. Then both sides equal z.

Case 2: M ≡ λz.M1. By the variable convention we may
assume that z 6≡ x, y and z is not free inN,L.

(λz.M1)[x :=N ][y :=L]≡ λz.(M1[x :=N ][y :=L])
≡ λz.(M1[y :=L][x :=N [y :=L]])
≡ (λz.M1)[y :=L][x :=N [y :=L]].

Case 3: M ≡M1M2. The statement follows again from
the induction hypothesis. �

Austin, 23. January 2010 � p. 47/51

Remember only if y 6= x and x 6∈ fv(N) then

(λy.M)[x := N ] = λy.(M [x := N ])

(λz.M1)[x := N ][y := L]

≡ (λz.(M1[x := N ]))[y := L]
1←

≡ λz.(M1[x := N ][y := L])
2←

≡ λz.(M1[y := L][x := N [y := L]]) IH

≡ (λz.(M1[y := L]))[x := N [y := L]])
2→ !

≡ (λz.M1)[y := L][x := N [y := L]].
1→



Substitution Lemma: If x 6≡ y and x 6∈ fv(L), then
M [x := N ][y := L] ≡M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .

Case 1: M is a variable.
Case 1.1. M ≡ x. Then both sides equal N [y := L] since

x 6≡ y.
Case 1.2.M ≡ y. Then both sides equal L, for x 6∈ fv(L)

implies L[x := . . .] ≡ L.
Case 1.3.M ≡ z 6≡ x, y. Then both sides equal z.

Case 2: M ≡ λz.M1. By the variable convention we may
assume that z 6≡ x, y and z is not free inN,L.

(λz.M1)[x :=N ][y :=L]≡ λz.(M1[x :=N ][y :=L])
≡ λz.(M1[y :=L][x :=N [y :=L]])
≡ (λz.M1)[y :=L][x :=N [y :=L]].

Case 3: M ≡M1M2. The statement follows again from
the induction hypothesis. �

Austin, 23. January 2010 � p. 47/51

Remember only if y 6= x and x 6∈ fv(N) then

(λy.M)[x := N ] = λy.(M [x := N ])

(λz.M1)[x := N ][y := L]

≡ (λz.(M1[x := N ]))[y := L]
1←

≡ λz.(M1[x := N ][y := L])
2←

≡ λz.(M1[y := L][x := N [y := L]]) IH

≡ (λz.(M1[y := L]))[x := N [y := L]])
2→ !

≡ (λz.M1)[y := L][x := N [y := L]].
1→



Substitution Lemma: If x 6≡ y and x 6∈ fv(L), then
M [x := N ][y := L] ≡M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .

Case 1: M is a variable.
Case 1.1. M ≡ x. Then both sides equal N [y := L] since

x 6≡ y.
Case 1.2.M ≡ y. Then both sides equal L, for x 6∈ fv(L)

implies L[x := . . .] ≡ L.
Case 1.3.M ≡ z 6≡ x, y. Then both sides equal z.

Case 2: M ≡ λz.M1. By the variable convention we may
assume that z 6≡ x, y and z is not free inN,L.

(λz.M1)[x :=N ][y :=L]≡ λz.(M1[x :=N ][y :=L])
≡ λz.(M1[y :=L][x :=N [y :=L]])
≡ (λz.M1)[y :=L][x :=N [y :=L]].

Case 3: M ≡M1M2. The statement follows again from
the induction hypothesis. �

Austin, 23. January 2010 � p. 47/51

Remember only if y 6= x and x 6∈ fv(N) then

(λy.M)[x := N ] = λy.(M [x := N ])

(λz.M1)[x := N ][y := L]

≡ (λz.(M1[x := N ]))[y := L]
1←

≡ λz.(M1[x := N ][y := L])
2←

≡ λz.(M1[y := L][x := N [y := L]]) IH

≡ (λz.(M1[y := L]))[x := N [y := L]])
2→ !

≡ (λz.M1)[y := L][x := N [y := L]].
1→



Substitution Lemma: If x 6≡ y and x 6∈ fv(L), then
M [x := N ][y := L] ≡M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .

Case 1: M is a variable.
Case 1.1. M ≡ x. Then both sides equal N [y := L] since

x 6≡ y.
Case 1.2.M ≡ y. Then both sides equal L, for x 6∈ fv(L)

implies L[x := . . .] ≡ L.
Case 1.3.M ≡ z 6≡ x, y. Then both sides equal z.

Case 2: M ≡ λz.M1. By the variable convention we may
assume that z 6≡ x, y and z is not free inN,L.

(λz.M1)[x :=N ][y :=L]≡ λz.(M1[x :=N ][y :=L])
≡ λz.(M1[y :=L][x :=N [y :=L]])
≡ (λz.M1)[y :=L][x :=N [y :=L]].

Case 3: M ≡M1M2. The statement follows again from
the induction hypothesis. �

Austin, 23. January 2010 � p. 47/51

Remember only if y 6= x and x 6∈ fv(N) then

(λy.M)[x := N ] = λy.(M [x := N ])

(λz.M1)[x := N ][y := L]

≡ (λz.(M1[x := N ]))[y := L]
1←

≡ λz.(M1[x := N ][y := L])
2←

≡ λz.(M1[y := L][x := N [y := L]]) IH

≡ (λz.(M1[y := L]))[x := N [y := L]])
2→ !

≡ (λz.M1)[y := L][x := N [y := L]].
1→



Substitution Lemma: If x 6≡ y and x 6∈ fv(L), then
M [x := N ][y := L] ≡M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .

Case 1: M is a variable.
Case 1.1. M ≡ x. Then both sides equal N [y := L] since

x 6≡ y.
Case 1.2.M ≡ y. Then both sides equal L, for x 6∈ fv(L)

implies L[x := . . .] ≡ L.
Case 1.3.M ≡ z 6≡ x, y. Then both sides equal z.

Case 2: M ≡ λz.M1. By the variable convention we may
assume that z 6≡ x, y and z is not free inN,L.

(λz.M1)[x :=N ][y :=L]≡ λz.(M1[x :=N ][y :=L])
≡ λz.(M1[y :=L][x :=N [y :=L]])
≡ (λz.M1)[y :=L][x :=N [y :=L]].

Case 3: M ≡M1M2. The statement follows again from
the induction hypothesis. �

Austin, 23. January 2010 � p. 47/51

Remember only if y 6= x and x 6∈ fv(N) then

(λy.M)[x := N ] = λy.(M [x := N ])

(λz.M1)[x := N ][y := L]

≡ (λz.(M1[x := N ]))[y := L]
1←

≡ λz.(M1[x := N ][y := L])
2←

≡ λz.(M1[y := L][x := N [y := L]]) IH

≡ (λz.(M1[y := L]))[x := N [y := L]])
2→ !

≡ (λz.M1)[y := L][x := N [y := L]].
1→



Substitution Lemma: If x 6≡ y and x 6∈ fv(L), then
M [x := N ][y := L] ≡M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .

Case 1: M is a variable.
Case 1.1. M ≡ x. Then both sides equal N [y := L] since

x 6≡ y.
Case 1.2.M ≡ y. Then both sides equal L, for x 6∈ fv(L)

implies L[x := . . .] ≡ L.
Case 1.3.M ≡ z 6≡ x, y. Then both sides equal z.

Case 2: M ≡ λz.M1. By the variable convention we may
assume that z 6≡ x, y and z is not free inN,L.

(λz.M1)[x :=N ][y :=L]≡ λz.(M1[x :=N ][y :=L])
≡ λz.(M1[y :=L][x :=N [y :=L]])
≡ (λz.M1)[y :=L][x :=N [y :=L]].

Case 3: M ≡M1M2. The statement follows again from
the induction hypothesis. �

Austin, 23. January 2010 � p. 47/51

Remember only if y 6= x and x 6∈ fv(N) then

(λy.M)[x := N ] = λy.(M [x := N ])

(λz.M1)[x := N ][y := L]

≡ (λz.(M1[x := N ]))[y := L]
1←

≡ λz.(M1[x := N ][y := L])
2←

≡ λz.(M1[y := L][x := N [y := L]]) IH

≡ (λz.(M1[y := L]))[x := N [y := L]])
2→ !

≡ (λz.M1)[y := L][x := N [y := L]].
1→



Austin, 23. January 2010 � p. 48/51

lemma substitution_lemma:
assumes a: "x 6= y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x 6=y" by fact
have a2: "atom x # L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z 6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed



Austin, 23. January 2010 � p. 48/51

lemma substitution_lemma:
assumes a: "x 6= y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x 6=y" by fact
have a2: "atom x # L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z 6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed



Austin, 23. January 2010 � p. 48/51

lemma substitution_lemma:
assumes a: "x 6= y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x 6=y" by fact
have a2: "atom x # L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z 6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed



Austin, 23. January 2010 � p. 48/51

lemma substitution_lemma:
assumes a: "x 6= y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x 6=y" by fact
have a2: "atom x # L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z 6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed



Austin, 23. January 2010 � p. 48/51

lemma substitution_lemma:
assumes a: "x 6= y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x 6=y" by fact
have a2: "atom x # L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z 6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed



Austin, 23. January 2010 � p. 48/51

lemma substitution_lemma:
assumes a: "x 6= y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x 6=y" by fact
have a2: "atom x # L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z 6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed



Austin, 23. January 2010 � p. 48/51

lemma substitution_lemma:
assumes a: "x 6= y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x 6=y" by fact
have a2: "atom x # L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z 6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed



Austin, 23. January 2010 � p. 48/51

lemma substitution_lemma:
assumes a: "x 6= y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Var z)
have a1: "x 6=y" by fact
have a2: "atom x # L" by fact
show "Var z[x::=N][y::=L] = Var z[y::=L][x::=N[y::=L]]" (is "?LHS = ?RHS")
proof -
{ assume c1: "z=x"
have "(1)": "?LHS = N[y::=L]" using c1 by simp
have "(2)": "?RHS = N[y::=L]" using c1 a1 by simp
have "?LHS = ?RHS" using "(1)" "(2)" by simp }

moreover
{ assume c2: "z=y" "z6=x"

have "?LHS = ?RHS" sorry }
moreover
{ assume c3: "z 6=x" "z6=y"

have "?LHS = ?RHS" sorry }
ultimately show "?LHS = ?RHS" by blast

qed

a

a

thm forget:
atom x # t =⇒ t [x ::= s] = t



Austin, 23. January 2010 � p. 49/51

lemma substitution_lemma:
assumes a: "x 6= y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Lam z M1)
have ih: "[[x6=y; atom x#L]] =⇒ M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "atom x#L" by fact
have vc: "atom z#x" "atom z#y" "atom z#N" "atom z#L" by fact+
then have "atom z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = ..." sorry

also have "... = ?RHS" sorry
�nally show "?LHS = ?RHS" by simp

qed
next



Austin, 23. January 2010 � p. 49/51

lemma substitution_lemma:
assumes a: "x 6= y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Lam z M1)
have ih: "[[x6=y; atom x#L]] =⇒ M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "atom x#L" by fact
have vc: "atom z#x" "atom z#y" "atom z#N" "atom z#L" by fact+
then have "atom z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = ..." sorry

also have "... = ?RHS" sorry
�nally show "?LHS = ?RHS" by simp

qed
next



Austin, 23. January 2010 � p. 49/51

lemma substitution_lemma:
assumes a: "x 6= y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Lam z M1)
have ih: "[[x6=y; atom x#L]] =⇒ M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "atom x#L" by fact
have vc: "atom z#x" "atom z#y" "atom z#N" "atom z#L" by fact+
then have "atom z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = ..." sorry

also have "... = ?RHS" sorry
�nally show "?LHS = ?RHS" by simp

qed
next



Austin, 23. January 2010 � p. 49/51

lemma substitution_lemma:
assumes a: "x 6= y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Lam z M1)
have ih: "[[x6=y; atom x#L]] =⇒ M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "atom x#L" by fact
have vc: "atom z#x" "atom z#y" "atom z#N" "atom z#L" by fact+
then have "atom z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = ..." sorry

also have "... = ?RHS" sorry
�nally show "?LHS = ?RHS" by simp

qed
next



Austin, 23. January 2010 � p. 49/51

lemma substitution_lemma:
assumes a: "x 6= y" "atom x # L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"

using a proof (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
case (Lam z M1)
have ih: "[[x6=y; atom x#L]] =⇒ M1[x::=N][y::=L] = M1[y::=L][x::=N[y::=L]]" by fact
have "x6=y" by fact
have "atom x#L" by fact
have vc: "atom z#x" "atom z#y" "atom z#N" "atom z#L" by fact+
then have "atom z#N[y::=L]" by (simp add: fresh_fact)
show "(Lam [z].M1)[x::=N][y::=L]=(Lam [z].M1)[y::=L][x::=N[y::=L]]" (is "?LHS=?RHS")
proof -
have "?LHS = ..." sorry

also have "... = ?RHS" sorry
�nally show "?LHS = ?RHS" by simp

qed
next

a



Substitution Lemma: If x 6≡ y and x 6∈ fv(L), then
M [x := N ][y := L] ≡M [y := L][x := N [y := L]]

Proof: By induction on the structure ofM .

Case 1: M is a variable.
Case 1.1. M ≡ x. Then both sides equal N [y := L] since

x 6≡ y.
Case 1.2.M ≡ y. Then both sides equal L, for x 6∈ fv(L)

implies L[x := . . .] ≡ L.
Case 1.3.M ≡ z 6≡ x, y. Then both sides equal z.

Case 2: M ≡ λz.M1. By the variable convention we may
assume that z 6≡ x, y and z is not free inN,L.

(λz.M1)[x :=N ][y :=L]≡ λz.(M1[x :=N ][y :=L])
≡ λz.(M1[y :=L][x :=N [y :=L]])
≡ (λz.M1)[y :=L][x :=N [y :=L]].

Case 3: M ≡M1M2. The statement follows again from
the induction hypothesis. �

Austin, 23. January 2010 � p. 50/51



Substitution Lemma
The strong structural induction principle for
lambda-terms allowed us to follow Barendregt's
proof quite closely. It also enables Isabelle to
�nd this proof automatically:

lemma substitution_lemma:
assumes asm: "x 6= y" "atom x#L"
shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]"
using asm

by (nominal_induct M avoiding: x y N L rule: lam.strong_induct)
(auto simp add: fresh_fact forget)

Austin, 23. January 2010 � p. 51/51


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	anm0: 


