diff -r 16ffbc8442ca -r ffb5a181844b Nominal/Ex/CoreHaskell.thy --- a/Nominal/Ex/CoreHaskell.thy Sun Dec 26 16:35:16 2010 +0000 +++ b/Nominal/Ex/CoreHaskell.thy Tue Dec 28 00:20:50 2010 +0000 @@ -102,218 +102,8 @@ thm core_haskell.size_eqvt thm core_haskell.supp -(* -lemma fresh_star_minus_perm: "as \* - p = as \* (p :: perm)" - unfolding fresh_star_def Ball_def - by auto (simp_all add: fresh_minus_perm) - -primrec permute_bv_vs_raw -where "permute_bv_vs_raw p VsNil_raw = VsNil_raw" -| "permute_bv_vs_raw p (VsCons_raw v t l) = VsCons_raw (p \ v) t (permute_bv_vs_raw p l)" -primrec permute_bv_cvs_raw -where "permute_bv_cvs_raw p CvsNil_raw = CvsNil_raw" -| "permute_bv_cvs_raw p (CvsCons_raw v t l) = CvsCons_raw (p \ v) t (permute_bv_cvs_raw p l)" -primrec permute_bv_tvs_raw -where "permute_bv_tvs_raw p TvsNil_raw = TvsNil_raw" -| "permute_bv_tvs_raw p (TvsCons_raw v t l) = TvsCons_raw (p \ v) t (permute_bv_tvs_raw p l)" -primrec permute_bv_raw -where "permute_bv_raw p (Kpat_raw c l1 l2 l3) = - Kpat_raw c (permute_bv_tvs_raw p l1) (permute_bv_cvs_raw p l2) (permute_bv_vs_raw p l3)" - -quotient_definition "permute_bv_vs :: perm \ vars \ vars" -is "permute_bv_vs_raw" -quotient_definition "permute_bv_cvs :: perm \ cvars \ cvars" -is "permute_bv_cvs_raw" -quotient_definition "permute_bv_tvs :: perm \ tvars \ tvars" -is "permute_bv_tvs_raw" -quotient_definition "permute_bv :: perm \ pat \ pat" -is "permute_bv_raw" - -lemma rsp_pre: - "alpha_tvars_raw d a \ alpha_tvars_raw (permute_bv_tvs_raw x d) (permute_bv_tvs_raw x a)" - "alpha_cvars_raw e b \ alpha_cvars_raw (permute_bv_cvs_raw x e) (permute_bv_cvs_raw x b)" - "alpha_vars_raw f c \ alpha_vars_raw (permute_bv_vs_raw x f) (permute_bv_vs_raw x c)" - apply (erule_tac [!] alpha_inducts) - apply (simp_all only: alpha_intros perm permute_bv_tvs_raw.simps permute_bv_cvs_raw.simps permute_bv_vs_raw.simps) - done - -lemma [quot_respect]: - "(op = ===> alpha_pat_raw ===> alpha_pat_raw) permute_bv_raw permute_bv_raw" - "(op = ===> alpha_tvars_raw ===> alpha_tvars_raw) permute_bv_tvs_raw permute_bv_tvs_raw" - "(op = ===> alpha_cvars_raw ===> alpha_cvars_raw) permute_bv_cvs_raw permute_bv_cvs_raw" - "(op = ===> alpha_vars_raw ===> alpha_vars_raw) permute_bv_vs_raw permute_bv_vs_raw" - apply (simp_all add: rsp_pre) - apply clarify - apply (erule_tac alpha_inducts) - apply (simp_all) - apply (rule alpha_intros) - apply (simp_all add: rsp_pre) - done - -thm permute_bv_raw.simps[no_vars] - permute_bv_vs_raw.simps[quot_lifted] - permute_bv_cvs_raw.simps[quot_lifted] - permute_bv_tvs_raw.simps[quot_lifted] - -lemma permute_bv_pre: - "permute_bv p (Kpat c l1 l2 l3) = - Kpat c (permute_bv_tvs p l1) (permute_bv_cvs p l2) (permute_bv_vs p l3)" - by (lifting permute_bv_raw.simps) - -lemmas permute_bv[simp] = - permute_bv_pre - permute_bv_vs_raw.simps[quot_lifted] - permute_bv_cvs_raw.simps[quot_lifted] - permute_bv_tvs_raw.simps[quot_lifted] - -lemma perm_bv1: - "p \ bv_cvs b = bv_cvs (permute_bv_cvs p b)" - "p \ bv_tvs c = bv_tvs (permute_bv_tvs p c)" - "p \ bv_vs d = bv_vs (permute_bv_vs p d)" - apply(induct b rule: inducts(12)) - apply(simp_all add:permute_bv eqvts) - apply(induct c rule: inducts(11)) - apply(simp_all add:permute_bv eqvts) - apply(induct d rule: inducts(10)) - apply(simp_all add:permute_bv eqvts) - done - -lemma perm_bv2: - "p \ bv l = bv (permute_bv p l)" - apply(induct l rule: inducts(9)) - apply(simp_all add:permute_bv) - apply(simp add: perm_bv1[symmetric]) - apply(simp add: eqvts) - done - -lemma alpha_perm_bn1: - "alpha_bv_tvs tvars (permute_bv_tvs q tvars)" - "alpha_bv_cvs cvars (permute_bv_cvs q cvars)" - "alpha_bv_vs vars (permute_bv_vs q vars)" - apply(induct tvars rule: inducts(11)) - apply(simp_all add:permute_bv eqvts eq_iff) - apply(induct cvars rule: inducts(12)) - apply(simp_all add:permute_bv eqvts eq_iff) - apply(induct vars rule: inducts(10)) - apply(simp_all add:permute_bv eqvts eq_iff) - done - -lemma alpha_perm_bn: - "alpha_bv pt (permute_bv q pt)" - apply(induct pt rule: inducts(9)) - apply(simp_all add:permute_bv eqvts eq_iff alpha_perm_bn1) - done - -lemma ACons_subst: - "supp (Abs_lst (bv pt) trm) \* q \ (ACons pt trm al) = ACons (permute_bv q pt) (q \ trm) al" - apply (simp only: eq_iff) - apply (simp add: alpha_perm_bn) - apply (rule_tac x="q" in exI) - apply (simp add: alphas) - apply (simp add: perm_bv2[symmetric]) - apply (simp add: supp_abs) - apply (simp add: fv_supp) - apply (simp add: supp_eqvt[symmetric] set_eqvt[symmetric] Diff_eqvt[symmetric]) - apply (rule supp_perm_eq[symmetric]) - apply (subst supp_finite_atom_set) - apply (rule finite_Diff) - apply (simp add: finite_supp) - apply (assumption) - done - -lemma permute_bv_zero1: - "permute_bv_cvs 0 b = b" - "permute_bv_tvs 0 c = c" - "permute_bv_vs 0 d = d" - apply(induct b rule: inducts(12)) - apply(simp_all add:permute_bv eqvts) - apply(induct c rule: inducts(11)) - apply(simp_all add:permute_bv eqvts) - apply(induct d rule: inducts(10)) - apply(simp_all add:permute_bv eqvts) - done - -lemma permute_bv_zero2: - "permute_bv 0 a = a" - apply(induct a rule: inducts(9)) - apply(simp_all add:permute_bv eqvts permute_bv_zero1) - done - -lemma fv_alpha1: "fv_bv_tvs x \* pa \ alpha_bv_tvs (pa \ x) x" - apply (induct x rule: inducts(11)) - apply (simp_all add: eq_iff fresh_star_union) - done - -lemma fv_alpha2: "fv_bv_cvs x \* pa \ alpha_bv_cvs (pa \ x) x" -apply (induct x rule: inducts(12)) -apply (rule TrueI)+ -apply (simp_all add: eq_iff fresh_star_union) -apply (subst supp_perm_eq) -apply (simp_all add: fv_supp) -done - -lemma fv_alpha3: "fv_bv_vs x \* pa \ alpha_bv_vs (pa \ x) x" -apply (induct x rule: inducts(10)) -apply (rule TrueI)+ -apply (simp_all add: fresh_star_union eq_iff) -apply (subst supp_perm_eq) -apply (simp_all add: fv_supp) -done - -lemma fv_alpha: "fv_bv x \* pa \ alpha_bv (pa \ x) x" -apply (induct x rule: inducts(9)) -apply (rule TrueI)+ -apply (simp_all add: eq_iff fresh_star_union) -apply (simp add: fv_alpha1 fv_alpha2 fv_alpha3) -apply (subst supp_perm_eq) -apply (simp_all add: fv_supp) -done - -lemma fin1: "finite (fv_bv_tvs x)" -apply (induct x rule: inducts(11)) -apply (simp_all add: fv_supp finite_supp) -done - -lemma fin2: "finite (fv_bv_cvs x)" -apply (induct x rule: inducts(12)) -apply (simp_all add: fv_supp finite_supp) -done - -lemma fin3: "finite (fv_bv_vs x)" -apply (induct x rule: inducts(10)) -apply (simp_all add: fv_supp finite_supp) -done - -lemma fin_fv_bv: "finite (fv_bv x)" -apply (induct x rule: inducts(9)) -apply (rule TrueI)+ -defer -apply (rule TrueI)+ -apply (simp add: fin1 fin2 fin3) -apply (rule finite_supp) -done - -lemma finb1: "finite (set (bv_tvs x))" -apply (induct x rule: inducts(11)) -apply (simp_all add: fv_supp finite_supp) -done - -lemma finb2: "finite (set (bv_cvs x))" -apply (induct x rule: inducts(12)) -apply (simp_all add: fv_supp finite_supp) -done - -lemma finb3: "finite (set (bv_vs x))" -apply (induct x rule: inducts(10)) -apply (simp_all add: fv_supp finite_supp) -done - -lemma fin_bv: "finite (set (bv x))" -apply (induct x rule: inducts(9)) -apply (simp_all add: finb1 finb2 finb3) -done - lemma strong_induction_principle: + fixes c::"'a::fs" assumes a01: "\b. P1 b KStar" and a02: "\tkind1 tkind2 b. \\c. P1 c tkind1; \c. P1 c tkind2\ \ P1 b (KFun tkind1 tkind2)" and a03: "\ty1 ty2 b. \\c. P3 c ty1; \c. P3 c ty2\ \ P2 b (CKEq ty1 ty2)" @@ -372,295 +162,19 @@ and a44: "\b. P12 b CvsNil" and a45: "\tvar ckind cvars b. \\c. P2 c ckind; \c. P12 c cvars\ \ P12 b (CvsCons tvar ckind cvars)" - shows "P1 (a :: 'a :: pt) tkind \ - P2 (b :: 'b :: pt) ckind \ - P3 (c :: 'c :: {pt,fs}) ty \ - P4 (d :: 'd :: pt) ty_lst \ - P5 (e :: 'e :: {pt,fs}) co \ - P6 (f :: 'f :: pt) co_lst \ - P7 (g :: 'g :: {pt,fs}) trm \ - P8 (h :: 'h :: {pt,fs}) assoc_lst \ - P9 (i :: 'i :: pt) pt \ - P10 (j :: 'j :: pt) vars \ - P11 (k :: 'k :: pt) tvars \ - P12 (l :: 'l :: pt) cvars" -proof - - have a1: "(\p a. P1 a (p \ tkind))" and "(\p b. P2 b (p \ ckind))" and "(\p c. P3 c (p \ ty))" and "(\p d. P4 d (p \ ty_lst))" and "(\p e. P5 e (p \ co))" and " (\p f. P6 f (p \ co_lst))" and "(\p g. P7 g (p \ trm))" and "(\p h. P8 h (p \ assoc_lst))" and a1:"(\p q i. P9 i (permute_bv p (q \ pt)))" and a2:"(\p q j. P10 j (permute_bv_vs q (p \ vars)))" and a3:"(\p q k. P11 k ( permute_bv_tvs q (p \ tvars)))" and a4:"(\p q l. P12 l (permute_bv_cvs q (p \ cvars)))" - apply (induct rule: tkind_ckind_ty_ty_lst_co_co_lst_trm_assoc_lst_pat_vars_tvars_cvars.inducts) - apply (tactic {* ALLGOALS (REPEAT o rtac allI) *}) - apply (tactic {* ALLGOALS (TRY o SOLVED' (simp_tac @{simpset} THEN_ALL_NEW resolve_tac @{thms assms} THEN_ALL_NEW asm_full_simp_tac @{simpset})) *}) - ---"GOAL1" - apply(subgoal_tac "\pa. ((pa \ (atom (p \ tvar))) \ c \ - supp (Abs (p \ {atom tvar}) (p \ ty)) \* pa)") - apply clarify - apply (simp only: perm) - apply(rule_tac t="TAll (p \ tvar) (p \ tkind) (p \ ty)" - and s="TAll (pa \ p \ tvar) (p \ tkind) (pa \ p \ ty)" in subst) - apply (simp add: eq_iff) - apply (rule_tac x="-pa" in exI) - apply (simp add: alphas eqvts eqvts_raw supp_abs fv_supp) - apply (rule_tac t="supp (pa \ p \ ty) - {atom (pa \ p \ tvar)}" - and s="pa \ (p \ supp ty - {p \ atom tvar})" in subst) - apply (simp add: eqvts) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric]) - apply (rule conjI) - apply (rule supp_perm_eq) - apply (simp add: eqvts) - apply (subst supp_finite_atom_set) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric] Diff_eqvt[symmetric] finite_eqvt[symmetric] finite_supp True_eqvt) - apply (simp add: eqvts) - apply (subst supp_perm_eq) - apply (subst supp_finite_atom_set) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric] Diff_eqvt[symmetric] finite_eqvt[symmetric] finite_supp True_eqvt) - apply assumption - apply (simp add: fresh_star_minus_perm) - apply (rule a08) - apply simp - apply(rotate_tac 1) - apply(erule_tac x="(pa + p)" in allE) - apply simp - apply (simp add: eqvts eqvts_raw) - apply (rule at_set_avoiding2_atom) - apply (simp add: finite_supp) - apply (simp add: finite_supp) - apply (simp add: fresh_def) - apply (simp only: supp_abs eqvts) - apply blast - ---"GOAL2" - apply(subgoal_tac "\pa. ((pa \ (atom (p \ cvar))) \ e \ - supp (Abs (p \ {atom cvar}) (p \ co)) \* pa)") - apply clarify - apply (simp only: perm) - apply(rule_tac t="CAll (p \ cvar) (p \ ckind) (p \ co)" - and s="CAll (pa \ p \ cvar) (p \ ckind) (pa \ p \ co)" in subst) - apply (simp add: eq_iff) - apply (rule_tac x="-pa" in exI) - apply (simp add: alphas eqvts eqvts_raw supp_abs fv_supp) - apply (rule_tac t="supp (pa \ p \ co) - {atom (pa \ p \ cvar)}" - and s="pa \ (p \ supp co - {p \ atom cvar})" in subst) - apply (simp add: eqvts) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric]) - apply (rule conjI) - apply (rule supp_perm_eq) - apply (simp add: eqvts) - apply (subst supp_finite_atom_set) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric] Diff_eqvt[symmetric] finite_eqvt[symmetric] finite_supp True_eqvt) - apply (simp add: eqvts) - apply (subst supp_perm_eq) - apply (subst supp_finite_atom_set) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric] Diff_eqvt[symmetric] finite_eqvt[symmetric] finite_supp True_eqvt) - apply assumption - apply (simp add: fresh_star_minus_perm) - apply (rule a15) - apply simp - apply(rotate_tac 1) - apply(erule_tac x="(pa + p)" in allE) - apply simp - apply (simp add: eqvts eqvts_raw) - apply (rule at_set_avoiding2_atom) - apply (simp add: finite_supp) - apply (simp add: finite_supp) - apply (simp add: fresh_def) - apply (simp only: supp_abs eqvts) - apply blast - - ---"GOAL3 a copy-and-paste of Goal2 with consts and variable names changed" - apply(subgoal_tac "\pa. ((pa \ (atom (p \ tvar))) \ g \ - supp (Abs (p \ {atom tvar}) (p \ trm)) \* pa)") - apply clarify - apply (simp only: perm) - apply(rule_tac t="LAMT (p \ tvar) (p \ tkind) (p \ trm)" - and s="LAMT (pa \ p \ tvar) (p \ tkind) (pa \ p \ trm)" in subst) - apply (simp add: eq_iff) - apply (rule_tac x="-pa" in exI) - apply (simp add: alphas eqvts eqvts_raw supp_abs fv_supp) - apply (rule_tac t="supp (pa \ p \ trm) - {atom (pa \ p \ tvar)}" - and s="pa \ (p \ supp trm - {p \ atom tvar})" in subst) - apply (simp add: eqvts) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric]) - apply (rule conjI) - apply (rule supp_perm_eq) - apply (simp add: eqvts) - apply (subst supp_finite_atom_set) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric] Diff_eqvt[symmetric] finite_eqvt[symmetric] finite_supp True_eqvt) - apply (simp add: eqvts) - apply (subst supp_perm_eq) - apply (subst supp_finite_atom_set) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric] Diff_eqvt[symmetric] finite_eqvt[symmetric] finite_supp True_eqvt) - apply assumption - apply (simp add: fresh_star_minus_perm) - apply (rule a29) - apply simp - apply(rotate_tac 1) - apply(erule_tac x="(pa + p)" in allE) - apply simp - apply (simp add: eqvts eqvts_raw) - apply (rule at_set_avoiding2_atom) - apply (simp add: finite_supp) - apply (simp add: finite_supp) - apply (simp add: fresh_def) - apply (simp only: supp_abs eqvts) - apply blast - ---"GOAL4 a copy-and-paste" - apply(subgoal_tac "\pa. ((pa \ (atom (p \ cvar))) \ g \ - supp (Abs (p \ {atom cvar}) (p \ trm)) \* pa)") - apply clarify - apply (simp only: perm) - apply(rule_tac t="LAMC (p \ cvar) (p \ ckind) (p \ trm)" - and s="LAMC (pa \ p \ cvar) (p \ ckind) (pa \ p \ trm)" in subst) - apply (simp add: eq_iff) - apply (rule_tac x="-pa" in exI) - apply (simp add: alphas eqvts eqvts_raw supp_abs fv_supp) - apply (rule_tac t="supp (pa \ p \ trm) - {atom (pa \ p \ cvar)}" - and s="pa \ (p \ supp trm - {p \ atom cvar})" in subst) - apply (simp add: eqvts) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric]) - apply (rule conjI) - apply (rule supp_perm_eq) - apply (simp add: eqvts) - apply (subst supp_finite_atom_set) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric] Diff_eqvt[symmetric] finite_eqvt[symmetric] finite_supp True_eqvt) - apply (simp add: eqvts) - apply (subst supp_perm_eq) - apply (subst supp_finite_atom_set) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric] Diff_eqvt[symmetric] finite_eqvt[symmetric] finite_supp True_eqvt) - apply assumption - apply (simp add: fresh_star_minus_perm) - apply (rule a30) - apply simp - apply(rotate_tac 1) - apply(erule_tac x="(pa + p)" in allE) - apply simp - apply (simp add: eqvts eqvts_raw) - apply (rule at_set_avoiding2_atom) - apply (simp add: finite_supp) - apply (simp add: finite_supp) - apply (simp add: fresh_def) - apply (simp only: supp_abs eqvts) - apply blast - - ---"GOAL5 a copy-and-paste" - apply(subgoal_tac "\pa. ((pa \ (atom (p \ var))) \ g \ - supp (Abs (p \ {atom var}) (p \ trm)) \* pa)") - apply clarify - apply (simp only: perm) - apply(rule_tac t="Lam (p \ var) (p \ ty) (p \ trm)" - and s="Lam (pa \ p \ var) (p \ ty) (pa \ p \ trm)" in subst) - apply (simp add: eq_iff) - apply (rule_tac x="-pa" in exI) - apply (simp add: alphas eqvts eqvts_raw supp_abs fv_supp) - apply (rule_tac t="supp (pa \ p \ trm) - {atom (pa \ p \ var)}" - and s="pa \ (p \ supp trm - {p \ atom var})" in subst) - apply (simp add: eqvts) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric]) - apply (rule conjI) - apply (rule supp_perm_eq) - apply (simp add: eqvts) - apply (subst supp_finite_atom_set) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric] Diff_eqvt[symmetric] finite_eqvt[symmetric] finite_supp True_eqvt) - apply (simp add: eqvts) - apply (subst supp_perm_eq) - apply (subst supp_finite_atom_set) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric] Diff_eqvt[symmetric] finite_eqvt[symmetric] finite_supp True_eqvt) - apply assumption - apply (simp add: fresh_star_minus_perm) - apply (rule a32) - apply simp - apply(rotate_tac 1) - apply(erule_tac x="(pa + p)" in allE) - apply simp - apply (simp add: eqvts eqvts_raw) - apply (rule at_set_avoiding2_atom) - apply (simp add: finite_supp) - apply (simp add: finite_supp) - apply (simp add: fresh_def) - apply (simp only: supp_abs eqvts) - apply blast - - ---"GOAL6 a copy-and-paste" - apply(subgoal_tac "\pa. ((pa \ (atom (p \ var))) \ g \ - supp (Abs (p \ {atom var}) (p \ trm2)) \* pa)") - apply clarify - apply (simp only: perm) - apply(rule_tac t="Let (p \ var) (p \ ty) (p \ trm1) (p \ trm2)" - and s="Let (pa \ p \ var) (p \ ty) (p \ trm1) (pa \ p \ trm2)" in subst) - apply (simp add: eq_iff) - apply (rule_tac x="-pa" in exI) - apply (simp add: alphas eqvts eqvts_raw supp_abs fv_supp) - apply (rule_tac t="supp (pa \ p \ trm2) - {atom (pa \ p \ var)}" - and s="pa \ (p \ supp trm2 - {p \ atom var})" in subst) - apply (simp add: eqvts) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric]) - apply (rule conjI) - apply (rule supp_perm_eq) - apply (simp add: eqvts) - apply (subst supp_finite_atom_set) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric] Diff_eqvt[symmetric] finite_eqvt[symmetric] finite_supp True_eqvt) - apply (simp add: eqvts) - apply (subst supp_perm_eq) - apply (subst supp_finite_atom_set) - apply (simp add: supp_eqvt[symmetric] atom_eqvt[symmetric] Diff_eqvt[symmetric] finite_eqvt[symmetric] finite_supp True_eqvt) - apply assumption - apply (simp add: fresh_star_minus_perm) - apply (rule a34) - apply simp - apply simp - apply(rotate_tac 2) - apply(erule_tac x="(pa + p)" in allE) - apply simp - apply (simp add: eqvts eqvts_raw) - apply (rule at_set_avoiding2_atom) - apply (simp add: finite_supp) - apply (simp add: finite_supp) - apply (simp add: fresh_def) - apply (simp only: supp_abs eqvts) - apply blast - ---"MAIN ACons Goal" - apply(subgoal_tac "\pa. ((pa \ (set (bv (p \ pat)))) \* h \ - supp (Abs_lst (p \ (bv pat)) (p \ trm)) \* pa)") - apply clarify - apply (simp only: perm eqvts) - apply (subst ACons_subst) - apply assumption - apply (rule a38) - apply simp - apply(rotate_tac 1) - apply(erule_tac x="(pa + p)" in allE) - apply simp - apply simp - apply (simp add: perm_bv2[symmetric]) - apply (simp add: eqvts eqvts_raw) - apply (rule at_set_avoiding2) - apply (simp add: fin_bv) - apply (simp add: finite_supp) - apply (simp add: supp_abs) - apply (simp add: finite_supp) - apply (simp add: fresh_star_def fresh_def supp_abs eqvts) - done - then have b: "P1 a (0 \ tkind)" and "P2 b (0 \ ckind)" "P3 c (0 \ ty)" and "P4 d (0 \ ty_lst)" and "P5 e (0 \ co)" and "P6 f (0 \ co_lst)" and "P7 g (0 \ trm)" and "P8 h (0 \ assoc_lst)" by (blast+) - moreover have "P9 i (permute_bv 0 (0 \ pt))" and "P10 j (permute_bv_vs 0 (0 \ vars))" and "P11 k (permute_bv_tvs 0 (0 \ tvars))" and "P12 l (permute_bv_cvs 0 (0 \ cvars))" using a1 a2 a3 a4 by (blast+) - ultimately show ?thesis by (simp_all add: permute_bv_zero1 permute_bv_zero2) -qed -*) - -section {* test about equivariance for alpha *} - -(* this should not be an equivariance rule *) -(* for the moment, we force it to be *) - -(*declare permute_pure[eqvt]*) -(*setup {* Context.theory_map (Nominal_ThmDecls.add_thm @{thm "permute_pure"}) *} *) - -thm eqvts -thm eqvts_raw - + shows "P1 c tkind" + "P2 c ckind" + "P3 c ty" + "P4 c ty_lst" + "P5 c co" + "P6 c co_lst" + "P7 c trm" + "P8 c assoc_lst" + "P9 c pt" + "P10 c vars" + "P11 c tvars" + "P12 c cvars" +oops end